
Turkish Journal of Computer and Mathematics Education              Vol.12 No.10 (2021), 2947-2956 

                                                                                                                        Research Article                                                                                                                                              

2947 

 

Bypassing Two Factor Authentication Based On Classification Using Aho-Corasick 

Matching Algorithm For Nosql Databases 

R. Shobana1,MCA.,M.Phil., Dr. M. Suriakala2,M.Sc.,M.Phil.,Ph.D., 

1 Part time Research Scholar, University of Madras, 

Assistant Professor, Department of Computer Science and Applications, 

D.K.M. College for Women, Vellore- 1 

Email: shobanavasu.mca@gmail.com 
2 Assistant Professor, Department of Computer science, 

Government Arts College for Men, Nandanam, Chennai-35 

Email: suryasubash@gmail.com 

 

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published 

online: 28 April 2021 

ABSTRACT 

This paper presents a new method to protect the applications against NoSQL injection. NoSQL-Injection Attacks are a class 

of attacks that many of these systems are highly vulnerable to, and there is no known fool-proof defense against various 

attacks. Despite all vulnerabilities, two factor authentications remain the safest way to protect user accounts in traditional web 

apps. Two bypasses of factor authentication can occur from time to time, with various techniques involved in those attacks; the 

only way to do this is to maintain an iteration of one's approach to two authentication factor tests. 

Keywords: Authentication, classification, matching, NoSQL database. 

INTRODUCTION 

Today, the Internet is becoming a widespread infrastructure for intelligence. The use of the Internet 

technology and rapid development have inspired the the number of lately stored data in a database. An increase 

in user count and a strong reliance on digital data is leading to value of spatial data secure, whether such data 

relates to commercial, corporate, institutional, institutional, environmental, health, personal and other internet 

related resources. Use with all web browsers running on any operating system can be used via Internet to all web 

applications. Web apps are now a commonly used interface for retrieving or inserting results [1]. The 

vulnerability is simply a vulnerability that enables an attacker to reduce the assurance of device knowledge. The 

reliability of the database was and will remain one of the most important facets of the safety of the applications. 

Database access gives the most sensitive information to an intruder to a risky extent. NoSQL databases have 

recently gained popularity because NoSQL databases are looser than standard SQL databases. NoSQL databases 

also have efficiency and scaling advantages because they require less relational restrictions and consistence 

controls [2]. Examples include MongoDB[3], CouchDB and FirebaseDB. 

As it is an open source database, MongoDB can be tailored to all sizes of companies and individuals. 

For the program growth, the data pattern can be flexibly modified with a secondary index and full query scheme. 

But does this mean the NoSQL programs are injection-free? NoSQL is a vast community of computer database 

management systems that are an alternative to traditional relational database management systems. Primary 

query language is not SQL, nor do it normally include fixed table schemas. NoSQL storage framework helps 

users to modify data attributes and to add data anywhere. A paper design or even a compilation up-to-date is not 

needed. 

NoSQL databases focus more on real-time data processing capabilities and are good for direct data 

access activity which greatly support interactive system growth. The freedom to adjust characteristics is one of 

the greatest benefits due to structural weakening, so the adjustment process is very easy. This great benefit, 

though, still affects its protection where injection attacks are the most prevalent. In the world of database 

relations, it is also the number one public enemy. The fact that NoSQL does not use SQL in query does not mean 

that it is resistant to injection threats. Many argue SQL is not working at NoSQL, but the idea is just the same: 

the attacker has to modify the injection grammar type. In other words, JavaScript or JSON[4] injection can also 

endanger the safety of SQL injection, but this is not going to be done. Our analysis reveals that the NoSQL 

injection attacks are still vulnerable, even though they do not use standard SQL syntax, Since they should be 

done in a procedural instead of a declarative SQL language like PHP injection attack and random injection of 

JavaScript. 

In this paper aim is to design an effective NoSQL injection attacks detecting mechanism i.e.to counter 

injection attacks in NoSQL databases.To assure security all the websites need protections to their database. The 

organization of the paper is background of the study and section 2 shows the related works of existing methods 

and section 3 presents the research methodology. Performance analyses are discussed with existing method 

comparison in section 4 and finally conclude with section 5. 

LITERATURE SURVEY 

Many database protection vulnerabilities are triggered in this section. There are a lot of methods to read 

for injecting. One objective is to collect the database type and configuration to plan for other attack types which 

can be defined as a preparatory stage attack. This paper seeks to identify and inject vulnerability. 



Turkish Journal of Computer and Mathematics Education              Vol.12 No.10 (2021), 2947-2956 

                                                                                                                        Research Article                                                                                                                                              

2948 

 

A NoSQL database structure, also known as a "Non-Relational" or "Not only SQL," is a data storage 

and database architecture technique for very broad collections of distributed data and real-time web applications. 

A NoSQL database system is also a common knowledge recovery data storage since it provides increased 

scaling, availability and quicker access to data as compared to conventional link RDBMS. It is predictable what 

RDBMS data requires, since its data is stored in structured tables by specifying the relation between columns. 

Data does not need to be saved in a hierarchical or fixed fashion in the NoSQL databases. Where it comes to 

efficiency and real time control over accuracy, including indexing and recovering vast quantities of information, 

NoSQL databases are more appropriate than relational databases. NoSQL databases have been embraced 

recently by several small companies, as they are shifting their growing company data to clouds, thanks to their 

apparent advantages in improved performance, scalable and versatility. However, there are very few studies on 

the security of such NoSQL or NoSQL database systems. Though NoSQL databases have numerous storage 

privileges, the security problem of NoSQL databases has severely influenced the need for fast and convenient 

data access. 

Boyu Hou et al. (2016), examines maturity of security mechanisms with code-level attack and 

protection issues for MongoDB, a standard NoSQL database scheme. JavaScript and PHP are used as 

preliminary tests for NoSQL injections. After demonstration of how a server-side JavaScript injection attack on a 

NoSQL database expose privacy of customers, two ways are addressed to avoid the occurrence of such security 

issues. Our analysis is expected to make database developers not only realize that NoSQL frameworks are not 

prioritized for stability, but also learn how to construct a security framework for the NoSQL applications of their 

organizations to prevent NoSQL injections. 

The OWASP TOP 10, which has always been the focus for research on network security, has always 

been SQL injecting with the characteristics of great damage and rapid variance. SQL injection In order to detect 

unknown attacks using the current rule matches process, a machine-learning-based method of SQL injection 

detection is suggested. and the process for SQL extraction,  Zhuang Chen et al. (2018) analyses f finally, 

word2vec is chosen to process the HTTP request text data and can effectively reflect the attack-load-enclosed 

SQL injection functionality. This research reveals that this approach successfully addresses the issue of SQL 

injection into the mutation and the high rate of leakage of the rule match. Training and classification with SVM 

algorithm for processed samples Compared with classifying effects of statistical functions, this SQL injection 

classification model has a higher recognition rate. 

In this article, Hong Ma et al. (2017) present an approach to detection using a parse tree based on the 

semantic structure analysis. Based on this strategy, we rely on MongoDB to suggest a complex DND web 

environment for NoSQL attack detection. No access or modification of source code, rewrite of source codes with 

additional libraries, or complex assisted devices is needed. Finally, laboratory studies have shown that the 

concentrations of DND are high, false positive and poor. 

Md Rafid Ul Islam et al (2019) build a NoSQL injection detection tool by monitored education. Our 

created NoSQL injection training data set is the first in our knowledge. We create essential features manually 

and use different supervised learning algorithms. As determined by 10-fold cross-validation, our tool has reached 

0.93 F2. Also, our NoSQL tool, NoSQLMap, is used and finds that our tool exceeds the detection rate by 36,25% 

for Sqreen, the only NoSQL injector detection tool accessible. It is also shown that the proposed methodology is 

database-agnostic with injections on MongoDB and CouchDB. 

Ahmed M. Eassa et al. (2017), A web application named "NoSQL Racket" test tool is available to 

detect NoSQL injection attacks. Basic concept of this tool is to validate the expected NoSQL database structure 

by contrasting the NoSQL statement structure in the code query statement and the runtime query statement 

statement (dynamic analysis). 

However, we faced great problems, as is the situation with connection databases using SQL as a 

structured query language, no popular query languages are found to drive NoSQL databases. The proposed tool 

is tested on four web applications and its efficacy is matched with three separate proven testers, none of which 

detects any attacks by NoSQL Injection. The tested method is nevertheless capable of detecting attacks by 

NoSQL. 

In recent years, the OBDA has gained interest by using ontology as a computational layer to provide 

access to vast quantities of data and to explore their capacity to describ domains and cope with data 

incompleteness. This is achieved by mapping data in the database with the ontology vocabulary. The initial 

OBDA research focused on data contained in relation databases. The use of OBDA to NoSQL databases is being 

expanded in recent studies. In this article, the new approach to OBDA with document-oriented NoSQL databases 

is presented by Thiago H. D. Araujos et al (2017) In addition to the associated activities, our solution uses a 

portal with an extendable and scalable intermediate concept layer that provides links to various forms of database 

management systems. To test the method, we have used a real world application domain as a case study to 

incorporate a prototype for MongoDB. 

RESEARCH METHODOLOGY 

Proposed system architecture is shown in figure 1. The user request is forward to the query generator to 

generate the query command. The command is moves to authentication phase, Bypassing two factor 

authentication is the technique used to authenticate the user query commands by validating the Time based token 

https://ieeexplore.ieee.org/author/37086961921


Turkish Journal of Computer and Mathematics Education              Vol.12 No.10 (2021), 2947-2956 

                                                                                                                        Research Article                                                                                                                                              

2949 

 

called time based one time password and the user is valid then it moves to application authentication phase at the 

same time the user is not valid then it wont allow to use the application. By using data bridge the application data 

and the authentication data get validates with the help of classification technique. The query commands get 

classified by using Aho–Corasick matching methods. Malicious query are stored in the FirebaseDB, the input 

query can be matched with data base  query. If the query  get matched then the result should be malicious or it is 

not malicious query. The proposed system is efficient one because of using bypass authentication mechanism, 

mostly it prevent or block the malicious user query. Validate malicious values inputs. Validate input styles to 

predicted types in NoSQL databases as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Proposed architecture 

 

NoSQL database storage not only removes the entire SQL language and increases stability, but also 

makes development easier. It relates to simplified query mechanisms and architectures in front of JavaScript. The 

implementation phase consists of an examination of the existing system, careful planning and the application of 

its constraints, methods for change and assessment of methods of transition. FirebaseDB can use the following 

form to check the login details: 

db.users.find ({username: username, password: password}); 

NoSQL Injection is a weakness to authentication, which allows an assailant to insert code into the query 

running in the database. There are five kinds of NoSQL attacks, such as Tautology, Union requests, injections of 

JavaScript, piggybacked queries and violations of Cross origins. Five types of NoSQL attacks are discussed 

below: 

1) Tautology: The attacker attempts to use a conditional question argument in the tautology attack that is 

always true. These attacks allow authentication and access systems to be bypassed by inserting code in 

conditional statements and creating always true expressions. 

            db.accounts.find({username: username, password: password}); 

2) Union Queries: By expanding the results returned by the initial query, an attacker will extract 

information from the database using union dependent injection. Union queries are most often used to 

circumvent authentication pages and retrieve data. 

                normal SQL statement + "semi-colon" + UNION SELECT 

3) JavaScript injections: NoSQL databases have added a new class of vulnerabilities that enable 

JavaScript to be executed in the database sense. On the database engine, JavaScript allows for complex 

transactions and queries. Passing unprocessed user input to these queries may cause arbitrary JavaScript 

code to be injected, potentially resulting in unauthorized data extraction or modification. 

                                  Javascript: alert("Welcome to yahoo.com"); 

4) Piggybacked Queries: The attacker injects more requests into an initial request for adding, modifying 

or deleting student profiles on the Grade Central website. Attackers use the conclusions to incorporate 

additional queries for executing the database, which may lead to arbitrary code execution by attackers, 

while interpreting escape sequences.  

normal SQL statement + ";" + INSERT (or UPDATE, DELETE, DROP) 

5) Stored Procedures: When a normal SQL expression, i.e., SELECT, is created as a stored procedure, an 

attacker can insert another stored procedure to perform privilege escalation, to establish a service denial, 

and to execute remote commands as a replacement for a normal stored procedure. This is a typical type 

that uses a question limit (;) and the "SHUTDOWN" method of the attack shop: 

normal SQL statement + "; SHUTDOWN; " 

User 

Request 

Query 

generator 

Bypassing Two Factor 

Authentication 

Time Based Token 

(TOTP) 

Application authentication Firebase  

DB 

Data 

Bridge 

Valid user Invalid user 

Classification 

using Aho–

Corasick 

matching 

algorithm 



Turkish Journal of Computer and Mathematics Education              Vol.12 No.10 (2021), 2947-2956 

                                                                                                                        Research Article                                                                                                                                              

2950 

 

Inject Code: 

app.post(‘/user’, function (req, res){  

var query = {  

username: req.body.username,  

password: req.body.password 

}  

db.collection(‘users’).find one(query, function (err, user){  

console.log (user); 

});  

}) ; 

Prevent NoSQL Injection 

It is required to validate or escape the user's input correctly to avoid NoSQL injections. One of the first 

and fundamental steps is to validate user data, and validation of the intended form obtained in the application 

with regard to the following principles: 

1) Validate the data duration and sort. 

2) validate and sanitize the information for a specified sort (i.e. type casting). 

Classification using Aho–Corasick multiple keyword matching algorithm 

One of these classic algorithms is Aho–Corasick algorithm[2]. It is thought that during a pre-computing 

step of the algorithm, a finite automaton is constructed using a series of keywords and matches auto-scan the 

NoSQL query declaration to read every noSQL query character exactly once and to take constant time for each 

character read. AC methods uses a sophistication of a pattern which attempts to store set of anomaly keywords. 

The Aho–Corasick pseudo code is given below for a number of keywords corresponding to the algorithm, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bypass two factor Authentication 

 

Procedure AC(y,n,I0)  

INPUT: y←array of m bytes representing text input//SQL 

Query Statement 

1:UserVerification(validate) 

Input password ≠null 

Check the password (result = true) 

Then  

Generate OTP password 

Else 

Result = false 

Ignore the user 

Request Input query 

n← integer shows text length //SQL Query Length 

I0←initial state (first character in pattern)  

2: State ← I0 

3: For i = 1 to n do  

4: While g (State, y[i] = = fail) do  

5: State ← f (State) 

6: End While 

7: State ← g(State,.y[i])  

8: If o(State)≠Ф• then 

9: Output i 

10: Else  

11: Output Ф 

12: End If  

13: End for  

14: End Procedure 



Turkish Journal of Computer and Mathematics Education              Vol.12 No.10 (2021), 2947-2956 

                                                                                                                        Research Article                                                                                                                                              

2951 

 

Two factor authentications are a way to use a mobile computer as an internet portal authenticator. While 

most companies regard it as a safe way to authenticate their users on their websites, it can be circumvented by two 

ways. The methods used to circumvent two authentication factors are built on abuse of the architecture and 

execution, which web application managers frequently fail to examine to allow attackers to compromise user data. 

The two-factor authentication mechanisms are defective from the architecture aspect to their execution. This 

scheme was initially developed to enhance security of online portal consumers and users. However, from time to 

time, two factor bypasses can develop and various methods can be used in these attacks. The only way is to retain 

the identification of one's own method to verify two factor authentications such that the mechanism of the 

assailant is easily predicted. 

Time-Based Token (TOTP): An OTP method automatically produces time-based tokens with a static random 

key value and a dynamic time value. Time-based token is only available for 30 or 60 seconds for a given period of 

time. 

NoSQL Database used:  

The best examples of the NoSQL databases are FirebaseDB, MongoDB, CouchDB and Amazon 

DocumentDB. Open access and document-oriented databases are NoSQL databases. In scalable databases all 

databases are considered to provide high performance and availability. The main benefit of NoSQL is that, 

unlike RDBMS databases, all of the documents have their own schema, in which columns must be used 

compulsorily in each row of a chart. The short description of the firebase database is discussed below in this 

article. 

FirebaseDB(NoSQL Database) 

A cloud-hosted service is the Firebase Realtime database. Data will be saved to all linked clients as 

JSON and synchronized in real-time. All your customers share one Realtime database instance while you create 

inter-platform Apps using our iOS, Android and JavaScript SDKs and receive updates of the latest data 

automatically. 

Realtime's main capabilities, The Realtime Database uses data syncing rather queues from traditional 

HTTP applications—any linked computer receives the update in milliseconds, every time data changes. Every 

time data changes. Provide cooperation and interactive interactions without reflecting on network code. 

A portable, expression-based vocabulary known as the Firebase Realtime Database Security Rules is 

used in this real-time database to describe how the data is organized and how it is readable or writte to. When 

combined with Firebase Authentication, developers will decide who can access and how to access what data. 

In contrast to the relationship data base, the Realtime Database is a NoSQL database with different 

optimizations and functionalities. The Realtime Database API is intended for fast operations only. That enables 

you to build an outstanding experience in real time that will provide uncompromising help for millions of 

customers.  

PERFORMANCE ANALYSIS 

The performance analysis of proposed system is evaluated in JavaScript and Firebase database is used for 

banking dataset.The parameters to be considered for implementations are: 

1. Accuracy - The number of documents properly identified by the classificator is referred to. 

Accuracy =
TP + TN

TP + FP + FN + TN
 

2. True Positive Rate (TP): It is number of positive examples which the classification model has precisely 

forecast. 

3. False Positive Rate (FP): It refers to number of negative examples which the classification model has 

inaccurately predicted.  

4. Precision - is fraction of retrieved instances that are correlated.  

 Precision =
TP

TP+FP
 

5. Recall- is fraction of correlated instances that are retrieved. 

Recall =
TP

TP + FN
 

6. ROC curve: are bidimensional graphs commonly used to evaluate and compare the performance of 

classifiers.  It is a very popular method to measure the accuracy of a classification model. 

 

The figure 2 shows the login page of firebase database app. Once the user and password is matched then 

only the user get authenticate to access the data.  



Turkish Journal of Computer and Mathematics Education              Vol.12 No.10 (2021), 2947-2956 

                                                                                                                        Research Article                                                                                                                                              

2952 

 

 
Figure 2: Login the firebase app 

 

Once the user is login is based on the verification of OTP token generation, the mail is forwarded to the user 

personal mail to get confirmation that the user is real one or not. The below figure 3 shows the verification mail 

is forwarded to the user. 

 
Figure 3: OTP mail verification to the user 

 

Once the verification mail is forwarded to the user then the user validation phase begins the database user name, 

mail id and the token which is generated for verification is saved in the firebase Database which is shown in 

figure 4. 

 



Turkish Journal of Computer and Mathematics Education              Vol.12 No.10 (2021), 2947-2956 

                                                                                                                        Research Article                                                                                                                                              

2953 

 

 
 

Figure 4: OTP Token generated for user validation 

 

The below figure 5 shows the banking dataset which is used for proposed methodology. In this dataset, 

evaluations are presented in proposed work with more real life dataset would allow for comparing the 

performance. The attributes used for banking dataset are user personal details like name, age, account balance, 

campaign, day, default, educations, housing, job, loan, martial status, month, pdays and pout etc. 

 

Figure 5: Banking dataset used for FirebaseDB 



Turkish Journal of Computer and Mathematics Education              Vol.12 No.10 (2021), 2947-2956 

                                                                                                                        Research Article                                                                                                                                              

2954 

 

 
 

Figure 6: Performance analysis of proposed method 

 

The above figure 6 shows the performance of proposed methodology, the parameter to be consider for evaluate 

the proposed method is accuracy, precision and recall. 

 
Figure 7: Malicious User verification 

 

If the malicious user is present, the user validation phase rejects the malicious user which is shown in above 

figure 7. The user name and password is mismatch then it will show the email verification is invalid. 



Turkish Journal of Computer and Mathematics Education              Vol.12 No.10 (2021), 2947-2956 

                                                                                                                        Research Article                                                                                                                                              

2955 

 

 
Figure 8: Accuracy of FirebaseDB and MongoDB and Amazon DocumentDB 

The below figure 8 shows the accuracy calculation with FirebaseDB and realtime databases called MongoDB 

and Amazon DocumentDB. With classification accuracy of FirebaseDB achieves better results when compared 

to realtime databases of MongoDB and Amazon DocumentDB. 

 
Figure 8: ROC curve of FirebaseDB and MongoDB and Amazon DocumentDB 

The figure 9 shows the ROC curve of precision and recall which shows When observations are balanced within 

each group, ROC curves are sufficient, while accurate recalling curves are suitable for imbalanced data sets. 

 

CONCLUSION 

SQL Injection is one of the most frequent attacks on web applications. In this case, an attacker tries to 

use malicious manufactured input chains such that the SQL queries generated by the Web app vary from the 

developer's structure. This paper proposed technique is to protect the applications against NoSQL injection. In 

this article, the NoSQL Injection Attacks were attempt to characterize on the basis of web vulnerabilities. Also 

presented the classification results which is compared with realtime databases of MongoDB and Amazon 

DocumentDB 

. 

 

 

 



Turkish Journal of Computer and Mathematics Education              Vol.12 No.10 (2021), 2947-2956 

                                                                                                                        Research Article                                                                                                                                              

2956 

 

REFERENCE 

1. N.S. Ali, A. Shibghatullah,(2016) “Protection Web Applications using Real-Time Technique to 

Detect Structured Query Language Injection Attacks”, International Journal of Computer 

Applications (IJCA), Volume 149, paperNo:6, September. 

2. Hou, B., Qian, K., Li, L., Shi, Y., Tao, L., & Liu, J. (2016). MongoDB NoSQL Injection Analysis 

and Detection. 2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing 

(CSCloud). doi:10.1109/cscloud.2016.57.  

3. https://www.mongodb.com/ 

4. https://securityintelligence.com/does-nosql-equal-no-injection/ 

5. Zhuang Chen, Min Guo, Lin zhou (2018). Research on SQL injection detection technology based 

on SVM. MATEC Web of Conferences 173, pp.1-5. 

6. Hong Ma, Tsu-Yang Wu, Min Chen, Rong-Hua Yang, and Jeng-Shyang Pan, (2017) “A Parse 

Tree-Based NoSQL Injection Attacks Detection Mechanism”, Journal of Information Hiding and 

Multimedia Signal Processing, Volume 8, Number 4, July. 

7. Md Rafid Ul Islam ; Md. Saiful Islam ; Zakaria Ahmed ; Anindya Iqbal ; Rifat Shahriy, (2019) 

“Automatic Detection of NoSQL Injection Using Supervised Learning”,  IEEE 43rd Annual 

Computer Software and Applications Conference (COMPSAC) 

8. Ahmed M. Eassa, Hazem M. El-Bakry, Omar H. Al-Tarawneh, Ahmed S. Salama,(2017) “NoSQL 

Racket: A Testing Tool for Detecting NoSQL Injection Attacks in Web Applications”, (IJACSA) 

International Journal of Advanced Computer Science and Applications, Vol. 8, No. 11. 

9. Araujo, T. H. D, Agena, B. T., Braghetto, K. R., & Wassermann, R. (2017). OntoMongo-Ontology-

Based Data Access for NoSQL. ONTOBRAS, 1908, 55-66. 

10. https://docs.couchdb.org/en/latest/config/auth.html#couch_httpd_auth/require_valid_user 

11. Shahmeer Amir,Four Methods to Bypass two factor Authentication, Jul 15, 2017 . 

12. B. Indrani& E. Ramaraj, “X – LOG Authentication Technique To Prevent Sql Injection Attacks”, 

International Journal of Information Technology and Knowledge Management January-June 2011, 

Volume 4, No. 1, pp. 323-328. 

13. Ziyahan Albeniz, Using Session Puzzling to Bypass Two-Factor Authentication,  Web Security 

Readings ,2019. 

 

https://ieeexplore.ieee.org/author/37086961921
https://ieeexplore.ieee.org/author/38636248900
https://ieeexplore.ieee.org/author/37086961158
https://ieeexplore.ieee.org/author/37653240200
https://ieeexplore.ieee.org/author/37085654404
https://ieeexplore.ieee.org/xpl/conhome/8746989/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8746989/proceeding
https://shahmeeramir.com/4-methods-to-bypass-two-factor-authentication-2b0075d9eb5f?source=post_page-----2b0075d9eb5f----------------------
https://www.netsparker.com/blog/author/ziyahanalbeniz/
https://www.netsparker.com/blog/web-security/
https://www.netsparker.com/blog/web-security/

