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Abstract: Statistical analysis of energy levels is carried out. The density of surface states of MIS structures 

based on silicon is investigated. A mathematical model is constructed for the temperature dependence of the 

spectrum of the density of surface states for a wide energy range. A formula is derived for the density of surface 

states as a function of temperature. The thermal contributions of the expanded bands to the band gap of the 

semiconductor are taken into account. The resulting formula allows one to determine the density of energy states 

in the forbidden band in an explicit form, without taking into account the influence of the broadening of the 

allowed bands. This improves the accuracy of determining the concentration of impurities and defects in silicon. 
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Introduction 

When modeling the electrical properties of MIS structures and devices based on them, it is assumed 

that the do pant is uniformly distributed. However, such an approximation is not always correct, since the 

redistribution of impurity atoms is possible as a result of various energetic effects on semiconductor structures 

during their formation. In addition, the localized states can be affected by the thermal broadening of the allowed 

bands, which are estimated at room temperature. Thus, taking into account the well-known distribution law of 

electrically active impurities when calculating the density of surface states is an urgent task and will make it 

possible to predict the parameters and characteristics of semiconductor devices based on MIS structures. A 

certain spectrum of the density of surface states carries information about the energy location of the impurity 

level in the band gap of the semiconductor. [1]due to tail fusion wider energy levels of permitted zones and 

temperature wider the formation of localized levels. 

 Modeling  of the temperature dependence of the density of surface states for a wide energy range, 

which includes the allowed and forbidden bands of a semiconductor, it becomes possible to obtain more 

accurate information on the nature of localized states at the semiconductor - [2]. 

Temperature-dependent delta function to determine the energy level  

 The resulting function,   
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explain the ideal model describing the process of ionization from the energy level E0 [1]. The model is as 

follows (Fig. 1): during time t all electrons with energies above E1 were generated in the ZP, the rest of the 

electrons with energies below E1 remain in their places. 

 
Fig. 1. Ideal model representation 
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By this, formula (1) of the ideal model is a step function. In work [2,3] ( )E  as determining the lifetime of an 

electron which is strongly dependent on the energy E is represented in the form  
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Here: 0 electron lifetime, k-Boltzmann constant, T-absolute temperature. 

As a result, the following expression was obtained from (1.22) and (2.1): 
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In this formula, the expression 
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kT represents energy. Let us denote it by the new variable E0. 
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(4) represents the energy of an electron, which electrons with energies greater than E0 have been ionized. In this 

expression, we note the peculiarity that E0 depends on the temperature and on the generation time. If we 

consider time as an ideal parameter, then it will be possible for each value of the [3]. In other words, (4) can be 

considered as 
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Now formula (3) can be represented as 
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Where E0 is the electron energy independent of temperature, which electrons with energies greater than E0 were 

ionized, E-electron energy, which levels with energies greater than E0 filled (Fig. 1), k-Boltzmann constant, T-

absolute temperature. [4] 

 The mathematically derivative of a step function with respect to its argument gives the delta function. 

The well-known in statistical physics the Dirac Delta-function determines the presence of an energy level [4]. In 

the same way, the derivative of function (6) with respect to energy Е0 
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is a delta function for 0→T [2,3,5] and determines the presence of a level from which an electron with 

energy E0 can be ionized or the presence of a level with energy E at which an [5]. Delta functions (7) at 

different temperatures are shown in Fig. 2. 
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Fig. 2. Delta functions ),,( 0

* TЕЕ  at different temperatures 

Model of the thermodynamic density of surface states 

Materials and Methods  

On the surface, the following expressions are usually used to determine the concentration of electrons at 

the edges of the bands: 
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where the Fermi - Dirac function ( )TEf , determining the probability that the electron will be in a quantum 

state with energy E is [6]: 
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As is known, when calculating integral (11), as a result of the change of variables, the integrand is transformed 

into a delta function, the effective density of states is transformed into 
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and in this case the integral is equal to one.[7] But function (6) differentiated with respect 

to 0E  also becomes  is a function and therefore in (10) and (11) one can replace (12) by function (6). Then the 

expressions for the concentrations will take the following form: 
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Where, for the surface 
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Here, the parameter E0, determined from (4), can be called an energy parameter of the Fermi energy 

type, which now depends on time and temperature. Formula (5), as well as (12), determines the probability of 

filling the level with energy E, but this probability depends in this case also on the value 0E ... The parameter E0 

depends on the T-temperature and t-time variables[8]. And when selecting for a given T, corresponding to t, the 
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value of E0 becomes, as it were, independent of the temperature and becomes, in terms of this independent 

variable, it is possible to very simply differentiate (11) and (12): 
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Here is the integrand depending on 0E  in (7) is defined by a function that for 0→T becomes  -function. 

Then the formula for [9]of states in the conduction and valence bands will have the following form: 
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Generalizing formulas (16), (17) and taking into account the fact that there are no energy levels in the 

band gap, we can write a generalized expression for the combined density of states for the valence band, band 

gap and conduction band[10]. 
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(18) 

Figure 4 shows the righteous graphs (18) for different temperatures. The figure shows how the formula takes 

into account the temperature broadening of the energy bands. 

 
Figure: 3 (Figure 3).graphs (18) for different temperatures 

PPP formula for generalized energy bands (Results) 

The resulting integral formula (eighteen)difficult to compute analytically. For convenience, we will use 

an approximation[11]. To begin with, in (7) the exponential function in the exponent to the second power and 

we get the following: 
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Now we can calculate the integral for the valence band using the analytical method. After calculations, we get 

the following expression: 
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Similarly for the conduction band  
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Using formula (23), one can calculate the density of energy states in a wide energy range, including the valence 

band, the forbidden band, and the conduction band. A feature of the model is the preservation of the temperature 

dependence of statistical functions, which help determine the contribution of thermal broadening to the spectrum 

of the density of energy states[11]. The proposed method allows one to determine discrete energy levels created 

by impurities with greater accuracy over a wide energy range.[12] 

Results and Discussions 

The PS model has been studied in many literatures. In the particular case of an isotropic quadratic 

dispersion law, the density of energy states for energies lower than E can be determined as follows [6-9]: 

( ) 2
1

2

*

2

2

4

1
)( c

c
c EE

m
ENs −








=


   (25) 

( ) 2
1

2

*

2

2

4

1
)( EE

m
ENs v

v
v −








=


   (26) 



Temperature Dependence Of Energy States And Band Gap Broadening 

58 

This expression does not take into account the temperature broadening of the energy levels. Formula 

(25) and (26) are obtained from (11) and (12) due to the property of the delta function. 

Because ( ) 10 =−


−

dEEE ... In the resulting model, this is achieved when 0→T , where (7) and (19) 

become delta functions. To take into account the temperature dependence of the TS, we use (25) and (26). Then 

we get the spectrum of the density of energy states depending on temperature.[13] Fig. 6 (a, b, c, d) shows 

comparative spectra of PS in the valence band (a, b) and in the ZP (c, d) at low and high temperatures. 
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Figure: 6 density of states spectrum 

Comparisons show that the developed model describes the spectrum of the density of energy states at 

temperatures close to absolute zero, where the lines coincide. This is because at low temperatures function (7) 

and (19) turns into a delta function [14]. 

The well-known Kane model is often used to describe non-parabolic zone types [10-11]: 

For the permitted zones separately and we get for the air intake: 0E  
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and for the RFP: EgE   
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 Model Kane for the indicated semiconductors where Eg <0.5 eV describes a nonparabolic spectrum and 

for wide-gap semiconductors where Eg> 2.5 eV describes a parabolic spectrum. The developed model (23) and 

(24) show the full spectrum of the density of energy states. Figure 7 (a, b) shows comparative spectra of the 

density of energy states in the valence band (a, b) for non-parabolic and in the ZP (c, d) for non-parabolic types 

of bands.[15] 

Comparisons show that the developed model describes the spectrum of the density of energy states 

comparable to the Kane model. The superiority of the proposed model lies in the fact that there is 

 

 

and b 

Figure: 7. Comparisons with Kane's model 

the possibility of taking into account the contribution of temperature action to the spectra of the density of 

energy states in the ZP and in the valence band The resulting expression (23) is special in that the densities of 

state can be calculated taking into account the temperature T and the energy of the level E0 and allow one to 

obtain the spectrum of the temperature dependence of the PS in the ZP, VZ and the forbidden zone.[16] 

This is a model to approach a perfectly pure semiconductor where no energy levels exist in the band 

gap. This formula can be used to calculate the density of energy states, in a wide energy range including the 

valence band, the forbidden band and the ZP. A feature of the model is the preservation of the temperature 

dependence of statistical functions. They help to determine the contribution of thermal broadening to the 

spectrum of the density of energy states. The model can determine the doping contribution to the spectrum 

change. A high concentration of impurities can significantly change the entire spectrum of the density of energy 

states[17]. In general, experiments on the determination of impurities are carried out at high temperatures. 

Determines discrete levels only possible at low temperatures. 

Conclusion 

The resulting formula (23) describes the spectrum of the density of the surface state as a function of 

temperature. Using the formula, it becomes possible to calculate the thermal broadening of the expanded zones. 

This makes it possible to determine the impurity concentration taking into account the broadening of the 

expanded bands from the data obtained by the experiment, which was carried out at a high temperature. The 

resulting model of the density of the surface state takes into account the effect of temperature and is in good 

agreement with classical theoretical and experimental results. (more than 300K). 
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