

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2797-2807

 Research Article

2797

A Critical Analysis of Approximate Adders: Correctness and Analysis of Performance

Ajay Kumar Gottem, Arunmetha S, Aravindhan Alagarsamy, Murali Krishna B
Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram,

Guntur, AP 522 501, India

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 28 April 2021

Abstract—In digital Very Large-Scale Integration (VLSI) the adder is a basic computational block for many circuits.

Approximate adders were proposed as feasible solution in error-tolerant applications to provide a proper trade-off with

accuracy to have better performance parameters in terms of energy, area, and delay. The state of the art of approximate adders

are demonstrated in order to greatly enhance the operational features. To obtain the greatest number of approximation

advantages, in this paper a systematic comparison between different approximate adders is presented. Highlighted

Approximate Adder as a root map for various applications, which is more useful for some of the researcher's work in this field.

This paper looks at existing estimated adder designs and compares them in terms including both error and circuit

characteristics. Four different Approximate adders are reviewed in terms of Area, Delay, Simulation time and device utilization

summary. Gate level implementation of selected adders are described in detail. The cost functions of selected Approximate

adders are compared against various FPGA standard architectures. This paper looks at existing estimated adder designs and

compares them in terms including both error and performance analysis. Comparison Results indicate an average of 49%

change in Area Delay Product (ADP) and 6% variation in Simulation time.

Index Terms— Approximate adder, Area delay product (ADP), Field programmable gate array (FPGA), Parallel prefix adder,

Very Large-Scale Integration (VLSI).

INTRODUCTION

In the design of digital circuits, the key goals are to reduce power consumption, optimize area and increase speed.

Approximate adder is used as a basic element in almost all arithmetic operations such as multiplication,

subtraction, and division in digital circuits. Designers have been paying a lot of attention to approximate adders in

recent years since they can be used in a variety of applications where some error is appropriate [1]-[5]. Because of

the high computation demand in applications, approximate adders have grown in popularity [6] such as machine

learning, deep learning, image processing and digital signal processing (DSP), wireless communication and search

engines. We intentionally introduce errors in these applications to take advantage of delay, area, and power.

Therefore, approximate adders with significant loss have been implemented because we do not require a single

golden result for those applications, but rather a sufficient result. Approximate computing was implemented at

various abstraction levels like dynamic-voltage-accuracy-frequency-scaling in [7], computation at algorithmic

level in [8] and circuits are redesigned into approximate variants by inserting prediction logic designed

specifically for arithmetic adders.

The approximate adders are, one with approximate adder cell and other with Han-Carlson adder is

implemented. The proposed approximate adder is divided into non-overlapped summation blocks in which carry

from the previous block is independent to the next summation block. The carry input from each block is

dependent on the input operands itself, but not from the previous blocks. Carry chain propagation is truncated to

adder block itself, in worst case carry propagated to next corresponding block, that reduces delay drastically.

Approximate Adder cells (AAC) and Error Recovery Unit (ERU) which are widely used in Approximate

Computing (AC) that are clearly described in the further sections of this paper.

This paper is structured as follows. Section II explains about Literature Survey. Section III highlights the

Comparative Evaluation of State-of-Art Approximate adders. Finally, Discussions and Conclusion in section V.

LITERATURE SURVEY

In this section, we will briefly address current works that use a state-of-the-art approximate adder. The work in

[9] is a reconfigurable approximate carry look ahead (CLA) adder that can be used as both an approximate and an

exact adder. It implements the specification with an exact carry look ahead adder, as well as multiplexers to pick

the accuracy configurability and function as an exact and approximate adder. In this control input is used to vary

the function which will act as either approximate adder or exact adder. This method of implementation would

result in increased hardware area complexity and delay.

The work in [10] implemented an estimated carry skip adder that is implemented using an exact carry skip

adder. To reduce the overall critical path delay, the n-bit adder is divided into l-bit sub adders, with each sub adder

receiving the carry from the carry prediction block. In order to increase accuracy and minimize error rate, an

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2797-2807

 Research Article

2798

additional error magnitude correction block is used. As a result, adding this additional block to the estimated adder

design would increase the critical path delay and power consumption. The design's cost function is affected.

A high-accuracy block-based carry speculative adder (BCSA) is proposed in [11], which is implemented using

a carry propagate adder and includes an error prediction unit. The key disadvantage of this design is the broad

critical path delay from input to output, despite the lower error rate and area overhead.

The BCSA approach [11] implements an n-bit approximate carry speculative adder using sub blocks, with carry

prediction units performing parallel operations on these sub blocks. The BCSA method divides the n-bit adder into

l-bit summation blocks, each subblock containing l-bits, to perform n-bit addition. Carry prediction and selection

units are present in the sub adder. The carry from the previous block does not rely on the input of the next block to

perform the parallel operation in each block.

Fig.1. Implementation of block based approximate adder with carry prediction unit.

As a result, there is no path between these blocks. Therefore, each sub adder will receive the input carry signal

from the carry prediction unit of previous sub block. As shown in Fig.1, the sub adder will receive the carry

input from the block.

The carry chain's length is determined by the carry prediction unit and selector unit. As a result of using these

circuits, the critical path delay will be reduced since the carry input for the next sub block will be determined by

these prediction blocks rather than the previous carry output. Since the carry input is dependent on the carry

output of the previous block in the traditional method, the length of the carry chain is increased, so the above

technique is used to truncate carry propagation to two blocks (in worst case).

The precision of the BSCA [11] approximate adder is higher since it will work as an exact adder in most

situations. The logical expression below yields the carry input for the adder block.

 (1)

Here denotes the carry output from the block. The output of the selector unit is sel, as seen in the logical

expression above. is used to represent the sub-carry adder's output. Where denotes the expected carry

value.

 (2)

 = (3)

 = (4)

Where and are the carry outputs provided by each sub-block selected by . Certain cases are

implemented using the kill bit (k), and the generate bit (G) value produced by the NOR operation on the input data

are used. In certain instances, there is a higher error rate, which is partially restored by the Error Recovery Unit

(ERU).

As shown in Fig.2, a block-based approximate adder is implemented. Where the n bit adder is divided into l-sub

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2797-2807

 Research Article

2799

blocks, each

Fig.2. Structure of approximate adder with error recovery unit

of which contains sub adders that are implemented using a ripple carry adder. An error recovery block is used to

increase the sub adder's accuracy while lowering the estimated adder's error rate.

The work in [12] proposes an approximate ripple carry adder in which the n-bit adder is split into segments

with no relation between them. The first and last full adders in each sub block are replaced by a designed full

adder cells, which improves accuracy while increasing critical path delay due to the ripple carry adder in these

blocks.

The work in [13] proposed an Approximate reverse carry propagation Full Adder (RCPFA) in this paper

Carry propagates from Most significant bits (MSBs) to Least significant bits (LSBs). In terms of delay variation

Approximate reverse carry propagation Full Adder offered more stability.

COMPARATIVE EVALUATION

In this section will compare various state of art Approximate Adders with Carry look ahead adder.Device

utilization summary, Performance parameter summaryand Error metrics evaluationare discussed. Analysis done

on four different state-of-art Approximate adders such as Speculative adder, Parallel Prefix adder, Approximate

Adder Cells and Reverse carry Propagate adder.

I. Carry Look a Head Adder (CLA)

Carry-Look ahead Adder is presented in [9], [16]The principles of generating and propagating carries are used in

carry-lookahead logic.The carry look ahead adder determines the carry in advance based primarily on input data

signal. As a result, the propagation delay of the carry is reduced. The process of the carry look ahead adder can be

understood by considering the complete adder's Boolean expression. Generate and Propagate Functions for full

adder are given in the below (7), (8).

II. Block Based Carry Speculative Adder (BCSA)

In [11] block-based carry speculative adder is proposed in which adder was divided into non overlapping sum

blocks of length l-bits, carry from the previous block is truncated to two blocks. The carry output of each block is

estimated using the block's input operands and those of the following block.Here analysis was done on 32bit adder

and block size of 8-bit. BCSA was implemented in two cases with Error recovery unit (ERU) and without error

recovery here we have done analysis with ERU.

III. Approximate Adder (AA)

This work was proposed in [14]. In this method, approximate adder circuit is implemented by selecting

approximate carry output. For the analysis purpose Approximate Adder cell was cascaded to 8-bit and placing

ERU at each 8-bit block to form 32-bit adder similarly as in [9-12] methods exact full adder are cascaded to

implement the adder function. Here wereplace the exact full adders by using approximate full adder in order to

reduce the hardware complexity. The below Fig.3 shows the design of approximate adder diagram.

The approximate full adder correctly performs the sum operation, but it produces approximate carry output, which

can be recovered using AND and OR gates as shown in Fig.3. The following is the logical expression (5)- (6).

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2797-2807

 Research Article

2800

 (5)

.) (6)

Approximate adders's accuracy is dependent on the size of the approximate block as well as the carry predict and

select logic. Carry propagation is restricted to block itself, which reduces delay. So the maximum adder delay is

the same as the delay of the approximate adder block. In AA, approximate adder cell is used, which violates carry

output only in two cases: when a =’0’, b =’1’ & = ’0’and a =’1’, b = ’0’ & = ’0’. Recovery logic was placed

in each approximate adder cell for this violation, ensuring that the proposed approach achieves-high speed and

tolerable error rate.

Carry propagation is performed at the block level using select logic, which is the sum of the kill bit (k) and the

generate bit (g) (G). As shown in Fig.3, K and G values are obtained from the NOR of input data.

Fig.3 Approximate adder

IV. Approximate Han-Carlson Adder (AHA)

Approximate Han-Carlson Adder (AHA) is discussed in [15].The Han Carlson adder, which is one of the fastest

parallel prefix adders, is used in this work. As a result, the Han-Carlson adder significantly decreases the critical

path latency, resulting in increased processing speed and accuracy. The addition operation is done in three stages

in a parallel prefix adder.

1. Pre-processing stage

2. Carry generation stage

3. Post processing stage

1. Pre-processing stage

Propagate and generate values are implemented in the same way as the carry look ahead adder at this point.

For each input, these propagate and generate values are determined and sent to the next level.

(7)

 (8)

2. Carry generation stage

Parallel prefix adders have the same first and last stages. For each parallel prefix adder, the carry generation

stage has a different structure. To obtain carry for this point, black cells and grey cells are used, as shown in Fig.5.

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2797-2807

 Research Article

2801

The Han-Carlson adder's carry generation stage is represented in Fig. 4.

Fig.4. Carry generation stage of Han Carlson Adder

Fig.5. (a)Black cell, (b) Internal logic of Black cell and (c)Grey cell, (d) Internal logic of Gray cell.

3. Post processing stage

This is the stage where adder's final sum is computed. Between the propagate values and previous stage carry

values, the Ex-Or operation is performed.Below is the logical expression (9).

 (9)

In this way, the Han-Carlson adder is introduced and used instead of AA blocks in the AHA block. The critical

path is reduced in the AHA block architecture, which improves the operation's speed and reduces delays

significantly. The AHA block is 8 bits long, and the and variables are generated and routed as described

in (1)-(4) select logic and predict logic was similar as AA.

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2797-2807

 Research Article

2802

Fig.6. Approximate carry speculative adder with AHA block

RESULTS AND DISCUSSION

The CLA, BCSA, RCPFA, AA and AHA are coded with Verilog HDL, Simulation and Synthes is done in

Xilinx ISE 14.7. The description of device utilization, performance parameters, and error metrics measurement are

discussed in this section. Table.1-4 shows the results of a comparison study of various FPGA families. As shown

in Fig.7-8, area and delay reports are produced by averaging area and delay across different FPGA families, while

error metrics are provided in Table.5.

I. Device utilization Summary:

CLA, BCSA, RCPFA, AA, and AHA are implementedin Xilinx FPGA board families such as the Vertex4,

Vertex5, Artix7, and Kintex7. Differentiation is performed in four categories: the number of slices, the number of

four input LUTs, the number of IOs, and the number of bonded IOs. Table 1 shows the contrast between them.

Table.2shows the percentage change. As compared to CLA current BCSA, RCPFA, AA, and AHA, there is a 31

percent improvement in Hardware utilization.

Table.1.Device utilization summary of BCSA, ACSA & ACSHA

Virtex4 Virtex6 Artix7 Kintex7

No of

Slices

No of

4i/p

LUTs

No

of

IOs

No of

bonded

IOBs

No of

Slices

No of

4i/p

LUTs

No

of

IOs

No of

bonded

IOBs

No of

Slices

No of

4i/p

LUTs

No

of

IOs

No of

bonded

IOBs

No of

Slices

No of

4i/p

LUTs

No

of

IOs

No of

bonded

IOBs

CLA 76 78 98 98 99 33 98 98 99 33 98 98 99 33 98 98

BSCA 66 115 98 98 75 33 98 98 75 33 98 98 75 33 98 98

RCPFA 40 63 97 97 59 29 97 97 60 23 97 97 60 23 97 97

AA 43 75 98 98 60 28 98 98 60 28 98 98 60 28 98 98

AHA 57 101 98 98 60 28 98 98 78 8 98 98 78 8 98 98

Table.2. Percentage improvement in device utilizationSummary of ACSA & ACSHA

Virtex4 Virtex6 Artix7 Kintex7

PARAMETER Slices 4i/p

LUTs

IOs Bonded

IOBs

Slices 4i/p

LUTs

No

of

IOs

Bonded

IOBs

Slices 4i/p

LUTs

IOs Bonded

IOBs

Slices 4i/p

LUTs

IOs Bonded

IOBs

BCSA 13% -47% 0% 0% 24% 0% 0% 0% 0% 0% 0% 0% 24% 0% 0% 0%

RCPFA 47% 19% 1% 1% 40% 12% 1% 1% 30% 30% 1% 1% 39% 30% 1% 1%

AA 43% 4% 0% 0% 30% 15% 0% 0% 15% 15% 0% 0% 39% 15% 0% 0%

AHA 25% -29% 0% 0% 30% 15% 0% 0% 76% 76% 0% 0% 21% 76% 0% 0%

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2797-2807

 Research Article

2803

II. Design Parameters Evaluation:

The results of the delay, Area, ADP and Simulation time of the 32-bit reviewed Approximate adders for

different FPGA families are shown in Table.3. From the results of CLA, BCSA, RCPFA, AA, and AHA we can

observe that RCPFA has minimum area and AHA has high speed that is shown in Fig.7 and Fig.8

Fig.7. Area Utilization and Comparison of BCSA, ACSA, and ACSHA

The area report in terms of LUT's average from four distinct FPGA families is shown in Fig.7, and has

significant changeas compared to CLA. As a result, when compared to the rest of the designs and the traditional

CLA system, the RCPFA approach has a hardware complexity that is approximately 34% lower.

The delay report in nanoseconds between CLA, BCSA, RCPFA, AA, and AHA is shown in Fig.8. The time it

takes to produce Generate and propagate values is greatly reduced as the gate count and effective length of the

carry path are reduced. As a result. AA and AHA methods have less critical path latencywhen compared to CLA,

BCSA, and RCPFA.

Virtex4 Virtex6 Artix7 Kintex7

Area Delay(ns) ADP Simulation

time(sec)

Area Delay(

ns)

ADP Simulation

time(sec)

Are

a

Delay(

ns)

ADP Simulation

time(sec)

Area Delay(

ns)

A

DP

Simulation

time(sec)

CLA 78 12.68 989 6.00 99 5.22 517 7.15 99 6.82 675 9.88 99 4.84 47

9

10.16

BCSA 115 12.68 1460 6.00 75 4.87 365 7.15 75 6.64 498 9.84 75 4.55 34

1

10.00

RCPFA 63 8.62 543 6.59 59 3.49 206 8.53 60 4.67 280 8.89 60 3.64 21

8

8.86

AA 75 7.85 589 5.83 60 3.19 191 6.76 60 4.36 262 9.28 60 2.96 17

8

9.14

AHA 101 7.98 806 5.9 60 3.19 191 6.76 60 4.22 253 9.72 60 2.87 17

2

9.56

Table.3. Performance parameters of BCSA, ACSA, ACSHA

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2797-2807

 Research Article

2804

Fig.8. Delay Comparison of BCSA, ACSA, and ACSHA

Table 4 compares the output of reviewed approximate adders in terms of area, delay, and ADP. By comparing

the all the five approximate adders,AA has 57% improvement and RCPFA has 55% improvement in ADP.AA

gives higher percentage output gain in cost metrics.

Table.4. Percentage improvement in ACSA and ACSHA

V. Error Metrics Evaluation:

As previously mentioned, the Approximate adder's accuracy is determined by the select logic, predict logic, and

block length. Each block in reviewed Approximate adders has different adder cells, and size varies from 1-bit to 8-

bit are cascaded to form 8-bit block. For all the adders has same ERU that is placed at end of each block. Since the

carry output was violating in two cases, we corrected it with ERU. We placed ERU at alternative bits in each

block to get more benefit from Approximation.Similarly, parallel prefix adder blocks are used in AHA blocks, and

this approximation is performed at the block level, as shown in Fig.6. Only select and predict logic determines

accuracy in this case.Table.5 shows the error metrics obtained by applying random stimuli in 65K combinations

for 16-bit and 32-bit. The results show that AA has a low delay while having bit error rate. BCSA and RCPFA has

1.7% and 1.3% relative error rate. AHA is largely reliable and has anacceptable cost function.

(10)

(11)

 Virtex4 Virtex6 Artix7 Kintex7

CLA

Area Delay(ns) ADP Simulation

time(sec)
Area Delay(ns) ADP Simulation

time(sec)
Area Delay(ns) ADP Simulation

time(sec)
Area Delay(ns) ADP Simulation

time(sec)
BCSA -47% 0% -47% 0% 24% 7% 29% 0% 24% 3% 26% 0.4% 24% 6% 29% 2%

RCPFA 19% 32% 45% -10% 40% 33% 60% -19% 39% 32% 59% 10% 39% 25% 55% 13%

AA 4% 38% 41% 3% 39% 39% 63% 6% 39% 36% 61% 6% 39% 39% 63% 10%

AHA -29% 37% 19% 2% 39% 39% 63% 6% 39% 38% 63% 2% 39% 41% 64% 6%

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2797-2807

 Research Article

2805

(12)

Table.5. Error metrics evaluation of CLA, BCSA, RCPFA, AA & AHA

16 32

RE(%) NMED MRED RE(%) NMED MRED

CLA 0.0 0.0 0.0 0.0 0.0 0.0

BCSA 1.70 0.0164 0.0185 0.20 0.0002 0.0003

RCPFA 1.3 0.0109 0.009 0.3 0.0021 0.0001

AA 5.60 0.05757 0.05019 4.30 0.0345 0.0375

AHA 0.01 0.0054 0.0 0.0 0.0 0.0

Where is the exact result, is the approximate result, and n is the size of the adder. The mean relative error

distance (MRED), normalised mean error distance (NMED), and relative error (RE) are determined from (10)-

(12). The data is presented in a table. 5. The results show BCSA, RCPFA has <2percent error rate, AA has a 5.6

percent relative error (in 16-bit) that can be improved as a matter of designer interest by including ERU’s at

different bit positions, and AHA has a nearly negligible relative error.

Fig.9. Error percentage in CLA. BCSA, RCPFA, ACLA, AHA

DISCUSSION AND CONCLUSION

This paper presents ancomparative evaluation of different types of Approximate adders. The selection of the

Approximate adder depends upon the application that is used. Four approximate adders have been discussed, first

adder that is BCSA have the less area compared with CLA, in the second adder is RCPFA which is one of the

stable adder having optimal area, and we discussed AA, AHA that are having optimal speed and accuracy.

Analysis is done in same input stimuli for all the reviewed approximate adders and error recovery block is adopted

which will greatly reduce the overall error percentage. From the experimental results, we can conclude that

RCPFA and AHA designs consists of optimal area and delay when compare to CLA, BCSA, AA approximate

adders and conventional adders, In future this work can be implemented in various applications like MAC

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2797-2807

 Research Article

2806

(Multiply and Accumulation unit) and filters in order to estimate the performance of the proposed adders.DSP

can be designed to get more advantage in cost function.

REFERENCES

1. Alexander Aponte-Moreno, Alejandro Moncada, Felipe Restrepo-Calle, Cesar Pedraza. “A Review of

Approximate Computing Techniques towards Fault Mitigation in HW/SW Systems,” 978-1-5386-1472-

3/18/ 2018 IEEE DOI: 10.1109/LATW.2018.8347241.

2. C. M. Kirsch and H. Payer. “Incorrect systems: It’s not the problem, it’s the solution,” in Design

Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, June 2012, pp. 913–917.

3. H. Jiang, C. Liu, L. Liu, F. Lombardi and J. Han. “A review, classification and comparative evaluation of

approximate arithmetic circuits,” ACM JETCAS, vol. 13, no. 4, Art. no. 60, 2017.

4. M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati and S. Mahlke. “SAGE: self-tuning approximation for

graphics engines,” In Proc. Micro, 2013, pp.13-24.

5. H. Esmaeilzadeh, A. Sampson, L. Ceze, and D.Burger. "Neural Acceleration for General-Purpose

Approximate Programs," In Proc. of Micro, pp.105-115, 2012.

6. Weiquiang Liu, Fabrizio Lombardi, Michael Schultte. “Approximate Computing: From Circuits to

Applications,” Vol. 108, No. 12, December 2020, pp. 2103-2107.

7. B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst. “DVAFS: Trading computational accuracy

for energy through dynamic-voltageaccuracy-frequency-scaling,” in Design, Automation and Test in

Europe (DATE), 2017 IEEE Conference, March 2017, pp. 488–493.

8. D. Mohapatra, G. Karakonstantis, and K. Roy. “Significance driven computation: A voltage-scalable,

variation-aware, quality-tuning motion estimator,” in Low Power Electronics and Design (ISLPED),

2009 ACM/IEEE International Symposium on, Aug. 2009, pp. 195–200.

9. O. Akbari, M. Kamal, A. Afzali-Kusha, and M. Pedram. “RAP-CLA: A reconfigurable approximate

carry look-ahead adder,” IEEE TCAS-II, vol. 65, no. 8, pp. 1089–1093, 2018.

10. Y. Kim, Y. Zhang, and P. Li. “An energy efficient approximate adder with carry skip for error resilient

neuromorphic VLSI systems,” In Proc. ICCAD, 2013, pp. 130–137.

11. Farhad Ebrahimi-Azandaryani1, Omid Akbari, Mehdi Kamal, Ali Afzali-Kusha, MassoudPedram,

“Block-based Carry Speculative Approximate Adder for Energy-Efficient Applications” IEEE

Transactions on Circuits and Systems II,February 2019, DOI: 10.1109/TCSII.2019.2901060.

12. W. Xu, S. S. Sapatnekar, and J. Hu. "A Simple Yet Efficient Accuracy Configurable Adder Design," In

Proc. ISLPED, 2017.

13. Masoud Pashaeifar, Mehdi Kamal, Ali Afzali-Kusha, MassoudPedram, “Approximate Reverse Carry

Propagate Adder for

14. Energy-Efficient DSP Applications”IEEE transactions on very largescale integration (VLSI) systems,

August 2018, DOI:10.1109/TVLSI.2018.2859939.

15. G. Anushaa, P. Deepa b, “Design of approximate adders and multipliers for error tolerant image

processing,”Microprocessors and Microsystems Volume 72, February 2020,

https://doi.org/10.1016/j.micpro.2019.102940.

16. Morgana Macedo, Leonardo Soares, Bianca Silveira, Claudio M. Diniz, Eduardo A. C. da Costa,

“Exploring the Use of Parallel Prefix Adder Topologies into Approximate Adder Circuits” 24th IEEE

International Conference on Electronics, Circuits and Systems (ICECS) February 2017 DOI:

10.1109/ICECS.2017.8292078.

17. Neema Zacharias, Lalu V, “Study of Approximate Multiplier with Different Adders,” 2020 International

Conference on Smart Electronics and Communication (ICOSEC), 10-12 Sept. 2020DOI:

10.1109/ICOSEC49089.2020.9215425.

18. Priyadarshini K.M., Ravindran R.S.E., Bhaskar P.R. (2019), ‘A detailed scrutiny and reasoning on VLSI

binary adder circuits and architectures’, International Journal of Innovative Technology and Exploring

Engineering, 8(7), PP.887-895.

19. Soumya N., Sai Kumar K., Raghava Rao K., Rooban S., Sampath Kuma R P., Santhosh Kumar G.N.

(2019), ‘4-bit multiplier design using cmos gates in electric VLSI’, International Journal of Recent

Technology and Engineering, 8(2), PP.1172-1177.

20. Balaji B., Ajay Nagendra N., Radhamma E., Krishna Murthy A., Lakshmana Kumar M. (2019), ‘Design

of efficient 16 bit crc with optimized power and area in vlsi circuits’, International Journal of Innovative

Technology and Exploring Engineering, 8(8), PP.87-91.

21. Murali Krishna B., Madhumati G.L., Khan H. (2019), ‘FPGA based pseudo random sequence generator

using XOR/XNOR for communication cryptography and VLSI testing applications’, International

Journal of Innovative Technology and Exploring Engineering, 8(4), PP.485-494.

 Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2797-2807

 Research Article

2807

22. Santhosh C., Ravindran R.S.E., Vulchi U.B.P., Thumati V., Gufran M.S., Bhavana D., Cheerla S.V.

(2019), ‘Design and verification of half adder using look up table (LUT) in quantum dot cellular

automata (QCA)’, International Journal of Advanced Science and Technology, 28(16), PP.1804-1809.

