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Abstract: In cloud computing (CC) environment, load balancing of tasks remains as an important problem of distributing resources 

from a data center to make sure that every virtual machine (VM) have balanced load to attain optimum utilization of its abilities.  

Load balancing in CC environment is considered as a non-polynomial (NP) problem and metaheursitic algorithms can be applied to 

resolve it. This paper presents a new quasi oppositional dragonfly algorithm for load balancing (QODA-LB) in CC environment to 

achieve optimal resource scheduling. The proposed QODA-LB algorithm derives an objective function using three variables namely 

execution time, execution cost, and load. Based on the derived objective function, the QODA-LB algorithm allocates tasks to VM 

with respect to its capacity. Besides, the QODA-LB algorithm incorporates quasi oppositional based learning (QOBL) concept to 

improve the convergence rate of classical dragonfly algorithm (DA). Detailed set of experimentations were carried out to ensure the 

effective performance of the QODA-LB algorithm and the results are examined under several aspects. The simulation outcome has 

depicted optimal load balancing performance and demonstrated better results compared to state of art methods. 
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1. Introduction 

Load balancing in Cloud computing (CC) is assumed to be a challenging and helpful study in dividing the 

operations over Virtual Machines (VM) at data centers. Here, CC is a significant approach of on-demand resource 

distribution by Internet. Cloud is composed of massive interlinked system in a multifarious fashion, in which all files 

and fields are applied. CC is combined with distributed and parallel computing principle to provide resource 

distribution like software, hardware, data and files according to the requirement of alternate machines on cloud. It 

provides ‘‘pay as you need” module in shared system. Here, the user does not need any computational environment to 

calculate an operation and needs the Internet connection to apply the resources by spending money for specific time. 

As a result, it limits the amount of purchasing software package that does not require full-time and CC offers the 

service of dynamic feature of resources. VMs are considered as processing units in CC that computes and distributes 

the resources whenever essential dynamically at the time of implementing an operation.  

In CC, massive VMs are linked by placing the resources in pre-emptive as well as non- pre-emptive fashion, 

finally they are not shared equally and few VMs are not capable to accomplish the resources. If a task is provided in 

cloud, VMs has to implement the operation rapidly and minimize the implementation time complexity and here; all 

VMs should be executed in parallel fashion. It shows the requirement of scheduling tasks and finishes the 

implementation with accessible resources. If multiple tasks are allocated to massive VMs, then it is implemented 

simultaneously to finish the allocated works. If the scheduler is assigning the operation for VMs, it should ensure that 

all operations are not invoked in single VM which alternate VMs are free. Therefore, it is role of scheduler in which all 

user tasks has to be equally managed over all VMs in CC. In order to eliminate the issue of load balancing in all VMs, 

which needs smart load balancing model for enhancing the response time of implementation of allocated operations by 

saving higher application of provided resources, as shown in Fig. 1. 

Load balancing is to allocate input task over the VMs in uniform manner. The key objective of load balancing is 

to eliminate the burden from all VMs and declare it to alternate minimum weighted VMs. It enhances the effectiveness 

as well as throughput of a system. Developers have solved the load balancing issues using heuristic as well as meta-

heuristic models. Load balancing with protection is reported in a distributed network (Ezumalai, R., 2010). Also, there 

are 3 models which have been applied for solving the load balancing as well as security issues in a distributed network. 

Initially, it offers a structure for mobile agent to spread all nodes in a distributed network. Followed by, it gives a 

structure to reform the load between the peers to offer optimal function and consequently, it offers network security. A 

Hierarchical load balancing approach is presented for resolving the distribution of loads in Grid computing platform. 

The present node details are used while sharing the input task in dynamic manner from VMs and merits of this 

application which limits the maximum response time for Grid application. The speed of a method has validated by 

comparing with Minimal Completion Time as well as Perfect Information on Arrival. 
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Figure 1. Load balancing in CC platform 

Honey bee nature based relied load balancing is solved in non-pre-emptive autonomous tasks on VMs (Krishna, P. 

2013). The newly developed method is helpful in resolving load balancing over VM to enhance the throughput, 

limiting the waiting time of tasks by assuming the preferences of task and consequently, the associations is performed 

with alternate models like weighted Round Robin (RR), FIFO and Dynamic Load Balancing to provide effectiveness 

of a system with respect to throughput and limit the response time of VMs. Dynamic load balancing is solved in a 

distributed virtual platform by heat diffusion (Deng, Y., 2014). It projects 2 dynamic load balancing models, initially, 

it applies local and global load balancing in distributed virtual platform by using heat diffusion and secondly it 

examined 2 functional aspects like load balancing factor as well as convergence threshold.  

Extended model of Particle Swarm Optimization (PSO) is developed to resolve the load balancing problem in CC 

system (Zhu, Y., 2016). It has enhanced the implementation of speed and effectiveness. Tabu search (TS) approach is 

developed for resource management in CC model. Dynamic optimized resource scheduling management is deployed 

according to the factors which are comprised of deadline constraint, cost constraint and optimal solution. TS method is 

applied for resolving the resource assignment by prioritization as well as task grouping. TS method is used for 

optimizing the positions of cloud data centers as well as software units like data routing and network link abilities 

(Larumbe, F., 2013).  
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The makespan and higher application of resource is limited by simple scheduling approach in grid computing 

platform (Alharbi, F., 2012). It presents a load balancing model where load is shared uniformly and reduces the 

response time. Fuzzy logic (FL) is implied for effective load balancing and minimizes the cost and power in Geo-

Distributed several data Centers. It showcases best offline geographical load balancing by using FL inference system 

under the input data mapping non-linearly like current application of renewable power, accessibility of electric cost as 

well as power utilization to produce the requests by data center.  

Load rebalancing is performed for distributed file systems in cloud system where it optimizes the network traffic 

by improving the bandwidth of a system (Hsiao, H.C., 2013). Complete distribution of load balancing rebalancing 

model is developed to solve the load imbalance and consequently, the newly developed approach is related with 

previous centralized approach. An online algorithm with Lyapunov optimization strategy is proposed for load 

scheduling as well as eco-aware power management for cloud data centers (Deng, X., 2016). The main theme of this 

approach is to reduce the time average eco-aware power cost of CC data centers at the time of assuring quality-of-

experience (QoE) constraints. Honey bee method is executed for limiting the makespan and allocates the resource for 

extending the throughput in CC platform (Vasudevan, S.K., 2016). It is considered as dynamic approach which has 

been applied for identifying the variations in nature among dependence and independence operations limit the 

makespan for all tasks by using task preferences. The load of a server is managed by applying self-adaptive 

Randomized Optimization. Power consumption has been lowered at the time of allocating resources to each task in CC 

platform. Load prediction and requirement of resources is defined by Enhanced Exponentially Weighted Moving 

Average. Soft computing methods are projected to resolve the dynamic load balancing in CC environment (Mondal, 

B., 2015).  

The load balancing method for CC is performed by a Genetic Algorithm (GA). Resource allocation is done in 

homogeneous as well as heterogeneous CC platforms (Mishra, Sambit Kumar, 2018). Researchers have depicted the 

makespan and power application at the time of resource allocation. A static load balancing approach is developed for 

resolving the load balancing (Song, S., 2014). It employs static data for balancing the load with no influence of load of 

cluster node which contains inferior adaptive capability. Bayes scheme is executed for prolonged load balancing. 

Improved weighted round-robin approach is deployed for resolving the load balancing in case of non-pre-emptive 

dependent tasks (Devi, D. 2016).  

The function of load balancing is realized by various load balancing modules and results are related with respect 

to throughput and speed (Kanakala, V.R.T., 2015). Various scheduling approaches are deployed for Map Reduce 

environment that involves in load balancing for CC network (Selvi, R.T., 2016). Adaptive task allocation scheduler is 

projected for maximizing the function of Map Reduce in a dissimilar cloud network (Yang, S.J., 2015). The deadline 

reduction scheduler is developed to reduce the deadline of a task in which it is collapsed while computing the massive 

data like video and image in Map Reduce frameworks (Hwang, Eunji, 2012). An independent agent which depends 

upon load balancing approach is presented for balancing a load by VMs with the help of 3 agents like Channel agent, 

load agent and migration agent (Singha, A., 2015). 

This paper introduces an effective quasi oppositional dragonfly algorithm for load balancing (QODA-LB) in CC 

environment for optimal resource scheduling. The proposed QODA-LB algorithm derives an objective function 

utilizing three variables namely execution time, execution cost, and load for allocating tasks to VM with respect to its 

capacity. Besides, the QODA-LB algorithm incorporates quasi oppositional based learning (QOBL) concept to 

improve the convergence rate of classical dragonfly algorithm (DA). A series of simulations were takes place to ensure 

the effective performance of the QODA-LB algorithm and the results are examined under several aspects. 

 

2. The Proposed QODA-LB Technique 

Fig. 2 illustrates the system model of presented load balancing approach. A main aim of the projected model is for 

allocating all operations to VM according to the load capability of VM. The load balancing method guides for 

eliminating the tasks from overloaded VM and allocates to VM that is under a loaded stage. The projected approach is 

composed of massive data centers named as Physical Machines (PM) and the PM contains few VMs to precede the 

user’s tasks. Every user of CC has diverse number of tasks to compute VM. Here, the loads are allocated to VM under 

the application of load balancing approach. The presented framework verifies the load of all VM in CC. The task of 

VM is based on computation time of all loads. 
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Figure 2. Proposed System Architecture 

2.1 Problem definition with solution framework 

 Assume cloud C, that have “n” number of PM as well as PH is comprised of m” number of VM. 

 

𝐶 = {𝑃𝑀1, 𝑃𝑀2, … , 𝑃𝑀𝑛}                                                                 (1) 

where C indicates the cloud, PM_1 shows the initial and PM while PM_n implies the nth PM which is represented in 

the following: 

𝑃𝑀𝑛 = {𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑚}                                                             (2) 

where VM_1 is a first VM and VM_m refers the final VM. Likewise, icount of users is loaded in cloud and user is 

composed of icount of task. A user is represented in the following; 

𝑈𝑖 = {𝑇1, 𝑇2, … , 𝑇𝑗}                                                                                   (3) 

The main theme of these models is to limit the execution time and expense of the task and to accomplish a balanced 

load entire VMs in CC system. Hence, it is operated using 3 objectives namely, limitation of task Execution Time, 

reduction of Execution Cost and finally, to scatter the burden for all VM in CC. 

The overall execution time (ET) is defined with the help of Eq. (4). 

𝐸𝑇 =
1

max(𝐸𝑇) × 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑎𝑠𝑘
∑

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑎𝑠𝑘

𝑗=1

 

(𝐸𝑇𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 VM × 𝑆𝑖𝑧𝑒𝑜𝑓𝑡ℎ𝑒𝑡𝑎𝑠𝑘)                                    (4) 

The execution cost (EC) is determined using Eq. (5). 

𝐸𝐶 = ∑ [
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 × 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑎𝑠𝑘
]

𝑁𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑎𝑠𝑘

𝑗=1

                 (5) 

Lode is determined using Eq. (3). 
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𝐿𝑜𝑎𝑑 =
1

𝑁𝜄𝑥𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑎𝑠𝑘
∑

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑎𝑠𝑘

𝑖=1

 

[
𝑠𝑖𝑧𝑒𝑜𝑓𝑉𝑀 − ((𝑇𝑜𝑡𝑎𝑙𝑠𝑖𝑧𝑒𝑜𝑓𝑉𝑀 − 𝐹𝑟𝑒𝑒𝑠𝑝𝑎𝑐𝑒𝑜𝑓𝑉𝑀) + 𝑆𝑖𝑧𝑒𝑜𝑓𝑡𝑎𝑠𝑘)

𝑆𝑖𝑧𝑒𝑜𝑓𝑉𝑀
]        (6) 

In order to accomplish the appropriate scheduling, load balancing should be performed accurately. In absence of 

balanced load, a system consumes higher time and cost to implement the operation. In order to resolve the issue, an 

effective multi‐objective based load balancing scheme has been deployed (Neelima, P. 2020).The projected 

multi‐objective function (MOF) is described in Eq. (7). 

𝑀𝑂𝐹 =  min [𝛼1 (𝐸𝑇)  + 𝛼2(𝐸𝐶) + 𝛼3(1 — 𝐿𝑜𝑎𝑑) ]                                              (7) 

2.2 Proposed Load Scheduling Algorithm 

    The key objective of presented model is used for allocating a task to VM under the application of QODA-LB that 

reduces the overall ET and EC at the time of balancing load. The load is vital attribute of scheduling, where the 

method of scattering the load over diverse nodes of allocated modelfor enhancing resource application as well as task 

response time. In order to overcome these issues, multi‐objective based load balancing has been deployed with the help 

of QODA-LB. DA is defined as meta-heuristic approach that is evolved by static and dynamic swarming nature of 

dragonflies. The dragonflies swarm for 2 objectives like Hunting (static swarm) and migration (dynamic swarm). First, 

massive dragonflies swarm at the time of roaming in longer distances and various territories those results in 

exploration phase.  

 

Figure. 3. Flowchart of Dragonfly algorithm 
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For static swarm, dragonfly’s shifts in higher swarms and bearing by close to deployments and immediate 

modifications in flying direction, that leads to exploitation stage. For the enhancement of exploring capability and to 

eliminate the local optimal, QOBL is embedded throughDA. The flowchart of DA approach is showcased in Fig. 3. 

The periodical steps of presented multi‐ objective load balancing relied task arrangement are provided in the 

following; 

Step 1: Initialization 

 A population of dragonflies is invoked arbitrarily. A population is composed of a group of results. The result 

is developed according to the count of user task as well as VM. At the initial stage, the tasks are allocated to VM in 

random manner. Followed by, according to the Fitness Function (FF) the results are maximized. A first result is 

provided in Eq. (1). A length of solution implies the supremacy of a task and dragonfly refers the available nodes. 

There are 10 operations and 5 nodes, and length of population is 10 and evaluation of all dragonflies might be 1, 2, 3, 

4, and 5. A sample solution encoded has been offered in Eq. (8). 

 

𝑃𝑖 = {4,3,3, 1,5,2,5,3,2, 4 }                                                 (8) 

 The previous function is showcased as 1 which is allocated toVM_4, task 2 is declared to VM_3 and task 10 

is declared to VM_4. According to the solution encoding, population matrix (SM) has been implemented with 0 or 

1The framework depends upon the association between task and VM. The task is related through VM i denotes PM(i,j) 

=1, or PM(i,j) =0. However, the column contains a single component for 1, otherwise0.  

Firstly, the initial population is depending upon dragonflies. 

Step 2: Fitness calculation 

Once the solution is generated, the fitness of all solutions is calculated.  The FF is provided in Eq. (9). 

𝑀𝑂𝐹 =  min [𝛼1 (𝐸𝑇)  + 𝛼2(𝐸𝐶) + 𝛼3(1 — 𝐿𝑜𝑎𝑑) ]                       (9) 

Step 3: Update using dragonfly algorithm 

In order to enhance the solution, 5 major factors have been applied such asseparation, alignment, cohesion, attraction 

to food and distraction from opponent. Separation is estimated with the help of Eq. (10). 

𝑆𝑃𝑖 = − ∑ 𝑋

𝑁

𝑗=1

− 𝑋𝑗                                                                                         (10) 

where X‐ implies the location of present individual, X_j shows the location of jth neighboring individual and N 

represents the count of neighboring individuals. An alignment is measured utilizing Eq. (11). 

𝐴𝑖 =
∑ 𝑉𝑗

N
j=1

𝑁
                                                                                                     (11) 

where y_j indicates the velocity of jth neighbouring individual. Hence cohesion is evaluated by Eq. (12). 

𝐶𝑖 =
∑ 𝑋𝑗

N
j=1

𝑁
− 𝑋                                                                                               (12) 

where X denotes the location of recent individual, N implies count of neighborhoods and X_j indicates the location of 

the jth neighbouring individual. Attraction to food source is determined with the given function: 
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𝐹𝑖 = 𝑋+ − 𝑋                                                                                                        (13) 

where X depicts the place of present individual and X^+ refers the place of food source. A direction visible an enemy 

is measured by: 

𝐸𝑖 = 𝑋− − 𝑋                                                                                                          (14) 

where X signifies a place of recent individual, and X^- illustrates the location of the enemy. 

Once the position is calculated, then velocity vector is determined by Eq. (15). 

𝛥𝑋𝑘+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 + 𝑐𝐶𝑖 + 𝑓𝐹𝑖 + 𝑒𝐸𝑖) + 𝑤𝛥𝑋𝑖                                         (15) 

where s represents the separation weight, S_i is a separation of ith individual, a defines alignment weight, A_i implies 

alignment of ith individual, c refers the cohesion weight, C_i signifies cohesion of ith individual, f illustrates food 

factor, F_i showcases food source of ith individual, e denotes enemy factor, E_i refers position of enemy of the ith 

individual, w demonstrates inertia weight, and k depicts the iteration counter. Once the step vector is measured, the 

position vectors are estimated in the following: 

𝑋𝑘+1 = 𝑋𝑘 + 𝛥𝑋𝑘+1                                                                             (16)  

where k is the present iteration. 

Step 4: Select best solution 

When the DA and QODA are compared, DA has optimal fitness value (DA_best) which is lower than DA fitness value 

(FA_best) , the best place of DA is interchanged by QODA. Otherwise, AODA fitness value is minimum than DA 

fitness value, the position is changed by DA. 

Step 5: Termination criteria 

The iteration is terminated if a better solution is attained. The consequent solution is submitted to CC platform. 

2.3 Quasi-oppositional based learning (Q-OBL)  

       It accomplishes maximum attention from developers in Computation Intelligence (CI). The main aim of OBL in 

evolutionary processing is to maximize the solution accuracy and simulate the convergence rate to reach global 

solution. It contains higher probability in optimization method for generating suboptimal solution. Here, recent 

populations as well as inverse values are produced at the same time and results in optimal candidate solution. Hence, 

inverse value is produced correctly at mirror position of recent population. From (Guha, D., 2017), the opposite 

population contains optimal chance to attain global optimal solution when compared to randomly provided population. 

The OBL is obtained by describing 2 of significant mathematical features: 

2.3.1 Opposite number 

It is referred as a mirror point of candidate solution from center of search space. When Xis a number in real plane with 

search interval [a,b], the parallel opposite number (oX) in 1D search space is described by (17). 

 

𝑂𝑋 = 𝑎 + 𝑏 − 𝑋                                                                 (17) 

where X implies the randomly invoked candidate solution, a and b are lower and higher limits of search space. The 

previous definition is improved to d‐dimensional search space and formalized by (18). 

𝑂𝑋𝑗 = 𝑎𝑗 + 𝑏𝑗 − 𝑋𝑗                                                                  (18) 
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where 𝑗 = 1,2, − − −, 𝑑 and 𝑋𝑗 = {𝑋1, 𝑋2, − − −, 𝑋𝑑} ∈ 𝑅. 

2.3.2 Quasi‐opposite number 

Furthermore, the mechanism of OBL based learning is improved to quasi‐oppositional relied learning that showcases 

that quasi‐opposite number is nearby global optimal solution when compared to opposite number. The quasi‐opposite 

number is meant to be among the center of search space (^(a_j+b_j ) /_2) while opposite number (a_j+b_j-X_j), is 

depicted by (19). 

𝑄𝑂𝑋𝑗 = 𝑟𝑎𝑛𝑑 (
𝑎𝑗 + 𝑏𝑗

2
, 𝑎𝑗 + 𝑏𝑗 − 𝑋𝑗)                                            (19) 

The pseudo code to accomplish quasi‐opposite value is given in the following: 

𝐶 =
𝑎𝑗 + 𝑏𝑗

2
⁄ ; 

if(𝑜𝑋 < 𝐶) 

𝑄𝑂𝑋 = 𝐶 + (𝑜𝑋 − 𝐶) ∗ 𝑟1; 

else 

𝑄𝑂𝑋 = 𝑂𝑋 + (𝐶 − 𝑂𝑋) ∗ 𝑟1; 

end 

where r_1 denotes a randomly produced value from (0,1). 

2.3.3 Jumping rate 

 It assists the DA to move from recent solution to fresh candidate solution where it has optimal fitness value 

than present one. According to the jumping rate, as said in (20), novel population is developed and then quasi‐opposite 

population has been determined. The selection of jumping value guides DA to eliminate sub‐optimal solution and 

stimulate the DA to attain globally optimized solution. Basically, the jumping rate is decided from [0,0.6]. 

𝐽𝑟 = (𝐽𝑟,𝑚𝑎𝑥 − 𝐽𝑟,𝑚𝑖𝑛) − (𝐽𝑟,𝑚𝑎𝑥 − 𝐽𝑟,𝑚𝑖𝑛) (
𝑁𝐹𝐶𝑚𝑎𝑥 − 𝑁𝐹𝐶

𝑁𝐹𝐶𝑚𝑎𝑥
)                                (20) 

where 𝐽𝑟,𝑚𝑎𝑒 and 𝐽𝑟,min are lower and higher value of jumping rate, 𝑁𝐹𝐶 max refers higher value in generation and 

𝑁𝐹𝐶 denotes the value of function call at present iteration. 

3. Performance Validation 

       The performance validation of the QODA-LB algorithm takes place under several aspects and the proposed model 

is simulated using CloudSim tool. Since the goal of the QODA-LB algorithm is to allocate the tasks to VMs depending 

upon the capacity (load) of VM. The task is allocated on VM depending upon execution time, execution cost and load. 

For the validation of the experimental results of the QODA-LB algorithm, a series of simulations were carried out 

under diverse configurations namely (i) PM = 5, VM = 15 and 50 tasks, (ii) PM = 10 and VM = 30 and 75 tasks, (iii) 

PM = 20 and VM = 50 and 100 tasks. 
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3.1. Execution Time Analysis 

       Table 1 and Figs. 4-6 shows the execution time analysis of the QODA-LB algorithm under varying number of 

PMs, VMs and tasks. Fig. 4 shows the execution time analysis of the QODA-LB algorithm under 5 PMs, 15 VMs and 

50 tasks. The experimental results stated that FA algorithm has demonstrated poor results by exhibiting maximum 

execution time. At the same time, the DA and ADA has tried to show certainly acceptable results by attaining slightly 

lower execution time. However, the QODA-LB model has exhibited better performance by attaining minimum 

execution time. For instance, under the iteration of 10, the QODA-LB algorithm has resulted to a minimum execution 

time of 0.32ms whereas higher execution time of 0.63s, 0.42s and 0.38s are incurred by the FA, DA and ADA 

techniques respectively.Likewise, under the iteration of 20, the QODA-LB model has lead to generate lower execution 

time of 0.33ms while maximum execution time of 0.65s, 0.43s and 0.39s are obtained by the FA, DA and ADA 

methods. Also, under the iteration of 30, the QODA-LB algorithm has provided least execution time of 0.33ms and 

higher execution time of 0.67s, 0.45s and 0.4s are attained by the FA, DA and ADA approach correspondingly. On the 

other side, under the iteration of 40, the QODA-LB model has shown lower execution time of 0.34ms while high 

execution time of 0.68s, 0.47s and 0.41s are obtained by the FA, DA and ADA techniques methods. Moreover, under 

the iteration of 50, the QODA-LB algorithm has demonstrated to a lower execution time of 0.35ms while greater 

execution time of 0.69s, 0.48s and 0.42s are achieved by the FA, DA and ADA techniques respectively. 

 

 Table 1 Execution Time (ms) Analysis 

PM = 5, VM = 15 and Task = 50  

Iterations FA DA ADA QODA-LB 

10 0.63 0.42 0.38 0.32 

20 0.65 0.43 0.39 0.33 

30 0.67 0.45 0.4 0.33 

40 0.68 0.47 0.41 0.34 

50 0.69 0.48 0.42 0.35 

PM = 10 and VM = 30 and Task = 75  

Iterations FA DA ADA QODA-LB 

10 0.93 0.86 0.73 0.65 

20 0.95 0.87 0.75 0.67 

30 0.95 0.87 0.76 0.68 

40 0.95 0.88 0.77 0.68 

50 0.95 0.89 0.78 0.69 

PM = 20 and VM = 50 and Task = 100  

Iterations FA DA ADA QODA-LB 

10 0.95 0.90 0.78 0.67 

20 0.98 0.90 0.79 0.68 

30 0.99 0.93 0.80 0.71 
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40 0.99 0.95 0.80 0.72 

50 0.99 0.96 0.81 0.73 

 

 

 

Figure 4. Execution time analysis of QODA-LB model under 5 PMs, 15 VMs and 50 tasks 

 Fig. 5 displays the execution time analysis of the QODA-LB algorithm under 10 PMs, 30 VMs and 75 

operations. The experimental results have illustrated that FA algorithm has showcases inferior results by showing 

higher execution time. Meantime, the DA and ADA has attempted to show moderate results by accomplishing better 

execution time. Hence, the QODA-LB model has presented has showcases optimal function by reaching lower 

execution time. For sample, under the iteration of 10, the QODA-LB scheme has exhibited to a lower execution time 

of 0.65ms and higher execution time of 0.93s, 0.86s and 0.73s are obtained by the FA, DA and ADA techniques 

correspondingly. In line with this, under the iteration of 20, the QODA-LB framework has shown a lower execution 

time of 0.67ms while higher execution time of 0.95s, 0.87s and 0.75s are obtained by the FA, DA and ADA methods 

respectively. In addition, under the iteration of 30, the QODA-LB approach has shown a least execution time of 

0.68ms and higher execution time of 0.95s, 0.87s and 0.76s are accomplished by the FA, DA and ADA methodologies 

respectively. Followed by, under the iteration of 40, the QODA-LB approach has depicted to a lower execution time of 

0.68ms and higher execution time of 0.95s, 0.88s and 0.77s are achieved by the FA, DA and ADA techniques 

correspondingly. Moreover, under the iteration of 50, the QODA-LB approach has depicted a lower execution time of 

0.69ms whereas maximum execution time of 0.95s, 0.89s and 0.78s are incurred by the FA, DA and ADA approaches 

respectively. 
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Figure 5. Execution time analysis of QODA-LB model under 10 PMs, 30 VMs and 75 tasks 

 Fig. 6 displays the execution time analysis of the QODA-LB method under 20 PMs, 50 VMs and 100 tasks. 

The experimental results stated that FA model has shown worst results by illustrating higher execution time. 

Concurrently, the DA and ADA has attempted to showcase better results by reaching minimum execution time. 

Therefore, the QODA-LB approach has implied moderate performance by reaching lower execution time. For sample, 

under the iteration of 10, the QODA-LB technique has showcased at least execution time of 0.67ms while maximum 

execution time of 0.95s, 0.90s and 0.78s are obtained by the FA, DA and ADA models correspondingly. Likewise, 

under the iteration of 20, the QODA-LB approach has provided to a lower execution time of 0.68ms and higher 

execution time of 0.98s, 0.90s and 0.79s are attained by the FA, DA and ADA methodologies correspondingly. In 

addition, under the iteration of 30, the QODA-LB approach has offered to a lower execution time of 0.71ms while 

maximum execution time of 0.99s, 0.93s and 0.80s are achieved by the FA, DA and ADA methodologies respectively. 

On the other side, under the iteration of 40, the QODA-LB method has generated to a lower execution time of 0.72ms 

whereas greater execution time of 0.99s, 0.95s and 0.80s are obtained by the FA, DA and ADA methods respectively. 

Furthermore, under the iteration of 50, the QODA-LB framework has showcased to a lower execution time of 0.73ms 

whereas high execution time of 0.99s, 0.96s and 0.81s are incurred by the FA, DA and ADA techniques respectively. 
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Figure6. Execution time analysis of QODA-LB model under 20 PMs, 50 VMs and 100 tasks 

3.2. Execution Cost Analysis 

 Table 2 and Figs. 7-9demonstrates the execution cost analysis of the QODA-LB approach under varying 

number of PMs, VMs and tasks. Fig. 7 depicts the execution cost analysis of the QODA-LB algorithm under 5 PMs, 

15 VMs and 50 tasks. The experimental results have pointed FA algorithm has shown worst results by showing higher 

execution cost. Simultaneously, the DA and ADA has attempted to depict considerable results by achieving lower 

execution cost. Hence, the QODA-LB approach has implied moderate function by accomplishing least execution cost. 

For sample, under the iteration of 10, the QODA-LB technology has provided to a lower execution cost of 0.69 while 

maximum execution cost of 0.80, 0.76 and 0.75 are obtained by the FA, DA and ADA methodologies correspondingly. 

Likewise, under the iteration of 20, the QODA-LB scheme has shown least execution cost of 0.51 while high 

execution cost of 0.70, 0.67 and 0.60 are accomplished by the FA, DA and ADA techniques correspondingly. 

Furthermore, under the iteration of 30, the QODA-LB algorithm has shown to a low execution cost of 0.67 while high 

execution cost of 0.79, 0.78 and 0.74 are incurred by the FA, DA and ADA methodologies correspondingly. Followed 

by, under the iteration of 40, the QODA-LB model has showcased a minimal execution cost of 0.68 whereas 

maximum execution cost of 0.80, 0.77 and 0.74 are obtained by the FA, DA and ADA techniques respectively. 

Furthermore, under the iteration of 50, the QODA-LB approach has provided to a low execution cost of 0.68 whereas 

higher execution cost of 0.80, 0.77 and 0.76 are incurred by the FA, DA and ADA techniques. 
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Table 2 Execution Cost Analysis 

PM = 5, VM = 15 and Task = 50  

Iterations FA DA ADA QODA-LB 

10 0.80 0.76 0.75 0.69 

20 0.70 0.67 0.60 0.51 

30 0.79 0.78 0.74 0.67 

40 0.80 0.77 0.74 0.68 

50 0.80 0.77 0.76 0.68 

PM = 10 and VM = 30 and Task = 75  

Iterations FA DA ADA QODA-LB 

10 0.19 0.12 0.08 0.07 

20 0.22 0.13 0.08 0.07 

30 0.26 0.14 0.08 0.07 

40 0.28 0.15 0.09 0.08 

50 0.28 0.16 0.13 0.09 

PM = 20 and VM = 50 and Task = 100  

Iterations FA DA ADA QODA-LB 

10 0.25 0.15 0.11 0.09 

20 0.28 0.16 0.12 0.10 

30 0.29 0.17 0.13 0.11 

40 0.32 0.18 0.13 0.12 

50 0.33 0.19 0.14 0.12 
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Figure7. Execution cost analysis of QODA-LB model under 5 PMs, 15 VMs and 50 tasks 

 Fig. 8 implies the execution cost analysis of the QODA-LB technology under 10 PMs, 30 VMs and 75 tasks. 

The experimental results have shown that FA model has depicted inferior results by showing higher execution cost. 

Meantime, the DA and ADA has attempted to represent better results by showing minimal execution cost. Hence, the 

QODA-LB model has implied optimal performance by accomplishing low execution cost. For sample, under the 

iteration of 10, the QODA-LB approach has depicted to a lower execution cost of 0.07 while maximum execution cost 

of 0.19, 0.12 and 0.08 are acquired by the FA, DA and ADA techniques correspondingly. In line with this, under the 

iteration of 20, the QODA-LB framework has showcased least execution cost of 0.07 whereas higher execution cost of 

0.22, 0.13 and 0.08 are attained by the FA, DA and ADA models correspondingly. In addition, under the iteration of 

30, the QODA-LB approach has provided to a lower execution cost of 0.07 while higher execution cost of 0.26, 0.14 

and 0.08 are achieved by the FA, DA and ADA methodologies respectively. Then, under the iteration of 40, the 

QODA-LB technology has offered to a lower execution cost of 0.08 while maximum execution cost of 0.28, 0.15 and 

0.09 are accomplished by the FA, DA and ADA technologies correspondingly. Moreover, under the iteration of 50, the 

QODA-LB algorithm has demonstrated to a least execution cost of 0.09 while maximum execution cost of 0.28, 0.16 

and 0.13 are incurred by the FA, DA and ADA techniques respectively. 
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Figure. 8. Execution cost analysis of QODA-LB model under 10 PMs, 30 VMs and 75 tasks 

 Fig. 9 illustrated the execution cost analysis of the QODA-LB algorithm under 20 PMs, 50 VMs and 100 

tasks. The experimental results have implied that FA algorithm has depicted worst results by showing higher execution 

cost. Concurrently, the DA and ADA has tried to depict moderate results by accomplishing better execution cost. 

Thus, the QODA-LB model has showcased considerable performance by reaching lower execution cost. For instance, 

under the iteration of 10, the QODA-LB method has illustrated to lower execution cost of 0.09 while maximum 

execution cost of 0.25, 0.15 and 0.11 are achieved by the FA, DA and ADA techniques respectively. Along with that, 

under the iteration of 20, the QODA-LB algorithm has provided to lower execution cost of 0.10 whereas maximum 

execution cost of 0.28, 0.16 and 0.12 are obtained by the FA, DA and ADA methodologies correspondingly. In 

addition, under the iteration of 30, the QODA-LB scheme has resulted to a lower execution cost of 0.11 while high 

execution cost of 0.29, 0.17 and 0.13 are obtained by the FA, DA and ADA models respectively. 



Turkish Journal of Computer and Mathematics Education              Vol.12 No.10 (2021), 3256-3273                                                                                                                                                                                                  

                                                                                                    Research Article    

3271 
 

 

Figure. 8. Execution cost analysis of QODA-LB model under 10 PMs, 30 VMs and 75 tasks 

 Fig. 9 illustrated the execution cost analysis of the QODA-LB algorithm under 20 PMs, 50 VMs and 100 

tasks. The experimental results have implied that FA algorithm has depicted worst results by showing higher execution 

cost. Concurrently, the DA and ADA has tried to depict moderate results by accomplishing better execution cost. 

Thus, the QODA-LB model has showcased considerable performance by reaching lower execution cost. For instance, 

under the iteration of 10, the QODA-LB method has illustrated to lower execution cost of 0.09 while maximum 

execution cost of 0.25, 0.15 and 0.11 are achieved by the FA, DA and ADA techniques respectively. Along with that, 

under the iteration of 20, the QODA-LB algorithm has provided to lower execution cost of 0.10 whereas maximum 

execution cost of 0.28, 0.16 and 0.12 are obtained by the FA, DA and ADA methodologies correspondingly. In 

addition, under the iteration of 30, the QODA-LB scheme has resulted to a lower execution cost of 0.11 while high 

execution cost of 0.29, 0.17 and 0.13 are obtained by the FA, DA and ADA models respectively. 
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Figure. 9. Execution cost analysis of QODA-LB model under 20 PMs, 50 VMs and 100 tasks 

Followed by, under the iteration of 40, the QODA-LB approach has provided to lower execution cost of 0.12 and high 

execution cost of 0.32, 0.18 and 0.13 are attained by the FA, DA and ADA techniques. Moreover, under the iteration 

of 50, the QODA-LB algorithm has offered to a lower execution cost of 0.12 whereas higher execution cost of 0.33, 

0.19 and 0.14 are incurred by the FA, DA and ADA schemes correspondingly. 

4. Conclusion 

 This paper has presented an effective QODA-LB algorithm in CC environment to achieve optimal resource 

scheduling. The main theme of this model is to limit the execution time and expense of the task and to accomplish a 

balanced load over all VMs in CC system.The proposed QODA-LB algorithm derives an objective function using 

three variables namely execution time, execution cost, and load. According to the derived objective function, the 

QODA-LB algorithm allocates tasks to VM with respect to its capacity. The simulation outcome has depicted optimal 

load balancing performance and demonstrated better results compared to state of art methods. A set of simulations 

were carried out to examine the execution cost and execution time analysis of the QODA-LB algorithm under varying 

number of PMs, VMs and tasks. In future, the performance of the QODA-LB algorithm is further enhanced by the use 

of deep learning models. 
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