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Abstract: We search for non-zero distinct integer triples such that the sum of any two as well as twice the sum 

of these in each set is a nasty number. 

 

Introduction:  

 The exciting part of Mathematics is the hypothesis of numbers where in Pythagorean triangles have 

been a subject important to various mathematicians and to the supporters of Mathematics, since it is a treasury 

wherein the quest for some, covered up association is an expedition. Number hypothesis is captivating because 

it has such an enormous number of open issues that appear to be open from an external perspective. Obviously, 
open issues in number hypothesis are open which is as it should be. Numbers, regardless of being 

straightforward, have a unimaginably rich design which we just comprehend partially. During the 20th century, 

Thus made a significant leap forward in the investigation of Diophantine conditions. His confirmation is one of 

the primary instances of the polynomial technique. His evidence affected a lot of later work in number 

hypothesis, including Diophantine conditions.  

In [1-7], theory of numbers were discussed. Many mathematicians considered the problem of the 

existence of Diophantine triples with the property D(n) for any arbitrary integer n and also for any linear 

polynomials n [8-11]. In this paper, we exhibit the non-zero distinct integer triples such that the sum of any two 

as well as twice the sum of these in each set is a nasty number. 

Definition: 

 A nasty number is a positive integer with at least four different factors such that the difference between 

the numbers in one pair of factors is equal to the sum of the numbers of another pair and the product of each pair 
is equal to the number. 

 Thus, a positive integer n is a nasty number, if n = ab = cd and a + b = c – d, where  

a, b, c, d are distinct positive integers. 

 Every integer n of the form 6(12+22+32+……. + k2)  is a nasty number.  

Methodology: 

 Let a,b,c be three non-zero distinct integers such that 
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Adding the equations (1),(2) and (3) we get, 
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Solving the equations (1) to (3) we get, 
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Therefore (4) becomes, 
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Which is the well known Pythagorean equation. We present below two set of solutions. 

SET 1 
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Three parametric solutions are given by 
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Substituting the values of t, u, v and w in a, b, c we have 

 

 

The values represented by a, b and c 

satisfying the conditions are presented in 

the following table. 

l m n a b c a+b a+c b+c 2(a+b+c) 
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SET 2 

Four parametric solutions are given by 
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Few numerical example are given below. 

m n g h a b c a+b a+c b+c 2(a+b+c) 
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CONCLUSION 
 To Conclude, One may search for other patterns of integer triples under suitable constraints. 
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