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1. Introduction
Let £L={w € C: |w| < 1} be an open unit disc in C. Let H(L) be the analytic functions class in £ and let
L[a, €] be the subclass of H(L) of the form

g(w) = a+ aw'+ a g wtt +---,

where a € Candt € N = {1,2, ...} with H, = H[0,1] and H = H[1,1]. Let g(w) be an analytic function an
open unit disc. If the equation wv=g(w) has never more than p-solutions in
L={weC:|w| <1}, theng(w) is said to be p-valent in L. The class of all analytic p-valent functions is
denoted by A,,, where g is expressed of the forms

g(w) =wP + Z aw', (pteN={123,.},weL). D
1=p+e
The Hadamard product for two functions in A, such that
k(w) =wP + Z cw', (we L) 2)
1=p+e
is given by
g(Ww) *k(w) =w?P + Z acw. (we L) 3)
1=p+e

If g and k are members of H(L), we can assume that a function g is subordinate to a function k or k is said to

be superordinate to g if there exists a Schwarz function I(w) which is analytic in £ and [I{(w)| < 1, (w € L),

such that g(w) = k(l(w)). The term this subordination is used to describe this relationship
gw)<kwW)org<k.

Moreover, if the function k is univalent in £, then we have the following equivalence [1,6,7,11]
gw) <k(w) © g(0) =k(0)and g(L) c k(L) .
The class V is normalized convex functions in £, we define for from

wg"(w)
g'(w)

V={g€A:iRe<1+ >>0,(WEL)}.

Miller and Mocanu proposed the differential subordinations approach in 1978 [12,16], and the theory began to
evolve in 1981 [10]. Miller and Mocanu compiled all of the information in a book published in 2000 [11,15]. If
p is analytic in £ and meets the second-order differential subordination condition, then

¥ (p(w), wp'(w), wp"(w); w) < h(w), C))
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p is known as a differential subordination solution. If p < g for all p satisfying, the univalent function g is
considered a dominant of the solutions of the differential subordination or simply a dominant (4). The best
dominant of all is a dominant q that satisfies § < q for all dominants (4).

See [3,4,5] for the use of generalized hypergeometric functions and Wright's generalized hypergeometric
functions in geometric function theory. For the purposes of this paper, we define a linear operator in terms of
Wright's generalized hypergeometric function.

Q5 [(ay, A1, q; (B, By, s]: Ab — Ab,
Dziok and Raina [2,8] looked into it recently. For a function g of the form(1), the following can be seen:

(@ AL, 63 By BIL (@ D) = WP+ Dy (@) by, ®)
where i

q s
Yo (@) =1 F(B1 +B,(n— p)) F(BS + Bg(n — p))(n —p)! . (1—[ F(an> (1—[ F(Bn)!

M(a;, + A, (n— p)) . T (aq +A,(n— p))
we have it for the sake of convenience

05[a; 1(g * W) = Qb [ (e, A, ..., (ag, Ag); By ,By), oo, (Bs . B) ] (g * ) (W)
Using the relationship (5), it is clear that
wa, (Qh[a;1(g * YW)) " = (@ — pA)s[a; 1(g * )W) + ayQpla; +1](g )W) (6)
Fort € Ny,p =0, we let R, . () be the class of functions g € A satisfying
Re{(Q5 [y 1(g W)} <A, (0<A< 1,wE L) &)
The following lemmas will be used to obtain our key results.

Lemma 1.1 ([13,9]). Let k be a convex function in £ and let h(£) = k(w) + nfwk’'(w), where 8 > 0 andn €

N. If p(w) = k(0) + p,w™ + P W™ +--- , isholomorphicin £ and
p(w) + fwp’' (W) < h(w),
then
p(w) < kw).
2112 |22
Lemma 1.2 ([14]). Let Re{t} > 0,n € N, and let M = %J{Z}T'. Let h be an analytic function in £ with
k(0)=1, and Re {1 + “::(%)} >-M. IfpW)=1+p,W" + ppy W™ +---, is analytic in £

and p(w) + %Wp'(w) < h(w), we get p(w) < q(w), where q is the differential equation's solution

aw) +owq' W) =hW),  q(0) = 1,
then

qw) = fwt(f/")‘l h(t)dt, (weEL).
0

nWr/n
2. Main results

Theorem 2.1. Let g be convex function in £ with g(0) = 1 and let h(w) = q(w) + ﬁ wq'(w),
where u € C, and Refu} > —1.1fg € R, (B), § =yu (g * k), where

1 w
W) = W) = S [t g oo ™

then
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(Qplay 1(g * )W) < h(w). ®
It imply

(95 [ay 16w)) < qw).
Proof. We can deduce the following from the equality (7):
wig ) = et 1 [ 841 (g e ©
When we differentiate the equality (9) in terms of w, we get0
(Wé W) +wé'w) = (u + D(g * kW),

W[ 1EW) +w(Qpla EW))' = (1 + D[y 1(g * k) (w). (10)

then, we obtain

When we differentiate (8) in terms of w, we get

1
@Qplay]§ W)+ mW((ﬂ{,[al]s‘ w)" = (Qplalgw))". (11)
In the equality problem, use differential subordination (8). (11), we obtain
1
QplaJEw))" + mW((Qi[allf(W))” < h(w). (12)
Now, let us define
p(w) = (Qplai]E(w))". 13)
Then, with a quick calculation,
p(w)=w+§:x (a)&abwn =1+ pz + p,z+ (p € H[1,1]))
nzzn 1 M+n nn 1 2 e ’ .

In the equality problem, use differential subordination (12). (13), we have,
1 / _ 1,
PW) + == wp' W) < h(w) = qw) +—wq'(W).

Making use of Lemma 1.2, we obtain
p(w) < gw).
1+|u+1

12—|u?+2u] . . . _
————— . Let h be an analytic function in £ with h(0) = 1
4Re{u+1}

} > —E. If (g xk) € R, (B) and § =y (g * k), where £ is defined by (10),

Theorem 2.2. Let Re{pu} > —1andlet M =
wh"(w)
hr(w)

and suppose that Re {1 +

then

Qplay1(g * k)W) < h(w) (14)
It imply

Q5[ JEw))' < q(w),

where q is the differential equation's solution

1 !
h(w) = qw) + 1 W), q(0) =1,
given by

z

qw) = '::/:j f th (g * k)(t)dt.

0

Proof. If we use n=1 and y =pu + 1 in Lemma 1.2, then the proof is straightforward using the proof of
Theorem 2.2.
1+ (28 - 1Dw

hw) = 1+w

, 0<B<1,
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we get the following result from Theorem 2.2.

Corollary 23. If 0<p<1,0<5{<1,p=0Re{u}>—-1and &=yu(g+k) is defined by the
equationRe{Q}, [a;]1h(w))'} > B, then, we have v, (R,(B)) € R, (0), where = minRe{g(w)} = (1, B).
lwl=1

Also,

=0wP) =B~ 1) +2(u+ D(A-B)T(W), (15)
where
u
(W = f 1:_ ; dt. (16)

0

Proof. Let f € R, (). By from (7), we get

Re{(Q5[a,](g * )W)’} > B
this is the same as
Qplail(g * )W)’ < h(2).
We obtain by applying Theorem 2.1.
Qplay ()" < q(@).

If we consider

h(w)=H(12_[i_—v_V1)W, 0<p<1.
Then h is convex , and we have by Theorem 2.2
w w
(25[a 16w)) < qw) = ’V‘V;}j wlt (fft_ Dl e = 2p-1) + 24 _ﬁ(fi +D 1t_:tdt.

0 0
If Re{u} > —1,and q(L) is symmetric with respect to the real axis because of its convexity, we obtain

Re{(Qp[a;]§W))'} = minRe{g(w)} = Relq(D} =W, B) = 2B -1 + 2 + DA-Pr(w), (17)

Iwl=1

where t(w) is the value of (16). We have inequity (17) as a result of injustice

Yu@Rp,e (B)) € Ryt (O,
where ¢ is given by (15).

Theorem 2.4. If g be a convex function and g(0) = 1. Let h a function such that h(w) = q(w) + wq'(w), and
k €Ny, p=0, g € A, such that

Qpla,1(g = k)W) < h(w) = q(w) +wq'(w), (18)
then
Qé[al](i* k) (w) < q(w).
Proof. Let
() = 2oLeal(@ = () 19

w
We have (19) as a differentiator.

Qplai](g « )W) = p(w) + wp'(w). (w € £)
When you use (18), you get
p(w) + wp'(w) < h(w) = q(w) +wq'(w),
we can use Lemma 1.1 to solve this problem
p(w) < qw).

Then, we obtain
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Qplail(g x k) w) -
w

q(w).

Theorem 2.5. If g be a convex function and q(0) = 1. Let h the function h(w) = q(w) + wq’(w),
and k € Ny, p =0,g € A4, such that

(‘Q‘P[al +1](g * k)(W)) < h(w), 20)

Qb [e,](g * K)(w)
then
Qh[a; +1](g * k)W)
Qb [e,](g * kK)(w)

< qw).

Proof. In the case of the function g € A, which is given by the equation (1), we get

Op[(an, AL q; (Ba, B)Lsl(g x )W) = w + Z X (@1) @y byw™ = Q5 [, 1(g * k) (W).
Hence n=2
o 1 n
Qb [ay +11(g * k)(w) B W+ Yoo Xn (@ +1) Zin a, b,w

p(w) =

+1 e
Tl
u+n

Z-i—Lrll a, b,w"1

1+ X Xn (@141) Ay by w1

1+ X7 oXn (1)
then
(2[a; + 11(g * )W) (2[e](g * )W)

b)) =G om P Gl

we obtain
(wabla, +11(g * ) (w))
25a; 1(g + )W)

p(w) +wp'(w) =
As a result of the relationship (20),

p(w) + wp'(w) < h(w) = qw) + wq'(w),

We can use Lemma 1.1 to solve this problem

p(w) < g(w).
Therefor
Qplay1(g = K)(w) < q(w).
w
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