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Abstract:Automatic pest classification is a very important step to protect the agricultural crops against the attack of pest. This 

helps to increase the crop yield by reducing the pests that affect agricultural productivity. In addition, automatic irrigation 

systems aid in the enhancement of agricultural land productivity by computing optimal amount of water required by the plants. 

In this research, we proposed a new technique called IoT-based pest classification and automatic irrigation algorithm (IPCAI) 

using wireless sensor networks. In this technique, sensors like moisture sensor, temperature sensor and camera sensors are 

integrated to Arduino Microcontroller module. The data acquired by these sensors are processed using Raspberry Pi module 

that is connected to the cloud. The proposed IPCAI machine learning algorithm is embedded into the Raspberry Pi module that 

classifies the type of pest and also computes the optimal amount of water required by the crops. Based on the type of pest being 

detected, suitable pesticide is sprayed to the crops to improve the crop yield. This helps in the prevention of spreading of pests. 

It was found that the proposed algorithm classifies 40 different type of pest with very high accuracy. In addition, the proposed 

automatic irrigation system helps to conserve enormous quantities of water. The IoT-module connected to the Raspberry Pi 

helps to upload the data collected by the sensors, pest classification result, and water requirement result to the cloud. From the 

cloud, the data is transmitted to the farmer’s mobile, using which the famers can continuously monitor the crop land from 

remote locations. The proposed pest classification algorithm achieved high specificity of 95.86% with a precision rate of 

96.69%. 
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1. Introduction 

 

Precision agriculture is a concept used for implementing latest tools and techniques to improve the productivity 

of agricultural land. Precision agriculture is integrated with the Internet of Things (IoT) to provide remote control 

over the agricultural land by the famers. Further various wireless sensor networks are implemented for monitoring 

the physical parameter [1]. These physical parameters include temperature, pressure, moisture content, soil pH, 

texture, climatic conditions, fertilizer content, mineral content etc [2]. Based on the values of these parameters, 

various processing is done to make decisions that helps to improve the productivity. Further, it has been estimated 

that by the year 2025, the agricultural IoT market will further expand to around 16-17% [3]. Another main goal of 

precision agriculture is to reduce the environmental impacts. The impacts due to over irrigation, excessive usage 

of pesticides and fertilizers, etc., can be reduced by precision agricultural techniques [4]. The data captured using 

the wireless sensor network are analysed using various techniques like artificial intelligence, machine learning, 

deep learning etc [5]. With the rapid increase in the population there is a huge necessity for the increase in 

agricultural produce [6]. This is essential to satisfy the growing needs of the human population. It has been 

estimated that by the year 2050, the agricultural produce must increase by around 70%. Thus, there is a great 

necessary for the implementation of precision agriculture [7]. Today, with the rapid development of internet 

technology, there is greater connectivity to all parts of the world even to the rural areas. Thus, precision agriculture 

combined with IoT systems can be easily implemented in all the rural regions where there is cultivation [8]. 

Techniques like fog computing, cloud computing are used for the computation of various parameters necessary for 

enhancing the quality of agriculture [9]. Scalability and security are the main advantages of using wireless sensor 

networks for the precision agriculture. In addition, these devices provide long range transmission and low power 

consumption [10]. Cloud computing is actively used for various processing of the data acquired by sensors and is 

performed in the cloud. Since the cloud has high storage capabilities, huge amount of big data can be easily stored 

and processed using the cloud [11]. The farm lands are also monitored using drone cameras and Raspberry Pi 

cameras. The images and videos captured by these devices can be used for various applications like finding the 

presence of animals, pests etc. Based on these findings alert signal is sent to the farmers so that immediate action 

can be taken [12]. The storage and processing capabilities of sensor nodes are increasing rapidly with the 

advancement in the MEMS technology. Thus these sensors are actively deployed in the precision agricultural 

systems [13]. Precision agriculture helps the farmers to increase their profit and simultaneously helps to increase 

the sustainability of agriculture. This helps to increase the reliability and quality of the crops as well. Further, the 

techniques employed in precision agriculture helps in automating various activities that reduces the workload of 

the farmers [14].  
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2. Literature survey 

Garcia et al. [15] presented a survey on IoT-based smart irrigation framework in which irrigation system was 

automated for efficient water conservation. Wireless sensor networks that are employed for the acquisition of 

physical parameters were discussed. Further, the usage of internet technology for the remote monitoring by the 

farmers was also discussed. Sanjeevi et al. [16] proposed a new scheme for precision agriculture and farming using 

IoT and wireless sensor network systems. The main aim was the maximization of throughput and minimization of 

latency. Further, the proposed scheme achieved increased coverage area along with least mean square error and 

enhanced signal to noise ratio. Torky et al. [17] presented a technique for precision agriculture in which blockchain 

was integrated with the precision agricultural discipline. Here, IoT systems were integrated with the blockchain to 

provide immutable and decentralized architecture. This scheme provided transparent and more reliable solutions 

for implementing precision agriculture. Enhanced agricultural productivity was observed in this study. Lin et al. 

[18] proposed a new scheme for fertigation management using IoT. The main objective was to optimise the amount 

of fertilizer to be used in the agricultural land. This scheme attained long term management of fertilizer usage to 

ensure sustainability. The optimization was achieved using a novel genetic hybrid algorithm. This algorithm was 

used to estimate the accurate amount of fertilizer necessary for agriculture. Zervopoulos et al. [19] presented a 

scheme for the synchronization of wireless sensor networks used for precision agriculture. Synchronization is used 

for achieving time correlated measurements. The accuracy of time correlation helped to achieved improved 

precision agriculture results. The clock of the sink node was used in synchronization to achieve effective, low-cost 

synchronized measurements. Popescu et al. [20] designed a scheme for intelligent monitoring to improve crop 

productivity in precision agriculture. Two objectives were focussed namely, the design of unmanned aerial vehicles 

and the implementation of effective algorithms that can be used for the processing of the acquired sensor data. 

Based on these objectives a new model for improving the performance of ecological agriculture was designed and 

implemented. Keswani et al. [21] proposed an irrigation control system using self-driven precision agriculture. 

This system was based on the analysis of big data generated using IoT systems. The scheme was designed such 

that it was weather dependant and zone specific. The moisture content of the soil was detected and based on the 

content of moisture the control system was automated. Singh et al. [22] designed an architecture for precision 

agriculture based on wireless sensor networks in greenhouses. The architecture was designed for enabling the 

transmission of data at low cost over long distances. It was found that physical parameters like temperature and 

humidity have a greater effect over the performance of the wireless sensors. Khanna et al. [23] presented a survey 

on the impact of IoT on precision agriculture. The authors presented the evolution history of IoT, how it can be 

integrated with the precision agricultural systems and its implications over the farmers. The remote control of the 

agricultural land through the smartphones were discussed in detail along with the drawback of the automation 

systems. Sureephong et al. [24] presented a comparison of different types of soil sensors used for the automation 

of irrigation in precision agriculture. Two types of sensors were considered for the analysis that included the 

frequency domain sensors and the resistor-based sensors. The advantages along with the power requirements, 

range, and endurance of these sensors was evaluated and compared. 

 

3. Objective 

The main objective of the proposed system is to classify the type of pest that attacks the crops. This is used for 

the selection of suitable pesticide to destroy the pest variety. The second objective is to identify the exact amount 

of water required by the crops to avoid over irrigation and also for conservation of water. 

 

4. Proposed Methodology 

The proposed methodology includes two main objectives namely, the classification of pest category and the 

adaptive irrigation system. Pest classification aids in the selection of suitable pesticide to kill the pests that 

improves the productivity. Adaptive irrigation helps to select suitable amount of water to water the crops based on 

the temperature and moisture level of the soil. 

 

4.1. IoT-based Pest Classification and Automatic Irrigation System 

The Internet of Things (IoT) is used popularly as a base for the precision agriculture as it helps in remote 

monitoring by the farmers. IoT helps in the data collection and storage at the cloud. From the cloud this data can 

be accessed from any part of the world. This is shown in Figure 1. 
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Figure 1. IoT-based Pest Classification and Automatic Irrigation System 

 

 

Figure 1 illustrates the IoT-based pest classification and automatic irrigation system. In this system, two main 

components are transferred to the cloud. These components include, pest classification result and the water 

requirement level. The pest classification result is obtained using a new Minkowsky Distance based Pest 

Classification (MDBPC) algorithm and the water requirement level is obtained using Temperature and Moisture 

based Adaptive Irrigation (TMBAI) algorithm. These two results are then transmitted to the cloud. The cloud 

transfers these values to the mobile phone of the farmers. Using the mobile phone, the farmers can monitor and 

identify the correct pesticide and water quantity required for irrigation. That is the farmer can decide when to start 

and stop the irrigation process.  

 

 

4.2. Proposed architecture of IoT-based Pest Classification and Automatic Irrigation System 

 

The proposed architecture is based on Arduino microcontroller module. This module is used for acquiring the 

input from the sensors. Three sensors are used namely, the moisture sensor, temperature sensor and the Raspberry 

Pi camera sensor. The microcontroller is activated using a power supply module. 

 
Figure 2. Architecture of IoT-based Pest Classification and Automatic Irrigation System 

 

Figure 2 depicts the architecture of IoT-based Pest Classification and Automatic Irrigation System. The 

moisture sensor is used for identifying the moisture level of the soil. If this level is high, irrigation is not needed. 

However, of it is low, then the soil required water. Similarly, temperature sensor is used for identifying the 

temperature of the soil. If its high, then the soil must be irrigated. The Raspberry Pi camera module is used for 

capturing photos of the plants. The pictures of the pests are also captured by this module. The values of these three 

sensors are acquired by the microcontroller unit. These values are transmitted to the Raspberry Pi unit through 

UART module. This unit is used for processing the data using two novel algorithms. The output of these algorithms 

is used for the activation of motor and selection of pesticide. In addition, the output of these algorithms is also 

displayed in the LCD screen. 
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Figure 3. Pest image cropping 

 

Figure 3 shows the first step used in the processing of pest image. The first step is the cropping of the pest 

image. The image is cropped such that the background leaf portion is removed and only the pest region is focussed. 

This helps in accurate recognition of the type of pest. 

 

4.3. Proposed Minkowsky Distance based Pest Classification (MDBPC) Algorithm. 

The proposed MDBPC algorithm uses pest image training dataset belonging to C classes as the input. Further, 

the test pest image ( , )T m n  is used during the classification. Initially, consider each training pest image ( , )I m n

. First crop the pest region and consider the cropped image ( ', ')cI m n  and resize the cropped image to form

( , )RI s s . Then, partition the resized image to form blocks ( , )b r r . Using the resized partitioned image, for each 

block calculate p HOG features. Later, form feature matrix (FM) using the computed features of all blocks as

( )FM p R , where R is the total number of blocks. Using all images of each class, form dictionary represented 

as ( )D p NR , where N is the number of images in each training class. Using the dictionary compute the pest 

vector
1pPV R  . Similarly, compute the pest vector for the test image as

1pTV R  . Then compute the 

Minkowsky Distance for each class to identify the test class. 

 

Algorithm 1: Proposed Minkowsky Distance based Pest Classification (MDBPC) Algorithm. 

Input: 

Pest image training dataset belonging to C classes. 

The size to image cropping s. 

The size for creation of blocks r. 

The number of HOG features p. 

Test pest image ( , ).T m n  

Output: 

Pest image class c. 

Algorithmic Steps: 

1. Consider each training pest image ( , )I m n . 

2. Crop the pest region and consider the cropped image ( ', ')cI m n . 

3. Resize the cropped image to form ( , )RI s s . 

4. Partition the resized image to form blocks ( , )b r r . 

5. For each block calculate p HOG features. 

6. Form feature matrix (FM) using the computed features of all blocks as ( )FM p R , where R is the total 

number of blocks. 

7. Using all images of each class, form dictionary represented as ( )D p NR , where N is the number of 

images in each training class. 

8. Represent the dictionary as 

( ) ( )D p NR D p Q =         (1) 

9. Compute pest vector 
1pPV R   as 

1

( , )
Q

j

PV D i j
=

=         (2) 

10. Compute the pest vector of each class as  

; 1,2,...,40.kPV j         (3) 

11. Calculate test pest vector for test pest image ( , )T m n  as
1pTV R  . 

12. Compute Minkowsky Distance for each class as 
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= − 
 
       (4) 

13. Test pest class is computes as 

arg min k
k

c MD=         (5) 

 

4.4. Proposed Temperature and Moisture based Adaptive Irrigation (TMBAI) Algorithm. 

The proposed TMBAI algorithm used four sets of training values namely, the temperature sensor training 

values in C to start irrigation
1 2[ , ,..., ]nTs Ts Ts , the temperature sensor training values in C to stop irrigation

' ' '

1 2[ , ,..., ]nTs Ts Ts , the moisture sensor training values in VWC to start irrigation 
1 2[ , ,..., ]nMs Ms Ms  and the 

moisture sensor training values in VWC to stop irrigation
' ' '

1 2[ , ,..., ]nMs Ms Ms . For testing, it uses temperature 

sensor test value 
tTs  and moisture sensor test value

tMs . Initially, average temperature sensor for normal range, 

average temperature sensor for abnormal range, average moisture sensor for normal range and average moisture 

sensor for abnormal range are computed. Using the computed values, temperature and moisture threshold are 

calculated. Finally, irrigation is done when the condition 
1 2||t tTs Ms   is satisfied. 

Algorithm 2: Proposed Temperature and Moisture based Adaptive Irrigation (TMBAI) Algorithm. 

Input: 

Temperature sensor training values in C to start irrigation 
1 2[ , ,..., ]nTs Ts Ts  . 

Temperature sensor training values in C to stop irrigation 
' ' '

1 2[ , ,..., ]nTs Ts Ts  . 

Moisture sensor training values in VWC to start irrigation 
1 2[ , ,..., ]nMs Ms Ms  . 

Moisture sensor training values in VWC to stop irrigation
' ' '

1 2[ , ,..., ]nMs Ms Ms . 

Temperature sensor test value
tTs . 

Moisture sensor test value
tMs . 

Output: 

Start/stop Irrigation 

Algorithmic Steps: 

1. Compute average temperature sensor for normal range as 

1 2, ,..., n
avg

Ts Ts Ts
Ts

n
=        (6)  

2. Compute average temperature sensor for abnormal range as 
' ' '

' 1 2, ,..., n
avg

Ts Ts Ts
Ts

n
=        (7) 

3. Compute average moisture sensor for normal range as 

1 2, ,..., n
avg

Ms Ms Ms
Ms

n
=        (8) 

4. Compute average moisture sensor for abnormal range as 
' ' '

' 1 2, ,..., n
avg

Ms Ms Ms
Ms

n
=        (9) 

5. Calculate the temperature threshold as 

2 ' 2

1

( ) ( )

2

avg avgTs Ts


+
=        (10) 

6. Calculate the moisture threshold as 

2 ' 2

2

( ) ( )

2

avg avgMs Ms


+
=        (11) 

7. Using the test values tTs  and tMs  check 
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if  
1 2||t tTs Ms          (12) 

Start Irrigation 

else 

Stop Irrigation 

end 

end 

 

5. Results and Discussion 

 

5.1. Dataset Used 

To verify the accuracy of the proposed MDBPC algorithm, we have used the NBAIR insect dataset [25] This 

dataset comprises of 40 different pest image classes. These include the common type of pests that affects the 

agricultural yield like sugarcane, cotton, rice maize etc. 

 
Figure 4. Sample images from NBAIR insect dataset 

 

 

5.2. Parameter Settings 

In our research we have used, the value of resized image s s  as 128×128. The size of block was considered 

to be r r  which 12×12 was. The total number of classes C  was chosen to be 40. The number of HOG features 

p was found to be 120. 

 

5.3. Simulation results 

Figure 4 shows some sample images from the NBAIR insect dataset. This shows different categories of pests 

that affects the crop productivity. To verify the excellence of the proposed algorithm, various metrics like precision, 

F-score, time taken, etc., were used in our research. For comparison we have used machine learning algorithms 

like k-nearest neighbour (k-NN), Naïve Bayes (NB), support vector machine (SVM) and sparse representation-

based classification (SRC) algorithm.  

 

Table 1. Variation of classification accuracy 

Classification 

algorithm 

Accuracy (%) 

k-NN 77.56 

NB 81.48 

SVM 85.96 

SRC 89.74 
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MDBPC 95.86 

 

Table 1 shows the comparison of classification accuracy. The k-NN achieves the least accuracy of 77.56%. 

The next highest was achieved by NB that attained 81.48%. The next highest was attained by SVM with a rate of 

85.96%. Then, the SRC attained 89.74%. The proposed MDBPC achieved highest accuracy of 95.86%.  

 

 

Table 2. Variation of specificity 

Classification 

algorithm 

Specificity (%) 

k-NN 78.52 

NB 81.58 

SVM 85.46 

SRC 91.49 

MDBPC 95.86 

 

Table 2 shows the variation of specificity. The proposed scheme achieves highest specificity of 95.86%. The 

next highest was achieved by SRC at a rate of 91.49%. The next highest was attained by SVM with a value of 

85.46%. The least specificity was attained by k-NN with a rate of 78.52% followed by NB at a rate of 81.56%. 

 
Figure 5. Variation of precision 

 

 

Figure 5 shows the variation of precision. It is evident that the precision achieved by the proposed MDBPC 

scheme is maximum with a rate of 96.69%. The least precision is attained by the k-NN algorithm with a rate of 

77.52. Next to the proposed scheme, the highest precision is achieved by the SRC scheme with a rate of 92.56%. 

 
Figure 6. Variation of recall 
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Figure 6 shows the variation of recall. The proposed scheme achieves highest recall of 97.24%. The next highest 

recall was achieved by SRC at a rate of 94.56%. The next highest recall was attained by SVM with a value of 

93.25%. The least recall was attained by k-NN with a rate of 86.58% followed by NB at a rate of 89.45%. 

 
Figure 7. Variation of F-score 

 

Figure 7 shows the comparison of classification F-score. The k-NN achieves the least F-score of 75.69%. The 

next highest F-score was achieved by NB that attained 85.36%. The next highest F-score was attained by SVM 

with a rate of 89.74%. Then, the SRC attained 93.25%. The proposed MDBPC achieved highest F-score of 97.58%.  

 

 

Table 3. Variation of classification time 

Classification 

algorithm 

Time for 

classification (ms) 

k-NN 5.69 

NB 4.86 

SVM 4.19 

SRC 3.35 

MDBPC 1.49 

 

Table 3 shows the variation of classification time. The proposed scheme achieves least classification time of 

1.49ms. The next least classification time was achieved by SRC at a time of 3.35ms. The next least classification 

time was attained by SVM with a value of 4.19ms. The highest classification time was attained by k-NN with a 

classification time of 5.69ms followed by NB with a classification time of 4.86ms. 

 
Figure 8. Variation of water consumption 

 

 

Figure 8 shows the variation of water consumption for three different cases, namely, the scheduled irrigation 

system, automatic irrigation system and the proposed TMBAI scheme. It can be seen that the scheduled irrigation 

consumes 7563l of water over a period of 1 week. For the same duration, the automatic irrigation used 6942l of 

water. Whereas, the proposed TMBAI scheme uses just 469l of water for irrigation. Thus, enormous amount of 

water is conserved using the proposed irrigation scheme, compared to the scheduled and automatic irrigation. The 

reduction in the amount of water helps to reduce huge volume of water when used for a long period of time. In this 
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way, the proposed system produces increased agricultural productivity since excessive water more than the 

requirement also causes water clogging. 

 

6. Advantages of the proposed methodology 

The main advantage of the proposed Minkowsky Distance based Pest Classification algorithm is the accurate 

classification of pest category with very high accuracy. The second advantage is the excellent water level 

requirement prediction performance by the proposed Temperature and Moisture based Adaptive Irrigation 

algorithm that uses the temperature and moisture levels to detect water level.  

 

7. Disadvantages of the proposed methodology 

The main disadvantage of the proposed scheme is the computational complexity of the proposed algorithms. 

Further, another drawback is the collection of training data for training the systems. For instance, in pest 

classification enormous amount of pest images are required for training the system prior to pest identification 

. 

8. Conclusion 

A new scheme for precision agriculture is proposed in this research. The proposed scheme uses the data from 

three sensors namely, Raspberry Pi module, temperature and pressure sensor to identify the water requirement and 

the pest category. The pest classification result is obtained using a new Minkowsky Distance based Pest 

Classification (MDBPC) algorithm and the water requirement level is obtained using Temperature and Moisture 

based Adaptive Irrigation (TMBAI) algorithm. These two results are then transmitted to the cloud. The cloud 

transfers these values to the mobile phone of the farmers, using which the farmers can monitor and identify the 

correct pesticide and water quantity required for irrigation.  

 

To verify the performance of the proposed pest classification algorithm we have used the pest images from the 

NBAIR insect dataset. The proposed Minkowsky Distance based Pest Classification algorithm was validated using 

various classification metrics and it attained a high recall of 97.24%, F-score of 97.58 and accuracy of 95.86%. In 

addition, the classification time is very minimum around 1.49ms. Further, the proposed Temperature and Moisture 

based Adaptive Irrigation algorithm attained minimum water requirement of 4698l for irrigation over a period of 

1 week. Thus, the credibility of the proposed algorithms was proved using quantitative analysis. 
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