Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2119-2123

Research Article

ON ib - continuous function In supra topological space
Hiba Omar Mousa AL-TIKRITY

Department of mathmetics. College of education for women. University of Tikrit, Tikrit . Irag.
hom_34 @ tu.edu.iq

Avrticle History Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published
online: 28 April 2021

Abstract

In this paper, we introduce a new class of sets and functions between topological spaces called supra ib- open sets and supra
ib- continuous functions, respectively. We introduce the concepts of supra ib-open functions and supra ib-closed functions and
investigate several properties of them.
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Introduction

In 1983, A.S mashhour [6] introduced the supra topological spaces. In 1996, D. Andrijevic, [2]? introduced
and studied aclass of generalized open sets in a topological space called b-open sets.This class of sets contained in
the class of B-open sets [1] and contains all semi open sets [4] and all pre-open sets [5]. In 2010, O,R. sayed and
Takashi Noiri [7] introduce the concepts of supra b-open sets and supra b-continuous maps.In 2011, s.w Askander
[3] introduced the concept of i-open set, respectively. Now, we introduce the concepts of supra ib-open sets and
study some basic properties of them, Also, we introduce the concepts of supra ib-continuous functions, supra ib-
open functions and supra ib-closed functions and investigate several properties for these classes of functions.
Preliminaries

Throughout this paper (X,T), (Y,s) and (Z,V) means topological spaces. For a subset A of X, the interior and
closure of A are denoted by int (A) and cl (A) respectively. A sub collection Mc 2% is called a supra topology [6]
on X ifg, Xe M and M is closed under arbitrary union. (X,M) is called a supra topological space. The elements of
M are said to be supra open sets in (X,M) and the complement of a supra open set is called a supra closed set. The
supra closure of a set A denoted by clI™ (A), is the intersection of supra closed sets including. A. The supra interior
of a set A, denoted by Int™ (A), is the union of supra open sets included in A. The supra topology M on X is
associated with the topology T if T=M. Now before we study the basic properties of supra ib-open sets we recall
the following definitions.
Definition 2. 1 [3]: A subset A of a topological space (X,T) is called
i-open set if there exists open set (0% @, X) such that A C cl (A N o). The complement of an i-open set is called i-
closed set.
Definition 2. 2[6]:Let (X,M) be a supra topological space. A set A is called a supra semi —open set if A C cI™ (int™
(A) .
The complement of supra semi- open set is called supra semi-closed set.
Definition 2. 3[7]: let (X,M) be a supra topological space. A set A is called a supra b-open sets if Accl™ (Int™ (A)
U int™ (cI™(A)).
The complement of a supra b-open set is called a supra b- closed set.

1- Supra ib-open sets

In this section, we introduce a new class of generalized open sets called supra ib-open sets and study some of
their properties.

Definition 3.1: let (X,M) be a supra topological space. A set A is called a supra ib-open set if there exists supra b-
open set (o#0,X)such that A C cl (Ano). The complement of supra ib-open set is called a supra ib- closed set.

The class of all ib- open set in (X,M) is denoted by supra ib O (X,M)

Definition 3.2: Let A be a subset of a supra topological space (X,M) then

1- The intersection of all supra ib-closed sets containing A is called supra ib-closure of A, denoted by cI|Z)l
(A). -
2- The union of all supra ib-open sets of X containing in A is called supra ib-interior denoted by int|ib (A).

Remark 3.3 : It is clear that

1- @, Xisasupraib-open set.
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2- Int|§2 (A) is a supra ib-open set.
3- cl|?g (A). is a supra ib-closed set.
4- AC cl|:Z (A); and A= cI|ZZ (A) Iff A'is a supra ib-closed set
5- Int|?g (A) CA; and intm; (A) = A iff A is a supra ib-open set
6- X-— |nt|LTZ (A) = c||:Z (X-A)
7- X- cl|$ (A) = Int|$ (X-A)
8- Intm; (A) U Intm)l (B) C Intl?; (AUB)
9- |:’g (AnB) Ccl |:’g (A)n cl |:’; (B)
Theorem 3.4: Every supra — open set is supra ib- open set.
Proof : It is obvious.
Theorem 3.5: Every supra b- open set is supra ib- open set.
Proof: let (X,M) be a supra topological space, A #= X, @ be a supra b-open set in (X,M).
Since ACcl (A), ANA=A
Then A Ccl (AnA) when A # @, X, (A a supra b-open set)
Then A is a supra ib-open set.
The following example show that the converse of theorem 3. 5 are not true in general.
Example 3.6: let (X,M) be a supra topological space
Where X={1,2,3} and M= {@, X, {1,2}, {2,3}} then {3} is a supra ib-open set, but is not supra b-open set.
Theorem 3.7: Every supra semi-open set is supra ib-open set.
Proof:
Let A be a supra semi- open set in (X,M) then A C cI™ (Int™ (A))
Hence A Ccl™ (Int™ (A)) U int™ (cI™ (A)) and A is supra b-open set
Then by (theorem 3.5) A is a supra ib-open set.
The following example show that the converse of theorem 3.7 are not true in general.

Example 3.8: let (X,M) be a supra topological space where X= {a,b,c} and M = {@, X, {a}, {a,b}, {b,c}}, {a,c}
is a supra ib- open set , but is not supra semi — open set.

4-Supra ib-continuous function

As an application of supra ib- open set, we introduce a new type of continuous function called a supra ib-
continuous function and obtain some of their properties and characterizations.

Definition 4.1: let (X,T ) and (y,s) be two topological spaces and M be an associated supra topology with T . A
function F: (X, T) - (y,6) is called a supra ib-continuous function if the inverse image of each open setiny is a
supra ib-open set in X.

Theorem 4.2: Every continuous function is supra ib-continuous function.

Proof: Let F: (X, T) —(y,s) be continuous function and A is open set in y. then F (A) is an open set in X. since
M is associated with T , then T C M therefore F* (A) is a supra open set in X and it is a supra ib-open set in X (by

theorem 3.4). Hence F is supra ib-continuous function.

The following example show that the converse of (theorem 4.2) are not true in general.
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Example 4.3: let X={1,2,3}and T = {@,X,{1,2}} be a topology on X. The supra topology M is defined as follows
M ={@,X,{1}.{1,2}} let F: (X, T) - (X, T) be a function defined as follows: F (1) =1, F (2) =3 F (3) =2 the inverse
image of the open set {1,2} is {1,3} which is not an open set but it is a supra ib-open set. Then F is supra ib-
continuous function but is not continuous function.

Theorem 4.4: Every supra semi — continuous function is supra ib-continuous function.

Proof: Let F: (X, T) — (y,s) be supra semi- continuous function and A is open set in'y .Then F* (A) is supra semi-
open set in X. since every supra semi- open set is supra ib- open set (by theorem 3.7) then F* (A) is supra ib-open
set in X. Hence F is supra ib —continuous function.

The following example show that the converse of theorem 4.4 are not true in general.

Example 4.5: Let X = {1,2,3,4} and T={0, X, {1,3}, {2,4}} be a topology on X, the supra topology M is defined
as follows M = {9, X, {1,3},{2,4},{1,3,4}}, Y = {x,y,z} and 6= {@,Y,{z}} be a topology on Y. let F: (X, T)
—(Y,6) be a function defined as follows F (1)=y, F (2)=F (3) = z, F (4) = x,

The inverse image of the open set {z} is {2,3} which is a supra ib-open set but is not supra semi-open set ,then F
is supra ib- continuous function but is not supra semi — continuous function.

Theorem 4.6: Every supra b-continuous function is supra ib- continuous function.

Proof: Let F: (X, T) — (y,s) be supra b- continuous function and A is open set in y. then F1 (A) is a supra b-open
set in X, since every supra b —open set is a supra ib-open set (by theorem 3.5) then F (A) is supra ib- open set in
X. Hence F is supra ib- continuous function.

The following example show that the converse of theorem 4.6 are not true in general.

Example 4.7: Let X = {1,2,3} and T ={0, X, {1}, {1,2}} be a topology on X the supra topology M is defined as
follows M = { ) \ X, {1}, {1,2} , {2,3}}
Y={x,y,z} and 6={@, Y ,{x}} be a topology on Y, let F: (X, T) — (Y,s) be a function defined as follows F (1) =
F (2) =z, F (3)=x. The inverse image of the open set {x} is {3} which is a supra ib- open set but is not a supra b-
open set. Then F is supra ib- continuous function but is not supra b-continuous function.

Theorem 4.8: let (X,T) and (Y,s) be two topological spaces and M be an associated supra topology with T. Let F:
(X, T ) - (Y,s) then F is a supra
ib- continuous function if and only if the inverse image of a closed set in Y is a supra ib-closed set in X.

Proof: LetF: (X, T) - (Y,s) be asupraib- continuous function «let A be a closed set in Y« then A®is an open
set in Y« then F1 (A°) is a supra ib- open set« It follows that F* (A) is a supra ib- closed set in X.

Theorem 4.9: let (X, T) and (Y,s) be two topological spaces , M and V be the associated supra topologies with T
and e, respectively. Then F:(X, T) — (Y,s) is a supra ib- continuous function, if one of the following holds:

1- F! (int|l.1;) (B)) Cint (F*(B)) forevery setBin Y.

2- CI(FY(B)) CF! (c||l?l’) (B)) for every set Bin Y.

3- F(cl(A)C cI|Z)l (F(A)) for every set Ain X.
Proof : let B be any open set of Y. if condition (1) is satisfied, then

FL(int :;) (B)) Cint (F* (B)), we get F}(B) C int (F*(B)). Therefore F* (B) is an open set. Every open set is supra
ib- open set. Hence F is a supra ib- continuous function.

If condition (2) is satisfied, then by theorem (4.8) we can easily prove that F is a supra ib - continuous function.
Let condition (3) be satisfied and B be any open set of Y. Then F* (B) is a set in X and F (cl (F*(B)) Ccl :Z (F(F

(B)). This implies F (cl F* (B)) Ccl :Z (B). This is nothing but condition (2). Hence F is a supra ib- continuous
function.

5-Supra ib- open functions and supra ib-closed functions

Definition 5.1: A function F: (X, T) — (Z,V) is called a supra ib- open (resp., supra ib closed) if the image of each
open (resp. closed) set in X is supra ib- open (resp., supra ib- closed) set in (Z,V).
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Theorem 5.2: A function F: (X, T) — (Z,V) is supra ib-open function if and only if F(in t (A)) C int|l.1;(F(A)) for
each set Aiin X.

Proof: suppose that F is a supra ib-open function. Since int (A) C A then
F (int (A) C F (A).By hypothesis;, F (int (A)) is a supra ib- open set and
int | 5) (F(A)) is the largest supra ib-open set contained in  F(A). Hence

F(int (A)) C int|l.’;(F(A)).

Conversely, suppose A is an open set in X then F(int(A)) QintliZ(F(A)).Since int (A) = A, then F(A) C int|l.1;
(F(A)).Therefore F(A) is a supra ib- open set in (Z,V) and F is a supra ib- open function.

Theorem 5.3: A function F: (X,T) — (Z,V) is supra ib- closed if and only if cl|l.1; (F(A)) C F (cl (A)) for each set
Ain X,

Proof: suppose F is a supra ib-closed function. Since for each set A in X, cl (A) is closed set in x, then F (cl(A)) is
a supra ib-closed set in Z. Also, since

F (A) C F(cI(A)), then cl|;l])(F(A)) CF (cl(A)). conversely, let A be a closed set in x. Since Cl |5) (F(A)) is the
smallest supra ib-closed set contining F (A), then F(A) gcl|;; (F(A)) CF(cl(A) = F(A). thus, F(A)= cl|i12 F(A)
Hence, F(A) is a supra ib-closed set in Z. Therefore, f is a supra ib-closed function.

Theorem 5.4: let (XT), (Y,6) and Z,V) be  three  topological space  and
F:(X,T) =(Y,s) and g: (Y,s) =(Z,V) be two functions, then.

1- If goF is supra ib-open and F is continuous surjective, then g is supra ib- open function.
2- If goF is open and g is supra ib- continuous injective, then F is supra ib-open function.

Proof:

1- Let A be an open set in Y. then F1 (A) is an open set in X. since goF is a supra ib-open function, then
(gof) (FX(A)) = g (F(F*(A)) = g (A) (because f is surjective) is a supra ib- open set in Z. therefore, g is
supra ib-open function.

2- Let A be an open set in X, then g (F(A) is an open set in Z, therefore,
g? (g F(A)) = F(A) (because g is injective) is a supra ib-open set in Y. Hence, F is a supra ib-open
function.

Theorem 5.5: let X, T) and (y,6) be two topological spaces and
F: (X,T) = (Y,6) be a bijective function, then the following are equivalent:

1- Fis asupra ib-open function.
2- Fisasupraib-closed function.
3- Flisasupra ib-continuous function.

Proof:

(1) =(2): let B is a closed set in X. Then X-B is an open set in X and by (1) F (X-B) is a supra ib-open set in
Y. since F is bijective,
then F (X-B) = Y-F(B). Hence, F (B) is a supra ib- closed set in Y. Therefore, F is a supra ib- closed function.

(2) — (3): let F is a supra ib- closed function and B a closed set in x. since F is bijective then (F)?* (B) = F
(B) which is a supra ib-closed set in Y. therefore, by theorem (4.8), F is a supra ib- continuous function.

(3) —(1): let A be an open set in X. since F is a supra ib-continuous function, then (F1) (A) = F (A) is a
supra ib-open set in Y. Hence, F is a supra ib-open function.
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