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Abstract: Android is the operating system of this modern world. Today, every tech-savvy people across the world are giving 
first preference to Android devices for their personal and official use. Because of the growing use of Android devices attackers 
are turning their attention toward android application. Because of this alarming increase in Android malware attacks there is a 

need to develop a defence mechanism against such attacks that must be fruitful and cost-effective. State-of-the-art malware 
detection techniques perform static, dynamic or hybrid analysis. Static analysis involves examining the source code malware 
samples without executing them. However, dynamic analysis monitors the run time behaviour of application during the actual 
execution of the app. Static analysis is a straightforward way to analyze the malware samples regarding the Android platform. 
In this research, we perform hybrid analysis using four different categories of Android application features such as permissions, 
intents, and network features. We extract permissions and intent from a manifest file while Network-based features extracted 

from java files. Our results show that the greatest precision of 0.99 can achieve by performing feature selection using Info Gain 
Method. Through, feature selection and results achieved by those selected features we come to know that permission are the 
most relevant features among all other three feature categories. We have observed that performing Ensemble method is best 
among all four machine learning classifiers. We have seen that network features (IP addresses, Email addresses, URL) are the 
relevant and effective feature for malware detection in the proposed framework. 

Keywords:  Malwares analysis, Dynamic analysis, Static analysis, Hybrid analysis, Android Security, cyber Security. 

 

1. Introduction  

      Because of the exponential adaptation of mobile devices, having open-source operating systems (Android 

systems considered having captured 87.5% of the mobile phone market (Kharpal, 2016)), introducing malware 

applications within legitimate ones are also clear at an exponential rate. “Malware”, a malicious code, designed with 

an unsafe intent and commonly floated on mobile application stores, giving a perception of being an ordinary and a 

safe app for use. They are injected or downloaded by users and installed in the mobile devices without suspect. They 

can be of different forms like; virus, Trojan horses or worms. A recent statistic reveals that there are approximately 

one million android based mobile applications which are malware (Wood, Nahorney,Chandrasekar, Wallace,  & 

Haley, 2015). It shows another alarming statistics in a survey (cyber-crime report 2014) is that worldwide the 

financial damages caused by these malware applications exceed over 400 billion annually. These statistics make the 

malware application detection systems an intrinsic need of the hour. 

     Over the past few years, various approaches have been adapted to detect malware applications from the legitimate 

ones, which can grouped as static, a dynamic and a combination of the two called the hybrid approaches. We will 

discuss each one. 

     Static based approaches analyze the suspect application’s code without executing or running it. Common features 

used by such approaches for malware detection are; Permissions and API calls (Almin & Chatterjee, 2015). Static 

approaches are very fast, requires minimum efforts, have lower costs in terms of time and budget. However they 

can only detect already known malware types (Rao & Hande, 2017).  

     Dynamic approaches as their name test and gives a deep analysis of the suspected application by executing it. It 

analyzes the behaviour of the application during runtime by checking its code and system calls (Canfora, Medvet, 

Mercaldo, & Visaggio, 2015). These approaches try to segregate malware based on the observations what sort of 

system calls used by normal applications versus abnormal ones. Such behaviour identifications can surely lead to 
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the detection of new malware and already identified ones. Although dynamic approaches are far better than the 

static ones, requires a large storage space, high computational power and are time-consuming (Rao & Hande, 2017). 

      Hybrid approaches make use of both dynamic and static approaches’ analysis procedure to identify and 

segregate malware from normal applications. They combine dynamic and static approaches features to identify the 

malware and have a high accuracy rate, but the entire process makes the analysis, time and computationally 

expensive. Also, inherit traditional static and dynamic approaches limitations (Xu, Zhang, Jayasena, & Cavazos, 

2016). 

     Among the aforementioned approaches, hybrid approaches are considered being more precise however their 

limitations and the increasing number of new malware pose new challenges which need to addressed by 

researchers. Considering these observations, the focus of the research is on devising a hybrid approach which tries 

to detect malware applications by minimizing the known limitations (of the static and dynamic approaches) and 

achieve high accuracy. Though a lot of research conducted and a lot of hybrid approaches exists, however to the 

best of our knowledge, a combination of URL, emails, IPs and text features have not used. The proposed strategy 

uses static and dynamic features stepwise to test, identify, reevaluate and reconfirm for malware identification. 

The proposed approach is a supervised learning approach which classifies the application as malware or clean 

class. 

2.Review of Related Studies 

 Android security issues especially identification of malware from legitimate applications have become a hot 

research area, since the exponential use of smart phones worldwide. Various techniques have been proposed for 

identifying malware using static features, dynamic features or combination of both of them, having their own 

benefits and limitations. 

1) Techniques based on static analysis 

As mentioned above, static analysis of applications is a procedure to analyze the functionalities and behaviours 

through its source code without actually executing it. A technique proposed by (Sato, Chiba, & Goto, 2013) analyzes 

only the manifest files of an android application. The technique extracts specific information from the manifest.xml 

file of an app and then look up this information in the keyword lists that are built by them gradually. A malignancy 

score is computed based on the manifest file information with respect to the keyword list. If the malignancy score 

is higher than the threshold the app is considered to the malicious otherwise non-malicious. The results shown by 

the experiments had 91.4\% accuracy rate for benign application recognition whereas 87.5\% accuracy rate against 

malware detection. Whereas 90.0\% is the overall total accuracy rate. The technique, as evident is unable to detect 

much malware, due to its static nature. 

 (Feizollah et al., 2017) discusses the value of an applications Intents. The authors are of a view that intents are 

powerful features that can be used to encode the malicious intentions of malware, especially when used in 

combination with permissions. The proposed technique detects an application as a malware using number of 

different modules like; decompiler, extractor and decision-maker. Decompiler decomposes the apk files, extractor 

extracts intents, intents filters & permissions from the Java code. Whereas the intelligent learner & decision-maker 

use features database to extract data use them in Bayesian network algorithm to learn patterns and decide whether 

the application is malicious or not. The authors used DREBIN(Arp et al., 2014) as a malware dataset, consisting of 

5560 applications, belonging to one of 179 malware family. The dataset also contains 1846 clean applications. The 

technique achieved 91% detection rate using application’s Intents while 83% using android permissions.  While 

combining both of them achieved 95.5% accuracy, concluding that intents based detections can be considered as a 

more reliable detection scheme.  

02)Techniques based on dynamic analysis 

Besides Google, the research community of this field has put a lot into this as well. As, (Canfora et al., 2015) 

tried to identify malware based on system call. They are of the view that system calls are the basis of an application’s 

malicious behaviour. They used SVM classifier to identify the specific sequence calls which are associated with 

malware. The experimentation was conducted on 2000 applications and achieved 97% detection rate. In another 

study conducted by (Wong & Lie, 2016), the authors proposed IntelliDroid which is based on specific API calls. 

The proposed tool is flexible enough to integrate itself with other tools and analyze the behaviour of an application. 

The experimentations are conducted on 75 malware, among which 70 were successfully traced. 

(Kiet al.,2015) used API call sequence to analyze the malicious behaviours of the applications. The authors used 

a hooking process which monitors and keeps track of the API call sequence. These API call sequences are then 

compared with the already stored ones and generate a security alert upon suspect. 
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(Alzaylaee, Yerima, & Sezer, 2016) the proposed system called DynaLog extracts features like logging of high-

level behaviour and API calls during the analysis phase. The authors used a mix of 2226 malware and clean apps. 

The application is dependent on a Google tool Monkey for application testing. The proposed application 

methodology is convincing but is dependent on Monkey tool, also, those applications which are unable to run in 

emulated environment will remain unchecked. 

03) Hybrid Techniques 

Hybrid malware analysis techniques use a combination of both dynamic & static  features to detect malware 

applications. It is a relatively new aspect of the solution and many researchers have started focusing on this premise. 

The researchers use different features from the static and dynamic feature pools and come up with many diverse 

and effective schemes for malware identification. Some of them are highlighted in this section.  

AASandbox (Android Application Sandbox) proposed by (Bläsing, Batyuk, Schmidt, Camtepe, & Albayrak, 

2010) is another hybrid approach which uses (.dex files) for the static analysis. Whereas low-level details of system 

interactions are used for dynamic analysis purpose. During the static analysis the .dex files are decompiled into a 

human-readable format which is then scanned further for suspicious patterns. During the dynamic analysis, the 

applications low-level details are used generated during the execution of the application within the sandbox 

environment. As it is known sandbox environment is used to ensure the security of analyzing a system and to ensure 

the safety of data. For the dynamic analysis the technique also observes the behaviour of an application through 

producing random events. 

(Zhao, Li, Xu, Zhang, & Feng, 2014) proposed a hybrid malware detection technique named AMDetector. The 

technique uses a modified attack tree model (Schneier, 1999) which takes static features to get necessary information 

about an application. This information is then used by the classifier to classify the applications into normal or 

harmful classes. The application behaviour which triggers different code components of an application is also 

considered which are the basis of dynamic analysis. Making use of organized rules (with attack trees) achieve good 

code coverage and accuracy of up to 96.5\% by this technique, however the manual rule generations and dynamic 

analysis are time costly.  

Another hybrid technique proposed by (Yuan, Lu, Wang, & Xue, 2014) used deep learning to classify Android 

malware using Droid-Sec. the technique selects over 200 dynamic & static features of an application and uses these 

features for classification purpose to the deep neural network. Experiments were conducted on 599 applications 

which were a mixture of both malicious and benign sample having no class imbalance problem. The technique 

achieved 96.5% accuracy. 

(Yuan, Lu, & Xue, 2016), hybrid, deep learning-based technique, uses different kernels and graph kernels to 

develop a deep neural network, however, the technique is costly in terms of time & training. 

(N. Zaman and F. A. Almusalli, 2017), (N. Z. Jhanjhi, et. al, 2018), and (F. A. Almusalli, et. al, 2017), Malware 

caused several issues, and it effect mainly power savaging capabilities of Android phone as well. (Humayun, M. 
et. al, 2020), and (B. Hamid, et. el., 2019), further elaborate the smart efficient and security issues of different 

smart phone application for smart environment and smart cities. (Seungjin, L., et. al, 2020), and (Lee S, et.al, 2021) 

further consider the security issues and security attacks on smart factory and in smart home.  
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3. Methodology 

 

      The proposed system will be able to classify the variety and android malware. In static mode, I used android 

intents and permissions as the basic feature for malware classification. And in dynamic mode, I used URL,Email 

and IPs as the basic features of malware classification. . The Decompiler takes an APK file and decodes it into 

readable components. Every APK file has various parts like Java files XML files and manifest file it’s decoded 

every part and make it readable. The extractor is a module which extracts different type information which is 

needed for malware detection like Intents and permissions. Androguard is used to reverse dex file and beautiful 

soup package to extract permissions and intent from manifest file.  Similarly its extracts network features (IP 

addresses, email addresses, and URL) from dissembled dex files and stores  them  into  .txt  files. then the 

resulted txt files used to make feature vectors. then different classifer like Random forest(RF), Naive Bayes(NB), 

Gradient Boosting(GB) and ada boosting(AB) applied on these feature vectors.At the end result will be shown 

weather the application is malware or clean.

 

Figure 1 Context diagram of proposed system 

A. Feature Extraction:  

Android applications are packaged into .apk files. APK means (Android Package Kit). It is format of file  that 

is used to distribute applications on the Android Operating System. APK files are generally compressed files that 

can be downloaded directly on Android gadgets through Google play store or third-party app stores.  APK files 

consist of some of the files and folders such as META-INF folder, res folder, resource.arsc files, 

AndroidManifest.xml files, and classes.dex files as shown in Figure 3.1. META-INF folder stores Meta 

information about the contents of the JAR. This information can be sometimes stored in another folder named 

original.  

Res folder contains resources Resources.arsc files contain precompiled application resources such as strings, 

colors, and styles in binary XML. Android Manifest.xml file is binary XML file format. This contains application 

metadata such as name, version, intents, permissions, etc. The classes.dex files contain application code compiled 

in the dex format. For feature extraction we have used a python feature extraction script. This Feature extraction 

script takes the APK file, disassemble it into classes.dex files, AndroidManifest.xml, read permissions and intents 

tags from AndroidManifest.xml file extract them and store in .txt files. Similarly it extracts API calls and Network 

features (IP addresses, email addresses, and URL) from dissembled dex files and stores them into .txt files. These 

text files are further used for feature vector creation. The detail working of feature extraction script is as follows. 
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Figure 2 Context diagram of proposed system 

 

 

 

B. Feature Selection: 

One of the big challenges in creating a machine learning model is figuring out which of the data should be 

incorporated into the model. To achieve a better prediction it’s not necessary and not even desired to use the whole 

data. Since a portion of data may have no or little influence on results. It may be even detriment to the computing 

results. Feature selection is a process that of selecting a subset of features from large feature  for use in model 

construction that helps model to perform efficient prediction. And remove irrelevant and redundant features. Top 

reasons for using feature selection are: 

• It is essential for machine learning classifier to train faster. 

• Reduces the model complexity. 

• By choosing Right Subset its Improves the accuracy of a model. 

• Reduce over-fitting. 

Here for the purpose of feature selection, we used Information gain method. 

C. Model Selection: 

All the extracted  features (Permissions, intents, API calls and network-based features) are used for training 

machine learning classifiers. Selection of appropriate machine learning classifier is the most critical part of this 

research. During literature analysis, we have observed that previous studies  suggested various machine learning 

classifiers such as random forest(RF), Gradient Boosting(GB) ,Naive Bayes(NB)  and  ada Gradient Boosting etc., 

on the bases on their obtained results. We used these three machine learning algorithms for experimentation to 

choose the best performing algorithm for the proposed Android malware detection and classification framework 

D. Model Training and Testing: 



Turkish Journal of Computer and Mathematics Education               Vol.12 No.10 (2021), 2856-2864 

                                                                                                                                                       Research Article                                                                                                                                               

2861 

 

After getting feature selection and model selection. The model is trained with an ensemble of three model and 

their combinations. The model is trained using sci-kit learn library and language is Python. We used 80:20 ratio. 

80% for training dataset and 20% for testing data set. 

E. Model Performance Measure: 

To evaluate the classification, we use standard metrics i.e. recall f-measure and precision. The precision is the 

portion of correct positive classification (true positives) from cases that are predicted as positive. The recall is the 

portion of correct positive classification (true positive) from cases that are actually positive. F measure is the 

harmonic mean of recall & precision. 

4. Experimental results and discussion 

A. Data set:  

      The data set used for experiments consists of Android malware and benign applications in the form of .apk 

files. Data set of Android malware is collected from Drebin [15]. The Drebin data set consists of 5,560 samples 

belonging to 179 different malware families. The data set of the benign application was randomly collected from 

Google Play store. Our whole experimental data set consists of 5560 Android malware apps and 1980 clean apps. 

80\% malware and benign applications are used for training and 20\% applications are used for testing. 

B. Performance of All Features: 

1) Permission 

     The variation in precision, recall and F-measure of permission data set against classifiers are shown in table 1 

The Table describes that Gradient Boosting  and Random Forest has the highest values of performance measures 

Precision, recall and F-measure which are 0.98,  0.98, and  0.98 respectively and the R-Square value 0.91 for both 

classifiers. While Nive Bayes and Ada boosting Classifier produce 0.96  values of Precision, Recall and F-

measure.  

 

Table 1 Result of Permissions features by applying different classifier 

The training and testing of the best model are shown in figure 3. I used 70:30 70% for the training and the 30% for 

the testing data. 

 

Figure 3  Result of Permissions Training set size 

 

 

Classifier R_sqaure Fmeasure Precision Recall 

Random Forest 0.91 0.98 0.98 0.98 

Naive Bayes 0.80 0.96 0.96 0.96 

Gradient Boosting 0.91 0.98 0.98 0.98 

Ada Boosting 0.83 0.96 0.96 0.96 
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2) Intent 

      Table 2 Performance Measures of Intents using full data. We can see the performance of classifiers for Intents. 

Table 2 shows that F-measure and recall  of Naive Bayes is produce best result  0.93  which is highest among all. 

While the other classifier F-measure values of Random Forest, Gradient Boosting and ada boosting are respectively 

0.92,0.92 and 0.91.  

 

Table 2  Result of  Intent  features by applying different classifier 

      The Training and testing of the best model is shown in figure 4. I used 70:30 combination 70 percent for the 

training and 30 percent for testing data. 

 

Figure 4  Result of  Intent  training set size 

03) Network 

      Table 3 Performance Measures of the network using full data. We can see the performance of classifiers for 

networks. Table 3 shows that  F-measure value of both Random Forest and Ada Boosting classifier is 0.97  which 

is highest value.  While the naive bayes and the Gradient boosting produce 0.93 F-measure values. For the network 

Features Random Forest and the Ada Boosting perform best from others. 

Classifier R_sqaure Fmeasure Precision Recall 

Random Forest 0.89 0.97 0.97 0.97 

Naive Bayes 0.86 0.96 0.96 0.96 

Gradient Boosting 0.86 0.96 0.96 0.96 

Ada Boosting 0.89 0.97 0.97 0.97 

 

Table 3  Result of  Network  features by applying different classifier 

      The Training and testing of the model is shown in figure 5. I used 70:30 ratios.  The 70% for training data set 

and 30% for testing data set. 

Classifier R_sqaure Fmeasure Precision Recall 

Random Forest 0.60 0.90 0.90 0.90 

Naive Bayes 0.71 0.93 0.92 0.93 

Gradient Boosting 0.64 0.91 0.91 0.92 

Ada Boosting 0.60 0.90 0.90 0.90 
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Figure 5 Result of Permissions Training set size 

 

 

5. Conclusion and Future work 

Around, 80% of Smartphone worldwide users have a Android operating system device. The high dimension 

rate has a direct connection with an increase in the development of Android malware. This makes it more 

important to use a security mechanism for protecting Android devices from known or zero-day malware attacks. 

In this scenario, researchers have proposed many malwares detection approaches. These approaches use static 

analysis features (Permissions, Text classification, opcode sequences, control flow graphs etc.) and dynamic 

analysis features (System call logs, CPU and memory usage etc.) or both of them. Static analysis is a more 

efficient and cost-effective approach that can use for Android malware detection. From the comprehensive 

literature analysis of state-of-the-Art Android malware detection approaches, we concluded that there is a lack of 

an Android malware detection approach based on the analysis that uses permissions, intents, Network features (IP 

addresses, Email addresses, URL) collectively on the same dataset in one approach. 

In this research work, we dissembled the APK files of Android malware and benign applications and performed 

a static analysis on AndroidMenifest.xml files to extract intents and permissions. We extracted Network-based 

features from java files. Afterword we transformed all these extracted features into feature vectors for training & 

testing of machine learning algorithms. In this research, we have used four machine learning algorithms: Random 

forest(RF), Naive Bayes(NB), Ada Boosting , Gradient Boosting(GB). To reduce the dimensionality of features 

data, we performed feature selection processes using dimensionality reduction algorithms: Info Gain method. We 

have compared the performance of these feature selection algorithms for Android malware detection by generating 

separate feature vectors of permissions, intents, and Network features and training all three machine learning 

classifiers on four feature vectors. We have seen from the results got that info is a best feature selection method. it 

can select more effective features helpful in malware detection.. The results displayed this that Random Forest and 

Gradient Boost is the best performing classifier that classified Android malware samples with high F-measure values 

for the permission features data. While for the intent features data naïve bayes perform best and the network features 

Random forest and  Ada Boosting is. This research work suggests that networks features are the most relevant 

features that help in malware detection as compared to the other Android application features used in this research. 
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