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Abstract: In this research article, we  have performed invariance analysis to time fraction partial differential 

equation (FPDE) by Lie symmetry reduction and converted the fractional order system into fractional ordinary 

differential equation (FODE) with the application of Erdyli-Kober (E-K) differ-integral operators in Riemann-

Liouville (R-L) sense. Exact solutions are being established by power series technique and numerical solutions 

have been   verified with application of  the Fractional Reduced Differential Transforms and Homotop Analysis 

Methods.   
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1.Introduction: 

 

The seed of fractional calculus were sowed over 32 decades ago as the generalization of integral order classical 

calculus. The idea of derivative and integration (not an integer) was not acceptable by the physical sciences due 

to lack of physical and geometrical interpretations for more than 30 decades but during last three decades 

Oldham (1974), Podlubny (1999), Debnath (2003), Kilbas & Srivastva (2006) have applied the fractional 

calculus in field of applied science and promoted the work that variation in real order of derivatives influenced 

the geometrical interpretation. Podlubny (2001) described geometrical interpretation in left and right handed 

Riemann-Liouville fractional integral as shadow of walls. Tavassoli (2013) performed the relationship between 

generalized derivative of power function at tangent points and the order of fractional derivative. 

In present, the utilization of fractional calculus is rapidly growing field of research to physical and biological 

sciences. The exact solution of fractional systems is challenging and interesting topic of research for applied 

mathematicians.  Wazwaz (2007) , Jafari (2013) and Lin (2016) implemented some semi-analytic, analytic, 

iterative schemes on concerning linear and nonlinear classical and fractional PDEs. The FPDEs have enriched 

more attention in fluid flow, travelling wave models, signal processing, identification of systems, optimization, 

finance, biological modeling and fractional dynamics. 

Lie Group symmetries and applications has been studied successfully by Olver (2002). Biswas (2012 & 

2014)  

provided the study of shock waves, bifurcation and conservation laws analysis of Boussinesq equation with non-

linear power laws of waves and also attempted quasi-solitons by symmetry analysis.Huang & Zahdanov (2014), 

Bakkayraj & Sahdevan (2015) applied group formalism approach and found the solution of PDEs. Burguess 

(1997), Iyiola (2014), Lonescu (2017) and Gandhi (2020) illustrated the applications of biological mathematical 

modeling on distinct cancer tumor growth with the use of fractional and classical PDEs. Singla (2016), Wang 

(2013 & 2017) and Zhang (2015 & 2017) has explained about the invariance analysis, extended infinitesimals 

and explicit solutions with one independent variable of time fractional KdVs. Gandhi (2020) considered the 

generalized fourth order and fifth order KdVs, converted the FPDEs into FODEs by extended use of Erdyli-

Kober operators, which has already been suggested by Sneddon (1975) and exact solution generated by power 

series solution along with graphical interpretation. Conservation laws with symmetry reduction of Boussinesq-

Burgers fractional system is provoked by Shi (2019). Jena (2020) reported the solitary wave solution of system 

of Hirota-Satsoma coupled KdV and mKdV time fractional PDEs.  

Iyiola (2014) presented the cancer mathematical model and experienced the solution of time fractional PDEs 

by q-HAM and discussed the applicability and ideality of the model on Burgess equation given below:. 
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In our present work, we have  analyzed  equation (1) by Lie symmetry analysis with power series method and 

applied Reduced Differential Transforms Method (RDTM) and Homotop Analysis Method(HAM) for numerical 

solutions.. Consider the FPDE with fractional order 10   .
 

),(2),( 2 txxtx xxt  −−=     (2) 

The proposed work sequentially arranged as in section 2: some facts and prelims explained, in section 3: Lie 

symmetry, Reduced Differential Transforms and Homotop Analysis Methods elaborated. Application of these 

techniques has been done successfully in section 4 and ended with remarks and conclusions. 

 

2. Preliminaries 

 

2.1 Definition: The R-L fractional (non integer) derivative is explained as 
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2.2 Definition: The R-L fractional (non integer) order partial derivative for function ),( tx with variable‘t’ is   
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2.3 Definition: The Leibnitz rule  in R-L fractional derivatives sense established the relation 
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2.4 Definition: For   .0,0,],(;)(
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2.5 Definition: The R-L fractional integration operator I  of order ‘μ’ is defined as 
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Along with the following manipulated results  
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3. Methodologies 

 

3.1 Lie symmetry analysis
 

Here, the basic terminology concerned with Lie symmetry analysis proposed. Mathematicians has been 

applied the lie symmetry approach in classical and fractional order PDEs and we illustrated the important terms 

and steps of this exclusive approach on time fractional PDE. 

 

Consider a time fractional PDE as 

 10;,........),,,,( =  xxxt txH
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Infinitesimal transformations of Lie algebra with single parameter ‘ε’ given to be
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Vector field generated by infinitesimals is 
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Apply prolongation operator to FPDE (9)  
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Where extended infinitesimals are derived as 
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Here Dt and Dx defines total derivatives with respect to time ‘t’and space ‘x’ variables, respectively 
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Liebnitz rule of fractional order in R-L sense is taken to be
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Applying minor calculations by Leibnitz rule we obtain
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Fractional order chain rule for composition of functions represented as
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Using generalized Leibnitz rule (15-18), we have 
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we obtain 
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 We use above equations in prolonged equation (12), Make the coefficients of ωx, ωxx equals to zero and solve 

the obtained set of system of PDEs and FPDEs to get the infinitesimals and explicit solutions. 

 

3.2 Fractional reduced differential transform method: 

Consider a function ω(t) is m-times differentiable and continuous with time ‘t’ analytic in the domain as  
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Here, the mapping )(tWm  is the transformed function of )(t .So, )(t will be inverse differential transform of

)(xWm  is defined as   
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It can be observed that the expansion of the fractional reduced differential transform method is originated from 

the Taylor’s series expansion with the initial restriction )0(0 =W . To apply this methodology; one should take 

the reduced differential transformation of the FPDE to be solved after obtained iteration formula for mW . 

Inverse differential transform found the approximate solution.  
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Therefore, the solution ω(t) is given by   
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Some fractional reduced transforms of functions are given under, to solve the system of FPDEs by this 

methodology. 

 

Functions Reduced differential transforms 
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4.3 Homotopy analysis method: 

The general idea of HAM is presented by Liao in 1992 and extended concept is considering on a FPDE in the 

form       
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4. Applications  

 

4.1 Invariant Analysis by Lie symmetry analysis on FPDE 

Applying Lie symmetry prolongation on (2) as discussed above, we obtain 
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Now set of equations formed by equating coefficients of linearly independent derivatives zero. 
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Solving set of PDEs (29-31) to get infinitesimals 




 1
1

21 ;
2

; c
xc

ctc =







=+=     (40) 

Infinitesimal generator S of lie group is given by 







+




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


+= )()2/()( 1121 c

x
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t
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Infinitesimal symmetries related to S are 

t
S

x
x

t
tS




=




+




+




= 21 ;)2/(


     (42) 

These infinitesimal symmetries follows Lie algebra and found to be skew symmetric [S2,S1] = -S2 and [S1,S2] = 

S2,  with [S1,S1] = 0, [S2,S2]=0. 

Characteristic equations formed by (42) 
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100

2 dtdxdu
and

t

dt

x

dxd
====




    (43) 

Similarity solutions obtained as 
2/.)(   −− == txandFt     (44) 

 

)(xF=       (45) 

 

Where F( ) and F(x) are similarity function for (44) and (45) respectively. 

Using (44) and (2) we obtain FODE 

 

    )](2)([ 2''2   FxFtt

−− −=     (46) 

We use E- K fractional derivative operator to solve its L.H.S defined as
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And 
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Which is Erdelyi -Kober defined fractional integral operator. 

 

Here we need to find  − 1wheret  

 

The R-L fractional derivative for reduced similarity transformation (36) is 
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Assume stp /= , it reduces to 
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For further reduction, consider 
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Now above expression takes the form 
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Repeating (λ-1) times to obtain 

( )

( )( ) )(

))((
2

21))(.(

,21

/2

12

,1

2

1

0

12,1

2

2




























fPt

fK
d

d
jtfKt

t

n

j

−−−−

−−
−

=

−−−−−

=




































−−+=



















  (53) 

But in our model λ=1, so  
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 Using above expressions to form the FODE as 
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Equation (55) is the reduced FODE of (2) 

Using (45) and (2), we obtain an ODE 
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To solve this ODE 
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Using (56-59), to obtain 
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Finally, the exact solution  is 
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Where a2 and β2 are arbitrary constants. 

 

4.2 Application of fractional reduced differential transform method: 
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Where a and b are arbitrary constants. 

 

 

In order to solve this problem applying reduced differential transforms to get 
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Substitute k = 0 in (63) 
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As W1 = 0; we get a sequence of functions )(xWm which are zero.  

There is only exact solution 2),( bx
x

a
tx += for FPDE (2) which is independent of time also. 

                               

  
       Figure2: when a=1, b= -1 and solution is independent of time 
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4.3 Application of homotopy analysis method 

 

In order to solve this problem applying HAM on equation (2), we choose linear operator 
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t
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With L[c1] = 0, c1 is constant. We use initial approximation  
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Define nonlinear operator as 

);,(
2

);,();,()];,([
2

qtx
x

qtxqtxDqtxN
xxt

+−=     (67) 

We construct the zeroth order deformation equation 
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We choose H(x, t) =1 to obtain the mth order deformation equation to be 
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So the solution of equation (2) for m ≥ 1 becomes 
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From above we obtain the components of series solution by HAM successively, which is given by 
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In same way ωm(x,t) = 0 for m = 3, 4, 5…….. 

Then the series solution is given by  
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     (73) 

Conclusions: 

In this work, the Lie symmetry technique have been used for obtaining the invariance of Burgess nonlinear 

model. Due to formation of two infinitesimals, we  have reduced the system into two ODEs. The obtained ODEs 

from fractional order differential equations   have been solved by power series solution and attained exact 

solution of FPDE (2).The proposed analysis is powerful and efficient tool in finding the solution of nonlinear 

time FPDEs. It is clear that this technique avoids unrealistic suppositions and liberalization. The numerical 

solutions  found with  the applications of two different methodologies FRDTM and HAM, are  same  as 

obtained by  applying  symmetry reduction. Finally, it is concluded that the nonlinear time FPDE can be used 

further in mathematical modeling or physical phenomenon in future works. 
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