
Turkish Journal of Computer and Mathematics Education Vol.12 No. 1 (2021), 336-345

Research Article

336

Effect Of Execution Time Analysis Epl Program For Computational Thinking Of

Elementary School Students
^

Woojong Moon, Jonghoon Kim
Jeju National University, Jeju, Republic of Korea

Article History: Received:11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract— Software education has emerged as a hot topic around the world, with the goal to raise interests on

computational thinking. However, assessments on the computational thinking have not been actively conducted

thus far. According to a study by Lee (2019), which analyzed 138 papers on computational thinking published in

Korean journals from 2015 to 2018, software education has been introduced and studies on computational

thinking are being conducted, but studies on teaching methods that2 improve computational thinking are needed.

In this study, we developed and applied a primary educational programming language(EPL) program focused on

execution time analysis aimed at improving computational thinking. By using the “Bebras Challenge” as an

assessment tool and SPSS as a statistical tool, educational effects were analyzed through the results of pre- and

post-computational thinking assessments. The analysis outcomes showed that the EPL education focused on

execution time analysis was effective in improving the computational thinking of elementary school students.

Putting execution time analysis EPL into primary software education as an educational topic will be effective in

improving computational thinking.

Keywords—Algorithm, Execution time, EPL education, Computational thinking

1. INTRODUCTION

Software education has been widely introduced and provided to elementary and middle schools in various

approaches. Most elementary schools currently offer basic programming education through block-based

programming languages as these languages provide audiovisual elements that are suitable for the cognitive level

of elementary school students and can easily attract their interests [1]. However, assessments on the

computational thinking, which students develop through the programming learning process, have not been

actively conducted. According to a study by Lee (2019), which analyzed 138 papers on computing thinking

published in Korean journals from 2015 to 2018, software education has been introduced and studies on

computing thinking skills are being conducted, but studies on teaching methods that improve computing thinking

are needed [2]. Some of the reasons for this include lack of awareness regarding the importance of computational

thinking assessments, absence of assessment tools that are easily accessible to instructors and learners to evaluate

computational thinking, and complexity of computational thinking assessment methods [3]. The goal of software

education should involve “cultivating creative convergent talents having computational thinking”; therefore,

research on improving the computational thinking of students is necessary. Accordingly, this study developed an

elementary educational program using execution time-oriented educational programming language (EPL) to help

improve the computational thinking of elementary school students.

2. THEORETICAL BACKGROUND

2.1. ALGORITHM

Algorithm refers to a logical process of procedure that indicates a resolution procedure to solve a problem in

an easy way. In other words, various methods of trying to solve problems are the concepts of algorithms. It is the

core concept of computer and programming, and it is possible to increase problem-solving power through

algorithm education. As the goal of software education is generally represented by computational thinking, it is

very important to have a problem-solving method expressed in algorithms [4]. This study focused on finding two

algorithms that solve the same problem and comparing the execution time of each algorithm.

2.2. EXECUTION TIME

Execution time refers to the time the algorithm takes to generate an output based on a given input. The analysis

result of the algorithm execution time is referred to as time complexity, which enables algorithm’s performance

assessment by counting the number of computational operations required to execute the algorithm. As the

Woojong Moon, Jonghoon Kim

337

number of computational operations in the algorithm primarily varies on the algorithm execution time, the

algorithm execution time should be carefully handled to enable efficient problem solving [17]. According to a

study by Kim (2020), even though one may make the same result by solving the same problem, the time taken to

solve the problem may differ by each algorithm, which is directly linked to efficient problem solving. By

analyzing algorithm’s execution time, the capability is enhanced to understand the operational mechanism of

algorithm and choose an adequate and efficient algorithm to solve a problem. Through education, which analyzes

algorithm execution time and chooses and applies an algorithm suitable for problem solving, it can build

computational thinking ability to solve problems efficiently [5]. In this study, to allow students to easily compare

the execution times and to simplify the education process by teaching students according to their capability

levels, the number of computational operations is counted directly in the Scratch program. Further, the

educational program was designed to encourage the students to try various approaches to find an algorithm that

minimizes the execution time.

2.3. EPL EDUCATION

EPL is a computer language designed to prevent students from feeling overwhelmed when learning to program.

A programming language generally requires learners to spend a large amount of time in grasping basic grammar or

structure, causing cognitive burdens. By providing simple structures, the EPL is designed to allow young learners

and beginners to reduce cognitive burdens and to further engender students’ interest in programming learning [6].

According to a study by Kim (2019), which analyzed 39 EPL papers published in Korea over the past decade,

education using EPL has been found to be useful in greatly improving elementary school students' thinking skills

[7]. In this study, the EPL education method was adopted to improve the computational thinking ability of

elementary school students by focusing on algorithm execution time. Scratch, which is the most widely used EPL

method and has many advantages, was used to implement the proposed educational program.

2.4. COMPUTATIONAL THINKING

The phrase computational thinking first emerged in the computer science education community in 2006, after

Wing defined it as “thinking like a computer scientist when tackling a problem to be solved”. Table I show the

core factors of computational thinking [8].

Table I. The Core Factors of Computational Thinking

Components Definitions

Data Collection The process of gathering appropriate information.

Data Analysis Making sense of data, finding patterns, and drawing conclusions.

Data Representation Depicting and organizing data in appropriate graphs, charts, words, or images.

Problem Decomposition Breaking down tasks into smaller manageable parts.

Abstraction Reducing complexity to define the main idea.

Algorithms & Procedures Series of ordered steps taken to solve a problem or achieve some end.

Simulation
Representation or model of a process. Simulation also involves running

experiments using models.

involves running experiments sing models.
Parallelization Organize resources to simultaneously carry out tasks to reach a common goal.

Although different scholars assign slightly different definitions to computational thinking, all the definitions

share a common idea given that it is a thinking process of collecting problems and finding solutions to

effectively take actions through a computing system. Further, computational thinking can be referred to as a

procedural thinking ability for solving problems through abstraction and automation. In recent years,

computational thinking has begun to be considered as the ability that every learner of the twenty-first century

should acquire in addition to the 3Rs (Read, Record, and Recite). Hence, developing computational thinking has

become the main goal of software education [9]. In this study, the main goal was to promote the development of

Effect Of Execution Time Analysis Epl Program For Computational Thinking Of Elementary School

Students

338

students’ computational thinking through the process of comparing and analyzing the execution time needed to

solve a given problem and to find a more efficient algorithm using EPL.

2.5. PREVIOUS STUDIES

A study by Shin (2015) analyzed the impact of Scratch-based education on improving computational

thinking. As a result, students' computational thinking improved in areas where students understood and

analyzed problems. In addition, it was suggested that further research is needed on which approach of teachers is

more helpful for improving computational thinking. Based on this, this study analyzed the impact of Scratch-

based education on the performance time on improving students' computational thinking skills [10].

A study by Yoon (2018) analyzed the effects of EPL on programming ability, computational thinking, and

problem solving in terms of programming education. In the said study, among various EPLs, Scratch was used to

provide programming language education, which helped students improve their programming abilities,

computational thinking, and problem-solving skills while achieving a high student satisfaction [11]. However,

since the subject of education is university students, it is necessary to study whether the results of this study will

be effective in primary education. Thus, this study designed EPL education programs for elementary school and

sought to improve students' computational thinking skills.

In a study by Lim (2017), an algorithm-based teaching and learning method was developed to enhance

computational thinking. According to Lim, computational thinking skills were improved through the process of

solving problems by using algorithm-based teaching and by learning method to solve computer science problems

in the information subject [12]. However, this study did not go as far as to apply the teaching method developed

to students and analyze the changes in computational thinking pre- and post- education. Thus, the change in

computational thinking was measured in this study by applying the program to improve the computational

thinking based on algorithms and analyzing the degree of computational thinking on improvement pre- and post-

education.

Yang (2019) has developed and applied an educational program that was focused on analyzing the execution

time of sorting algorithms for elementary school students. By analyzing the educational effects of that program,

he determined that education that featured comparing and analyzing algorithm execution time has provided a

positive effect on improving the logical thinking of elementary school students. Further, it was suggested that

execution time can be an effective programming education topic to help improve thinking skills [13].

A study by Kim (2018), has develop a Python search algorithm educational program based on execution time

to improve the logical thinking of elementary school students. He focused on algorithm education through which

students ponder about how to solve a problem in minimal time and its importance, beyond simply solving the

problem. The results of the analysis showed that this study can positively affect the logic of elementary school

student [14].

Kim (2020) has developed and applied an unplugged educational program that was focused on execution time

analysis for third grade elementary school students. Focused educations were given during six days in vacation

period and then, a comparative analysis was made between a control group taken a board game education and a

group taken an education program developed in this study. The result of the pre and post-tests on computational

thinking and creativity showed that the education program developed in this study is effective in enhancing

computational thinking ability of elementary school students [5].

As described previously, to promote and enhance computational thinking, which is an essential goal of

software education, various studies have been actively conducted in the education field by using the EPLs. In this

study, the execution time was selected as a tool for improving the computational thinking of students. To present

the concept of algorithm execution time to students, the concept was simplified in accordance with the students’

cognitive level. Further, after conducting a demand analysis by reflecting the difficulty of the topic among

various EPLs, Scratch, which the students are familiar with, was selected as the education tool. Finally, we

verified the effectiveness of the developed educational program on improving the computational thinking of the

elementary school students.

3. RESEARCH METHODS

3.1. RESEARCH HYPOTHESIS

Null hypothesis: No difference exists between the learner’s pre- and post-computational thinking after

participating in algorithm execution time-oriented primary EPL education.

Alternative hypothesis: A difference exists between the learner’s pre- and post-computational thinking after

participating in algorithm execution time-oriented primary EPL education.

Woojong Moon, Jonghoon Kim

339

3.2. STUDY SUBJECTS

In this study, 25 volunteers participated for the education donation program conducted by Jeju National

University. The overall content of the program, including the subject and content of the program, was released

online in advance. The participants, who were minors, gave their guardians’ consents to join the study. Table II

summarizes the grade and gender of the participants.

Table II. Grade and Gender of the Subject

Class Male Female Total

Grade 4 11 6 17

Grade 5 4 4 8

Total 15 10 25

3.3. EDUCATIONAL PROGRAM

The educational program was developed in accordance with the ADDIE model process of Dick& Carey,

which is the most widely used instructional design model. In the analysis stage, the pre-requisite analysis was

conducted among the elementary school students, and in the design stage, the educational goals were specified

based on the results of the demand analysis. In the development stage, the education was developed based on the

materials needed for education and the teaching process plan was developed during the implementation stage, the

education was conducted based on the development. In the assessment phase, post-tests were conducted using

the evaluation tool, and the Bebras Challenge was used to conduct post-tests and measure changes in students'

computational thinking.

3.3.1. PRELIMINARY DEMAND ANALYSIS

The demand analysis was conducted online using Google forms to 48 senior elementary school students in

Jeju, Republic of Korea. Table III shows the list of teaching methods that the students mainly experienced in

their software education. According to the survey results, physical computing was the most common teaching

method, followed by EPL, unplugged, and computer language.

Table III. The Experience of SW Education

 Unplugged
Physical

Computing
EPL

Computer

Language

Student 11(23%) 20(42%) 16(33%) 1(2%)

Table IV shows the results of the survey on whether the students understood the software education concept

of algorithm (procedural problem solving). The results show that more than 80% of the students discovered the

term algorithm through software education and understood its meaning.

Table IV. Understanding Algorithms in SW Education

 Not well aware Be average Well-informed

Student 9(18.8%) 21(45.8%) 17(35.4%)

As shown in Table V, 96% of the students answered that algorithm education is essential in software

education.

Table V. The Need of Algorithms in SW Education

 Do not need be Normal Essential

Student 4(4%) 19(19%) 77(77%)

The demand analysis results identified the below demands for this study. First, the software education

methods that students most often experience are physical computing, EPL, and unplugged. As the students are

Effect Of Execution Time Analysis Epl Program For Computational Thinking Of Elementary School

Students

340

rather unfamiliar to the algorithm execution time topic, among the tools that students frequently used, Scratch,

which is one of the EPLs and enables convenient comparative analysis of execution time, was selected as the tool

for the software education. Second, most students answered that they had previously encountered algorithms

(procedural problem solving) through software education and that they understood the concept to some extent.

Additionally, the students agreed that learning about algorithm execution time (finding out if the problem-

solving method is effective) is necessary. Accordingly, we aimed to improve the computational thinking of

students by allowing them, through Scratch, to analyze and compare various algorithms by solving the same

problem and finding out which algorithm is the most efficient.

3.3.2. EDUCATIONAL PROGRAM DESIGN AND DEVELOPMENT

In this study, we constructed an execution time-oriented primary EPL education content based on learner

levels and Scratch characteristics. The early sessions of the course were focused on the basic content required for

comparing and analyzing the algorithm execution time, such as the basic Scratch UI, repetitive statements and

conditional statements, and variables. Furthermore, we included separate practice sessions to help students

familiarize themselves with the corresponding content. Subsequently, the course’ mid-sessions were designed for

the students to solve problems using various algorithms, such as a pedometer, calorie calculator, prime number

detector, and sieve of Eratosthenes, and to compare each execution time to locate more efficient algorithms.

Finally, in the final course sessions, the students were asked to conduct individual projects by selecting their own

topics on which they solve a problem by using two or more algorithms and comparing execution times. Table VI

summarizes the learning themes of the class sessions.

Table VI. Algorithm Execution Time Analysis Education Program

Hour Step Topic

1~4 Orientation and foundation

- Orientation and pre-test paper input

- Learn basic functions and UI of the Scratch

- View to create a simple program

(to move a sprite, change the shape of sprite)

5~12

Conditional and repetitive

statements

Variable and List

- Learn the concept of conditional statement and setting of exit condition

 (press the keyboard to move the fish, shut down when sharks touch)

- Learn how to use variables and lists

 (create score using variables, find the divisor and a common divisor)

13~18
Learning the concept of

execution time

- Concept of execution time

 (compare the two algorithms of finding the maximum of three numbers)

- Learn how to compare execution times in a Scratch program

 (create a variable to count the number of executions of repetitive

statement)

19~30 Execution time analysis

- To compare and analyze the execution time of two algorithms

 (obtain the maximum, find the maximum committee, distinguish prime

number, find a decimal number between 1 and 100, etc.)

31~36
Preparing the work of the

individual project

- Create a work plan of individual project

- To produce individual project work

 (solving one problem with two algorithms and comparing execution time

with Scratch)

37~42 Announce project work

- Post-test paper input

- Announce the work of individual projects

 (comparing analysis of algorithm execution time)

Figure 1 shows part of the textbook on the process of how to calculate the execution time of the algorithm in

Scratch. The textbook first introduces the process of obtaining two maximum pledged numbers, creating four

variables: 'small number', 'big number' and 'number', ‘greatest common divisor’. When 'small' and 'big' are

divided into 'number', both find the remaining 0 and store 'number' in greatest common divisor, and repeat

'number' until it is bigger than the small number. Through this course, students can find greatest common divisor,

calculating how many operations are performed within the algorithm and calculating the execution time

manually. It also guides them to realize that they can calculate the execution time by creating another variable

within the scratch called 'execution time' and increasing it by one for each calculation, such as 'number'. In this

way, students can create these "execution time" counters within algorithms to compare the efficiency of two or

more algorithms.

Woojong Moon, Jonghoon Kim

341

Fig. 1 Part of a textbook introducing methods for calculating execution time through examples of finding the

greatest common divisor

Figure 2 shows part of the textbook that puts execution time counters into two algorithms to solve the same

problem to distinguish whether the number is a prime number and to compare the execution time. Method 1 is to

divide the number of entries from one to the number of entries, and to see if there is a number of zeros in the

remainder. This method repeats the division from 1 to the number entered, so the execution time is the number of

entries for both the maximum and maximum values. Method 2 starts with 2, divides by one, but stops

immediately when the remaining number is zero and determines that it is not a minority. Therefore, the

maximum value of execution time is 1 and the maximum value is input number-2. As the number of inputs

increases, method 2's execution time becomes smaller compared to method 1, resulting in a big difference. In this

educational program, students tried to measure the execution time of algorithms using these execution time

counters and improve whether they could change the algorithm execution time of their own program more

efficiently.

Effect Of Execution Time Analysis Epl Program For Computational Thinking Of Elementary School

Students

342

Fig. 2 Part of a textbook comparing execution time with two algorithms that distinguish whether the entered

number is a prime number

3.4. SCRATCH

Scratch is a free programming language tool developed by the MIT Media Lab in the US in 2007 as a means of

developing the intelligence and creativity of children ages 8–16. The Scratch programming language combines the

way children think of algorithms with built-in logical programming called blocks to alleviate the difficulties

presented by the existing text input methods for understanding structure and grammar [15]. Scratch can be

programmed by dragging and dropping blocks and provides 10 types of block categories including of action, form,

sound, pen, data, event, control, observation, computation, and additional block. Each block category has several

blocks, and because each category has a different color, the color of the block alone can tell which category it

belongs to. Block-based language like Scratch is a suitable programming language for programmers especially

among elementary school and middle school students because it is easier to visually simplify, structure, and utilize

the structure or contents of a program when written in text-based language [16].

Woojong Moon, Jonghoon Kim

343

3.5. EXPERIMENT TOOLS

As for the experiment tool, we used the assessment sheets from the Korea Bebras Challenge hosted by the Korea

Information Science Education Federation to evaluate the computational thinking improvement. The Bebras

Challenge is an assessment tool that measures computational thinking elements, such as algorithm and

programming analysis, data analysis and representation, problem analysis, problem decomposition, and modeling

based on informatics concepts. For this study, in particular, the Bebras Challenge group III assessment sheets

(designed for 5th and 6th graders) were selected based on the age and level of the students participating in the

experiment. Additionally, pre- and post-test sheets were used to measure the changes in computational thinking.

Table VII shows the experimental design.

Table VII. Experimental Design

 Pre-test Treatment Post-test

G(N=25) O1 X O2

X: Input Execution time analysis education program

G: Experimental group

O1, O2: Paired sample T-test(pre-test, post-test)

4. RESULTS

4.1. EVALUATION OF EDUCATIONAL PROGRAM EFFECTIVENESS

An evaluation was conducted to analyze the effects of execution time-oriented primary EPL education on the

computational thinking of students. Since the sample size was 25 students and fell in the range of 10≤n<30, a

normality test was conducted to verify that the computational thinking test results of the experimental group

showed normality. The Shapiro-Wilks test was used for the normality test, and the results are shown in Table

VIII.

Table VIII. Normality Test(*p<.05)

Subscales
Descriptive Statistics(N=25)

stat p
M SD Max Min

CT 1.240 1.200 3 -1 .920 .282

From the normality test, a p-value of 0.282 was obtained, which was greater than 0.05; thus, the null

hypothesis was accepted to assume that the normality was secured. As the computational thinking assessment

results were verified to show normality through the Shapiro-Wilks test, a paired t-test was used for

comparison of pre- and post-test results.

Table IX. Change in Computational Thinking (Paired T-test, *p<0.5)

Subscales N
Pre-Test Post-Test

t p
M SD M SD

CT 25 5.28 .363 6.32 .298 -3.436 .002*

As shown in Table IX, in the paired t-test, the average score increased by 1.08, from pre-test score of 5.28 to

post-test score of 6.32, and the p-value of 0.002 was obtained, indicating a statistical significance in the

improvement of the computational thinking.

4.2. EXPERIMENT RESULTS ANALYSIS

According to the paired t-test results, a higher computational thinking average score was observed in the post-

test, and a statistically significant improvement was obtained in the p-value. Therefore, the experiment in this

study successfully managed to prove that the execution time-oriented primary EPL education can improve the

Effect Of Execution Time Analysis Epl Program For Computational Thinking Of Elementary School

Students

344

computational thinking ability of elementary school students and that the topic of algorithm execution time can

be implemented as a useful software education topic for elementary school students.

5. CONCLUSIONS

In this study, we attempted to analyze the effects of algorithm execution time-oriented primary EPL

education on the computational thinking of elementary school students. To achieve this, we developed an

educational program based on a preliminary demand analysis by following the ADDIE model process.

Subsequently, educational program was provided to students as a 6-day intensive course, and changes in

computational thinking were evaluated through the pre- and post-tests results.

Based on these results, the proposed educational program was found to be effective in enhancing the

computational thinking ability of the elementary school students. Additionally, students showed high satisfaction

with the educational program by trying various approaches in the process of comparing execution times and

improving their programming skills. Students continued to think and work hard to reduce their execution time,

not just to complete the program. Previously, the program ended with completion, but after studying the

execution time through the program, students became interested in reducing the execution time of the program,

not just completing the program. Based on these findings, we can conclude that the algorithm execution time

comparison and analysis subject is useful in developing the computational thinking of learners, which is the main

goal of software education.

However, generalizing this study presents some limitations, as the sample size of the experimental group did

not exceed 30 participants, which is the minimum number required for a general correlational study.

Additionally, since the effectiveness of the developed educational program was verified only with the pre- and

post-test results, without having a comparison group, there is a possibility that the correlation of the program

effectiveness may not have been clearly expressed in detail. In a follow-up study, we intend to secure a larger

number of participants and to construct experimental and comparison groups to analyze each study result factors

more systematically.

ACKNOWLEDGMENTS

This study was supported by the research grant of Jeju National University in 2020.

REFERENCES

JOURNAL ARTICLE

1. Shim, J., Chae, J., “Development of On-line Judge System based on Block Programming Environment,”

The Journal of Korean association of computer education, vol. 21, no. 4, pp.1-10, (2018)

2. C. Kurinchi Vanan & R. Subramani, “Digital Divide: Rural and Urban College Students’ Attitude

Towards Technology Acceptance”, International Journal of Communication and Media Studies

(IJCMS) , Vol. 5, Issue 4, pp, 1-8

3. Lee, A., “Domestic Research Trend Analysis of Computing Thinking”, The Journal of Korea Contents

Society, vol. 19, no. 8, pp.214-223, (2019) DOI: 10.5392/jkca.2019.19.08.214

4. Rahma Nasir, “Identifying the Students’ Proportional Reasoning”, International Journal of Educational

Science and Research (IJESR), Vol. 8, Issue 2, pp, 71-78

5. Park, J., “Evaluation of Computational Thinking through Code Analysis of Elementary School Students’

Scratch Projects,” Journal of The Korean Association of Information Education, vol. 23, no. 3, pp.207-

217, (2019) DOI: 10.14352/jkaie.2019.23.3.207

6. Ali A. AL-Bakhrani, Abdulnaser A. Hagar, Husam H. Abdulmughni, Ahmed A. Hamoud, Bharti W.

Gawali, Ratnadeep R. Deshmukh, Ramesh Manza, Manasi Baheti & Sunil Nimbhore, “The Utilization

of Google Classroom in the Learning Procedure and Implement in Yemen”, International Journal of

Mechanical and Production Engineering Research and Development (IJMPERD), Vol. 10, Issue 3, pp,

1539–1544

7. Jeong, I., “Software Battle for Algorithm Education Focused on Sorting Algorithm”, Journal of The

Korean Association of Information Education, vol. 22. no. 2, pp.223-230, (2018),

DOI:10.14352/jkaie.2018.22.2.223

8. Garima Sharma, “A Critical Study of the Biology Curriculum at Senior Secondary Stage With Respect

to Life Skills Education and the HIV/AIDS Education”, IASET: International Journal of Library &

Educational Science (IASET: IJLES), Vol. 2, Issue 3, pp ; 1-10

9. Kim, J., Oh, M., Kim, J., “Effect of analysis of algorithm execution time and adopting unplugged

method on third grade elementary students’ computational thinking ability”, The Asian Internatilanl

Journal of Life Science, vol. 29, no. 1, pp.269-279, (2020), DOI: 10.21742/IJCWPM.2019.3.1.02

Woojong Moon, Jonghoon Kim

345

10. Kiran Dalal, “Learning Enhancements Programmes in Schools”, International Journal of Linguistics and

Literature (IJLL), Vol. 5, Issue 5,pp; 15-18

11. Jeon, S., “Art based STEAM Education Program using EPL,” Journal of The Korea Society of

Computer and Information, vol. 19, no. 4, pp.149-158, (2014) DOI: 10.9708/jksci.2014.19.4.149

12. Dirgha Raj Joshi, “Useful Applications/Software for Mathematics Teaching in School Education”,

IMPACT: Journal of Computational Sciences and Information Technology (IMPACT: JCSIT), Vol. 1,

Issue 1, pp, 29-34

13. Kim, D., “A Meta-Analysis on the Effects of Software Education on Computational Thinking.” Journal

of The Korean Society of Computer Information, vol. 23, no.6, pp.81-89, (2018) DOI:

10.9708/jksci.2018.23.06.081

14. Choi, S., “An Analysis of "Informatics" Curriculum from the Perspective of 21st Century Skills and

Computational Thinking,” Journal of The Korean association of computer education, vol. 14, no. 6, pp.

19-30, (2011)

15. Lee, S., “The Effect of Self-regulating Learning-Based Unplugged Activities on Computing Thought in

Primary Room and SW Education,” M.S. thesis, Industrial Technology Education, Chungnam National

University, Chungnam, Republic of Korea, (2019)

16. Shin, S., “The Improvement Effectiveness of Computational Thinking through Scratch Education”,

Journal of The Korea Society of Computer and information, vol. 20, no. 11, pp. 191-197, (2015)

DOI:10.9708/jksci.2015.20.11.191

17. Yoon, S., “A Study on the Effect of EPL on Programing, Computing Thinking and Problem Solving

Ability of Programing Education,” The Journal of the Convergence on Culture Technology vol. 4, no. 4,

pp.287-294, (2018) DOI:10.17703/jcct.2018.4.4.287

18. Lim, S., “Development of Teaching and Learning Methods Based on Algorithms for Improving

Computational Thinking,” Journal of The Korean Association of Information Education, vol. 21, no. 6,

pp.629-638, (2017) DOI: 10.14352/jkaie.2017.21.6.629

19. Yang, Y., Moon, W., “Effect of Execution Time-oriented Python Sort Algorithm Training on Logical

Thinking Ability of Elementary School Students,” Journal of The Korean Association of Information

Education, vol. 23, no. 2, pp.107-116, (2019) DOI:10.14352/jkaie.2019.23.2.107

20. Kim, B., Kong, G., Kim, J., “Effect of Search Algorithm Execution Time Analysis Education on

Logical Thinking of Elementary School Student”, International Journal of Computer Science and

Information Technology for Education, vol. 4, no. 2, pp.9-16, (2019), DOI: 10.21742/ijcsite.2019.4.2.02

21. Moon, W., “Development and Application of STEAM Education Model using Scratch Programming

and Sensor Board in Class of Elementary School Students,” Journal of The Korean Association of

Information Education, vol. 18, no. 2, pp.213-224, (2014) DOI:10.14352/jkaie.2014.18.2.213

22. Hwang, S., Hwang, Z., “A Meta-Analysis Study on The Effect of Software Education on Computational

Thinking”, Asia-pacific Journal of Convergent Research Interchange, vol. 6, no. 10, pp.191-202,

(2020), DOI: 10.47116/apjcri.2020.10.15

BOOK

1. Hwang, J., “Computer Internet IT Dictionary” Iljin Publishers, Seoul (2011)

CONFERENCE PROCEEDINGS

2. Moon, W., Kim, J., "Effects of Running time-Oriented EPL Program on Computational Thinking of

Elementary School Students", International Journal of Education and Learning (IJEL), ISSN: 2234-

8034(Print); 2207-6352(Online), NADIA, (2020), Vol. 9, No. 2, pp. 19-26

