
Turkish Journal of Computer and Mathematics Education Vol.12 No. 9 (2021), 2945-2956

Research Article

2945

Reducing Workload On Real-Time Database Using Machine Learning Based

Transaction Scheduling

Ashok Kumar Panda 1* Jagannath Patel2

1* Department of Computer Science

Utkal University

Bhubaneswar-751004

Email: ashopanda@gmail.com
2 PG Department of Mathematics

Utkal University

Email: jpatelmath@yahoo.co.in

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 20 April 2021

Abstract: Reading and writing to relational databases requires accessing multiple tables for constraint & quality

checks. In order to perform these checks, databases use transaction management, wherein index-based checking

& validation is done, and data is committed to the database only when these checks are satisfied. In case of any

validation violations, databases need to either fall back to previous data state, or activate violation rule engine and

resolve the underlying conflicts. Performing these tasks for limited size databases doesn’t compromise on system

performance, but as database sizes increase, the number of checks increase exponentially, thereby reducing

database system performance. In order to reduce the effect of database size on transaction scheduling

performance, this work proposes a genetic algorithm inspired algorithm, which takes into consideration multiple

performance parameters in order to optimize transaction performance. The underlying system is deployed on

multiple relational databases, and a performance improvement of 10% in terms of scheduled transaction execution

delay is observed. This performance is compared with recently proposed state-of-the-art systems, and it is

observed that the proposed model is able to reduce execution delay by 5% across multiple implementations.

Keywords: Database, real-time, transaction, scheduling, machine, learning

1. Introduction

Transaction based scheduling requires databases to be checked on multiple indexing levels on a per transaction

basis. These indexing levels include primary key checks, foreign key checks, cascading index checks, views

update checks, etc. In order to effectively perform transaction-based scheduling, a set of mutually dependent

operations must be performed effectively and in tandem. These operations are related to sequential query

processing and are executed in the following order to obtain effective transaction scheduling performance,

 Evaluate the number of tables being evaluated by the query.

 Evaluate number of individual fields being evaluated from each of the table.

 Find out internal aggregate operations being carried out on each of the fields.

 Segregate the tables into reading & writing tables.

 Ensure atomicity of the transaction via these steps, and if the transaction is not atomic, then re-evaluate these

steps.

 Allocate sufficient buffer space in order to ensure recoverability of the transactions.

 Provide these transactions to a scheduler in order to ensure serializability of queries to re-order requests.

 Lock the tables and execute the separated queries.

 Execute queries on the locked tables, and evaluate its correctness.

 In case of any errors, rollback transactions from the buffers and re-evaluate query division process.

 Continue this process, till the entire transaction is executed.

Based on these steps, each transaction scheduler can be in one of 5 states, which are active (when the transaction

execution is in process), partially committed (when some transactions have been successfully executed), failed

(when the transaction is not getting executed), committed (when the transaction is normally and actively getting

executed) and aborted (when user aborts the transaction). State machine for transition between each of these stages

must be effectively and clearly defined, so that the overall process of transaction scheduling can be executed with

utmost efficiency. The state diagram for a typical transaction management system can be observed from figure 1,

mailto:ashopanda@gmail.com
mailto:jpatelmath@yahoo.co.in

Reducing Workload On Real-Time Database Using Machine Learning Based Transaction

Scheduling

2946

wherein all these states can be seen. Based on the transition between these stages, different types of transaction

schedulers are defined by researchers. These schedulers include,

 Serial schedulers, wherein all the queries in a transaction are executed in serial order.

 Conflict serializable schedulers, wherein serial schedulers are used in case of conflicts during execution.

 View serializable schedulers, wherein views are managed using serial execution.

 Cascading schedulers, wherein the scheduler tries to resolve and recover data using cascaded operations.

 Cascade-less schedulers, wherein parallel execution is preferred for recovering data.

 Strict schedulers, wherein scheduling is done based on strict rules, that might affect performance but improve

execution efficiency.

 Non-recoverable schedulers, wherein any data lost during scheduling cannot be recovered, and transaction is

rolled back.

Figure 1. Different stages of a transaction execution system

Depending upon these scheduler types and their different states, a large variety of scheduling architectures are

proposed by researchers over the past years. Thus, the next section reviews some of the recently proposed state-

of-the-art models for transaction scheduling. This is followed by the proposed Genetic Algorithm based Model

for effective transaction scheduling in the network, and its performance evaluation w.r.t. the reviewed models.

Finally, this work concludes with some interesting observations about the proposed model, and recommends

methods to improve their performance in terms of different performance metrics.

Ashok Kumar Panda 1* Jagannath Patel2

2947

2. Literature Review

Due to the wide applicability of database deployments, relational database systems are used in every business

operation irrespective of its size. Because of this wide application, unique transactional scenarios come up, which

include, updating the same record at multiple different tables; when one table update is mutually dependent on

others, extraction of data from multiple tables conditionally; based on the data contents of internal queried tables,

etc. In order to handle such situations, hybrid transactional models are devised by researchers. One such model

can be observed from [1], wherein a co-scheduling architecture is defined. This architecture uses a combination

of efficient partitioning with hierarchical processing in order to devise an efficient partitioned scheduling model

for hybrid transactions. This model has high acceptance ratio due to effective use of upper demand bound

functions during transaction processing. It uses deadline-based dependency resolution of transactions in order to

improve the transaction acceptance ratio by 15% when compared with other methods. The performance of this

model can be improved via addition of load balancing architectures as suggested by [2] and [3], wherein firefly

and grey wolf architectures are proposed. These architectures are based on stochastic modelling of the queries,

and assist in improving overall execution performance using learn-once-use-continuously architecture. An

application of these models on database systems via the use of Coloured Petri Nets is proposed in [4], wherein

reliability inspired load balancing is performed by the system via active Markov Model (MM). The Coloured Petri

Nets architecture can be observed from figure 2, wherein each query is marked as a work job, and is divided into

sub work jobs. Each of these sub work jobs are given to data generators, schedulers, global resource management

blocks, local resource management blocks and transaction managers in order to improve task modularity. Due to

this, the overall transaction scheduling efficiency is improved by 15% when compared to a non CPN model.

Figure 2. Coloured Petri Nets (CPN) for effective task scheduling [4]

This performance improvement is obtained due to the deadline aware nature of CPNs, which can be represented

using equation 1, wherein reliability of query (𝑅𝑞𝑢𝑒𝑟𝑦) is formulated.

𝑅𝑞𝑢𝑒𝑟𝑦 = exp (−𝜕 ∗ 𝐷 ∗ [
1

𝜑
+ (∑

𝑐𝑝𝑖

𝑖!
+

𝑐𝑝𝑐

𝑐! (1 − 𝑝)

𝑐−1

𝑖=0

)

−1

∗
𝑝 ∗ 𝑐𝑝𝑐

𝑐! ∗ (𝑐 ∗ 𝜕 − 𝜔)(1 − 𝑝)
] … (1)

Where, 𝜕 is transaction arrival rate, ‘D’ is deadline of transaction, 𝜑 is transaction delay, ‘cp’ is transaction

complexity, ‘c’ is cost of transaction, ‘p’ is probability of occurrence of transaction, 𝜔 is difference between

different arrival rates of the transaction. From this factor, it can be observed that the reliability of query is inversely

proportional to query delay, which is reduced by modularizing the query, thereby increasing it. These transactions

can be verified using complex metrics like conflict detection rate, freeness ratios, conflict resolution rate, etc. A

survey of these factors can be observed in [5], wherein conflict detection and resolution rate are considered as

Reducing Workload On Real-Time Database Using Machine Learning Based Transaction

Scheduling

2948

primary metrics for performance improvement of the transaction scheduling systems. An example of such a high

performance transaction management system that uses in-memory computations can be observed from [6],

wherein online transaction processing (OLTP) operations are performed with high efficiency on database

management systems (DBMS). In order to do this task, the system proposes different policies for conflict

resolution, which include count & fraction, literal & canonical; which deals in fine grained processing and single

& all; wherein different policies are applied to single transactions and multiple transactions. Due to these policies,

the system’s flexibility is improved, thereby making the system capable of adding multiple features during its

internal performance optimization. The system is extended in [7], wherein different algorithms like weighted

graph colouring, colouring-based schedule, complete graph scheduling and hypercube & related graphs are

evaluated. These algorithms are applied to distributed transactional memory, and are combined together to form

a distributed bucket algorithm. This algorithm is able to improve in memory performance by 18% when compared

to individual approaches.

Approaches like neural networks for pattern analysis can also be used for transaction scheduling because of their

pattern analysis capabilities. The work in [8] suggests use of radial basis function (RBF) based neural network

design, that aims at reducing delay needed for transaction execution, and improve transaction dependency

resolution using the following equation,

𝑅(𝑞𝑖 , 𝑞𝑗) = exp (−
1

2 ∗ 𝜕2
∗ |𝑑𝑞𝑖

− 𝑑𝑞𝑗
|

2

) … (2)

Where, ‘q’ represents given query, 𝜕 is variance in the query execution cost which is formulated in equation 3,

and ‘d’ is the dependency level of query on sub queries.

𝜕 =
1

𝑃
∗ ∑|𝑑𝑖 − 𝑞𝑖 ∗ 𝑐𝑖|

𝑚

𝑖=1

… (3)

Where, ‘P’ is probability of occurrence of the query, ‘c’ is query cost, and ‘m’ is number of sub-queries for the

given input query. Due to the use of this error reduction model, reliability of query execution improves by 8%,

while the delay of subsequent execution reduces by 5%, which improves overall system performance. This

performance can be further improved by clustering the queries based on location of their application, thereby

executing queries which require immediate results, while holding queries that require deferred results. Work in

[9] and [10] propose such models, wherein query performance-based clustering is done in order to improve overall

system performance. This performance can also be improved via use of hybrid execution environments like the

ones proposed in [11] and [12], wherein load balancing models like Shortest job scheduling algorithm, Throttled

algorithm, Genetic Algorithm (GA), Modified Active Monitoring Load Balancer (MAMLB), etc. are defined and

their combinations are studied for improving query execution performance. A survey of these algorithms suggests

that transaction scheduling models that use load balancing can be broadly divided into static and dynamic models,

and a list of these individual models can be observed from figure 3, wherein models like opportunistic load

balancing (OLB) & Min–Min load balancing (LBMM) are defined. Out of these models the Genetic Algorithm

(GA) and Ant Colony Optimization (ACO) provide optimum performance due to their stochastic properties. Both

these techniques propose different fitness functions, all of which are aimed at reducing delay and increase

reliability of query processing. A sample GA fitness function can be formulated using equation 4, wherein delay

and reliability are considered for improved query execution performance.

𝐹(𝑞) =
1

∈∗ 𝑅𝑞 + 𝜕 ∗ 𝐷𝑞

… (4)

Where, ‘F’ is the fitness, ‘R’ is query reliability, ‘D’ is query delay, ∈ is reliability scaling factor, and 𝜕 is delay

scaling factor, which are used to normalize the fitness value. Performance of these models can be improved via

deploying them over the cloud with optimum load balancing models as discussed in [13] and [14]. Here machine

learning and artificial intelligence models are deployed in order to pre-empt query execution, and thereby

effectively dividing queries among cloud nodes for utmost efficiency.

Ashok Kumar Panda 1* Jagannath Patel2

2949

Figure 3. Load balancing models for transaction scheduling [12]

Query processing models can also use scheduling algorithms like earliest deadline first (EDF) and its variants in

order to improve their performance. Work in [15] proposes use of semi-partitioned EDF model for splitting tasks

for real-time dynamic workloads. Due to this query partitioning, overall delay of execution is reduced by 15%,

while query execution reliability is improved by 9% when compared with a non-EDF system. This work can be

used to enhance performance of memory-based scheduling via software transactional memory, which shows high

atomicity performance, but the performance reduces exponentially due to query conflicts. These conflicts can be

reduced via the use of partitioned EDF framework, that aims at reducing the queries into multiple sub queries, and

executing them on software transactional memory for high performance. An application of this model can be

observed from [17], wherein EDF is combined with in-memory execution. A similar EDF-based algorithm for

reducing inconsistencies in delay and reliability during transaction scheduling is observed from [18]. This

algorithm is named as jitter based EDF (JB EDF) and aims at reducing deadline & execution jitters using the

following modified deadline equation,

𝐽𝑑 = [
𝐸𝑑

𝐸𝑑 − ∑
𝐷𝑗

𝑁

𝑁
𝑗=1

+
𝑅𝑑

𝑅𝑑 − ∑
𝑅𝑗

𝑁

𝑁
𝑗=1

]

−1

… (5)

Where, ‘J’ is the performance jitter, ‘E’ is the EDF deadline, ‘D’ is delay, ‘N’ is number of queries to execute,

and ‘R’ is reliability factor for executing this query that can be evaluated using equation 2. Due to minimization

of jitter, overall delay of query execution is reduced by 5%, and reliability is improved by 9% when compared

with a non-jitter-reduction algorithm. This performance can be further improved by executing queries over

federated and high-speed clouds as suggested in [19] & [20]. Here, a performance enhancement of over 10% is

achieved via increasing the processing capabilities of the query execution engine.

Researchers have worked towards improving query processing performance via use of static locking in distributed

database. The work in [21] suggests such a novel model that uses a combination of Static Two-Phase Locking

Protocol & dynamic two-phase locking protocol to form a hybrid locking protocol. This protocol locks

Reducing Workload On Real-Time Database Using Machine Learning Based Transaction

Scheduling

2950

transactions pre-emptively, and doesn’t allow any modifications to the buffer until all dependencies are resolved.

Due to this high-end conflict resolution, a performance improvement of 15% is achieved in terms of query

execution reliability, but delay is increased by 8% when compared to a single-phase locking protocol. This

performance can be improved via the use of containers for query execution as suggested in [22] & [23], wherein

different algorithms for speeding up query performance are discussed. One of these algorithms uses a concurrent

architecture wherein parallel pools of query execution engines are deployed. Each pool is able to effectively

resolve query dependencies using directed acyclic graphs, thereby improving overall system performance. A

similar algorithm that aims at optimizing performance of join queries via fine-grained partitioning for skew data

is mentioned in [24]. This model works on map reduce database, which makes it applicable for big data

applications. Performance of these models can also be improved via use of efficient indexing, wherein indexes

are created such that queries are easily separated from each other, and are processed at high speeds. Such a model

that uses reinforcement learning for indexing is proposed in [25]. Due to the use of reinforcement learning, overall

efficiency of query execution is improved by 15%, and thus can be used for real-time database deployments. The

scalability of these algorithms can be improved via the use of machine learning models suggested in [26] and [27].

Due to use of machine learning models like Genetic Algorithm, high scalability in infrastructure, computing and

application layers can be achieved. This architecture is Algorithm agnostic, which indicates dynamic flexibility

of the system due to changes in data size, table dimensions, index size, etc. The architecture can also be used in

pipelined mode as suggested in [28], due to which overall throughput of transaction scheduling is increased. A

comprehensive review done in [29] also suggests use of bio-inspired models for improving efficiency of

transaction scheduling in real-time databases. Based on this study, this text proposes a novel Genetic Algorithm

based transaction scheduling model for real-time databases to achieve high transactional efficiency. This model

is described in the next section, and is followed by its performance analysis and comparison.

3. Proposed Genetic Algorithm based model for improving transaction scheduling performance

Genetic algorithm comes from a family of stochastic optimization algorithms, wherein a large number of solutions

are evaluated in order to solve any problem. A similar approach is undertaken in this text, wherein performance

for a large number of query combinations is evaluated, and compared internally to form the best possible solution

for transaction scheduling. The proposed Genetic Algorithm initially divides the entire query set into training and

testing queries, with a ratio of 70:30, wherein 70% of queries are used for training the system, while remaining

30% queries are used for testing & optimization of system performance. Flow of algorithm can be observed using

the following steps,

 Input,

o Number of iterations (Ni)

o Number of solutions (Ns)

o Learning rate (Lr)

o Minimum query result length (QLmin)

 Initially mark all solutions as ‘to be mutated’

 For each iteration in 1 to Ni,

o For each solution in 1 to Ns,

 If the solution is marked as ‘not to be mutated’, then continue to next solution.

 Else, divide the query into ‘k’ random parts, such that results of each of the ‘k’ parts is more than QLmin

𝑘 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑄𝐿𝑚𝑖𝑛, 𝑄𝑚𝑎𝑥) … (6)

Where, Qmax is the max length of the query.

 Interleave the queries using ‘m’ percentage EDF algorithm, wherein deadline of the initial m% of queries

is considered.

𝑚 = 𝑟𝑎𝑛𝑑𝑜𝑚(1, 𝑘) … (7)

 Evaluate the transitive dependencies of these queries.

 If the dependencies are not fulfilled, then re-arrange the query components till all dependencies are

resolved by using different values of ‘m’. This will evaluate new values of ‘m’ until atomicity of the query

is achieved.

 Execute the query on real-time database, and evaluate fitness using the following equation,

Ashok Kumar Panda 1* Jagannath Patel2

2951

𝑓𝑖 =

 ∑ 𝑑𝑞𝑖
∗ (

∑
𝐶𝑟𝑗

𝐶𝑗

𝑚
𝑗=1

𝑚
)

−1

𝑘
𝑖=1

𝑘
… (8)

Where, 𝑑𝑞𝑖
 is delay to execute the 𝑖𝑡ℎ sub-query, 𝐶𝑟𝑗

 is the number of conflicts resolved for the 𝑗𝑡ℎ sub-query, and

𝐶𝑗 is total number of conflicts that occurred during this execution.

o Evaluate fitness for all solutions, then evaluate fitness threshold using the following equation,

𝑓𝑡ℎ =
∑ 𝑓𝑖

𝑁𝑠
𝑖=1

𝑁𝑠
∗ 𝐿𝑟 … (9)

o Mark all solutions as ‘to be mutated’, where the fitness value is more than threshold, and mark all others as

‘not to be mutated’

 At the end of all iterations, select the solution with minimum fitness, and identify values of ‘k’ and ‘m’ for

that particular solution.

 Use the testing set, to evaluate the efficiency of these ‘k’ and ‘m’ values.

 Efficiency is evaluated by using the values of ‘k’ and ‘m’ for each test query, and comparing its performance

with the work in [4] and [21]

 If the performance is lower, then the queries which inhibit low performance are added to the training set, and

the entire GA is repeated for this new set.

 Once the new GA has produced results, then they are again tested on the entire test set to optimize

performance.

Flow of this algorithm can be observed from figure 4, wherein multiple GA executions are seen depending upon

current performance. The main aim of this algorithm to select the values of ‘k’ and ‘m’ such that overall query

execution performance is improved. This also indicates that the system is now able to resolve all dependencies in

the underlying queries and is ready to schedule real-time queries and execute them effectively on the database.

Figure 4. Flow of the proposed GA based model

Reducing Workload On Real-Time Database Using Machine Learning Based Transaction

Scheduling

2952

Result evaluation & comparative of this proposed model is done on Google’s Firebase and Apache’s MongoDB

databases, and is compared with the implementations provided by [4] and [21]. This result evaluation can be

observed from the next section.

4. Result and analysis

In order to evaluate performance of the proposed model, the primary parameters; which are; execution delay,

query throughput and conflict resolution accuracy are considered. These parameters are evaluated for 2 real-time

databases, which are Google’s Firebase and Apache’s MongoDB. Number of transactions on each database were

varied between 1000 to 500k, and a mix of read, write and access requests were made to the database. Average

values of execution delay (D), query throughput (T), and conflict resolution accuracy (R) are evaluated using the

following equations,

𝐷 =
∑ 𝑇𝑜𝑢𝑡𝑖

− 𝑇𝑖𝑛𝑖

𝑁
𝑖=1

𝑁
… (6)

𝑇 =
∑ 𝐵𝑟𝑖

+ 𝐵𝑤𝑖

𝑁
𝑖=1

𝑁
… (7)

𝑅 =

∑
𝑁𝑐𝑟𝑖

𝑁𝑐𝑖

𝑁
𝑖=1

𝑁
… (8)

Where, 𝑇𝑜𝑢𝑡𝑖
 and 𝑇𝑖𝑛𝑖

 are the time instances at which query result is output and query is input to the system

respectively, 𝐵𝑟𝑖
 & 𝐵𝑤𝑖

 are the number of bytes read & number of bytes written by the query respectively, 𝑁𝑐𝑟𝑖
 &

𝑁𝑐𝑖
 are number of conflicts resolved, & total number of conflicts in the 𝑖𝑡ℎ query, and ‘N’ are total number of

queries which are executed by the system. Results are compared with [4] and [21], due to their applicability and

high performance of query execution. The results for delay can be observed from table 1, wherein different number

of transactions are varied and its delay performance is evaluated.

Num.

Trans.

Delay [4].

(s)

Delay [21]

(s)

Delay

[Proposed].

(s)

1000 31.20 65.50 26.56

2000 39.20 82.30 33.36

5000 48.40 101.65 41.20

10k 52.95 111.20 45.08

20k 56.80 119.30 48.36

50k 63.95 134.30 54.44

100k 67.85 142.50 57.76

200k 69.95 146.90 59.56

300k 72.85 153.00 62.04

Ashok Kumar Panda 1* Jagannath Patel2

2953

400k 81.63 171.46 69.51

500k 86.78 182.27 73.90

Table 1. Delay performance for different transactions

From the delay performance it can be observed that the proposed model is 10% to 25% more effective than state-

of-the-art methods. This can also be observed from figure 5, wherein the delay is visualized against number of

communications.

Figure 5. Delay v/s Number of transactions

Similarly, the results for throughput can be observed from table 2, wherein different number of transactions are

varied and its average throughput performance is evaluated.

Num.

Trans.

T [4].

(kbps)

T [21]

(kbps)

T [Proposed].

(kbps)

1000 23.81 12.48 32.75

2000 29.91 15.68 41.15

5000 36.94 19.36 50.83

10k 40.41 21.18 55.60

20k 43.35 22.72 59.65

50k 48.81 25.58 67.15

100k 51.78 27.14 71.25

200k 53.38 27.98 73.45

300k 55.60 29.14 76.50

400k 62.31 32.65 85.73

Reducing Workload On Real-Time Database Using Machine Learning Based Transaction

Scheduling

2954

500k 66.23 34.71 91.13

Table 2. Throughput performance for different transactions

From the throughput performance it can be observed that the proposed model is 15% to 20% more effective than

state-of-the-art methods. This can also be observed from figure 6, wherein the throughput is visualized against

number of communications.

Figure 6. Throughput v/s Number of transactions

Finally, the results for conflict resolution accuracy can be observed from table 3, wherein different number of

transactions are varied and its average conflict resolution performance is evaluated.

Num.

Trans. R [4]. (%) R [21] (%)

R [Proposed].

(%)

1000 79.59 79.59 83.78

2000 80.97 80.99 85.24

5000 91.41 91.41 96.22

10k 93.21 93.22 98.12

20k 88.83 88.82 93.50

50k 94.25 94.25 99.21

100k 97.00 97.00 99.10

200k 96.01 96.02 99.40

300k 89.24 89.24 93.93

400k 94.07 94.07 99.02

500k 95.60 97.30 99.30

Ashok Kumar Panda 1* Jagannath Patel2

2955

Table 3. Conflict resolution performance for different transactions

From the conflict resolution performance, it can be observed that the proposed model is 4% higher effective than

state-of-the-art methods. This can also be observed from figure 6, wherein the average conflict resolution is

visualized for the given number of communications.

Figure 6. Average conflict resolution performance

From these results it is observed that the proposed model is superior in terms of execution delay, throughput and

overall conflict resolution performance, when compared to the state-of-the art models.

5. Conclusion and future scope

Due to use of Genetic Algorithm for query analysis, the overall system performance of transaction scheduling is

improved. Genetic algorithm analyzes training set queries and uses that information on testing set queries for

highly efficient predictive analysis. Due to which the system is able to reduce execution delay and estimate conflict

resolutions with high performance. This performance is compared in terms of overall query execution delay,

system throughput while executing these queries, and conflict resolution accuracy. It is observed that the proposed

model is 15% efficient in terms of overall throughput, atleast 10% efficient in terms of query execution delay, and

4% effective in terms of conflict resolution when compared with Coloured Petri Nets and EDF based

implementations. Performance of this model can be further improved via use of convolutional neural networks

for query analysis. Models like long-short-term-memory (LSTM) & gated recurrent units (GRUs) can be used for

further improvement of delay and throughput performance.

References

1. C. Deng, G. Li, Q. Zhou and J. Li, "Co-Scheduling of Hybrid Transactions on Multiprocessor Real-Time

Database Systems," in IEEE Access, vol. 7, pp. 109506-109517, 2019, doi:

10.1109/ACCESS.2019.2932799.

2. Yong, H. (2020), Load balancing strategy for medical big data based on low delay cloud network. J.

Eng., 2020: 799-804. https://doi.org/10.1049/joe.2020.0126

3. Xingjun, L, Zhiwei, S, Hongping, C, Mohammed, BO. A new fuzzy‐based method for load balancing in

the cloud‐based Internet of things using a grey wolf optimization algorithm. Int J Commun

Syst. 2020; 33:e4370. https://doi.org/10.1002/dac.4370

4. D. P. Mahato and J. K. Sandhu, "Modeling of Load Balanced Scheduling and Reliability Evaluation for

On-demand Computing Based Transaction Processing System," 2018 IEEE 14th International

Conference on e-Science (e-Science), 2018, pp. 390-391, doi: 10.1109/eScience.2018.00114.

5. C. Xu, X. Wu, H. Zhu and M. Popovic, "Modeling and Verifying Transaction Scheduling for Software

Transactional Memory using CSP," 2019 International Symposium on Theoretical Aspects of Software

Engineering (TASE), 2019, pp. 240-247, doi: 10.1109/TASE.2019.00009.

6. T. Zhang, A. Tomasic, Y. Sheng and A. Pavlo, "Performance of OLTP via Intelligent Scheduling," 2018

IEEE 34th International Conference on Data Engineering (ICDE), 2018, pp. 1288-1291, doi:

10.1109/ICDE.2018.00132.

7. C. Busch, M. Herlihy, M. Popovic and G. Sharma, "Dynamic Scheduling in Distributed Transactional

Memory," 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2020, pp.

874-883, doi: 10.1109/IPDPS47924.2020.00094.

https://doi.org/10.1049/joe.2020.0126
https://doi.org/10.1002/dac.4370

Reducing Workload On Real-Time Database Using Machine Learning Based Transaction

Scheduling

2956

8. J. Hu, X. Wei, M. Yang, B. Tang, K. Lin and Y. Zhong, "A Practical RBF Framework for Database Load

Balancing Prediction," 2020 3rd International Conference on Artificial Intelligence and Big Data

(ICAIBD), 2020, pp. 83-86, doi: 10.1109/ICAIBD49809.2020.9137481.

9. S. Subramaniam and G. Krishnamurthi, "Load balancing location management," ICC 2001. IEEE

International Conference on Communications. Conference Record (Cat. No.01CH37240), 2001, pp.

2835-2839 vol.9, doi: 10.1109/ICC.2001.936667.

10. Weihua Gong and Yuanzhen Wang, "Load balancing of OLTP on heterogeneous database cluster," 2006

8th International Conference Advanced Communication Technology, 2006, pp. 6 pp.-2045, doi:

10.1109/ICACT.2006.206398.

11. Chen JB., Pao TL., Lee KD. (2009) Effect of Database Server Arrangement to the Performance of Load

Balancing Systems. In: Hua A., Chang SL. (eds) Algorithms and Architectures for Parallel Processing.

ICA3PP 2009. Lecture Notes in Computer Science, vol 5574. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-03095-6_15

12. Jyoti, A., Shrimali, M., Tiwari, S. et al. Cloud computing using load balancing and service broker policy

for IT service: a taxonomy and survey. J Ambient Intell Human Comput 11, 4785–4814 (2020).

https://doi.org/10.1007/s12652-020-01747-z

13. Gundu, S.R., Panem, C.A. & Thimmapuram, A. Real-Time Cloud-Based Load Balance Algorithms and

an Analysis. SN COMPUT. SCI. 1, 187 (2020). https://doi.org/10.1007/s42979-020-00199-8

14. Cai, W., Zhu, J., Bai, W. et al. A cost saving and load balancing task scheduling model for computational

biology in heterogeneous cloud datacenters. J Supercomput 76, 6113–6139 (2020).

https://doi.org/10.1007/s11227-020-03305-y

15. D. Casini, A. Biondi and G. C. Buttazzo, "Task Splitting and Load Balancing of Dynamic Real-Time

Workloads for Semi-Partitioned EDF," in IEEE Transactions on Computers, doi:

10.1109/TC.2020.3038286.

16. P. Di Sanzo, A. Pellegrini, M. Sannicandro, B. Ciciani and F. Quaglia, "Adaptive Model-Based

Scheduling in Software Transactional Memory," in IEEE Transactions on Computers, vol. 69, no. 5, pp.

621-632, 1 May 2020, doi: 10.1109/TC.2019.2954139.

17. C. Deng, G. Li, Q. Zhou and J. Li, "Guarantee the Quality-of-Service of Control Transactions in Real-

Time Database Systems," in IEEE Access, vol. 8, pp. 110511-110522, 2020, doi:

10.1109/ACCESS.2020.3002335.

18. G. Li, c. zhou, J. Li and B. Guo, "Maintaining Data Freshness in Distributed Cyber-Physical Systems,"

in IEEE Transactions on Computers, vol. 68, no. 7, pp. 1077-1090, 1 July 2019, doi:

10.1109/TC.2018.2889456.

19. Zhang, Y., Zhang, Y., Lu, J. et al. One size does not fit all: accelerating OLAP workloads with

GPUs. Distrib Parallel Databases 38, 995–1037 (2020). https://doi.org/10.1007/s10619-020-07304-z

20. Wang, B., Wang, C., Song, Y. et al. A survey and taxonomy on workload scheduling and resource

provisioning in hybrid clouds. Cluster Comput 23, 2809–2834 (2020). https://doi.org/10.1007/s10586-

020-03048-8

21. Lam, KY., Hung, SL. & Son, S.H. On Using Real-Time Static Locking Protocols for Distributed Real-

Time Databases. Real-Time Systems 13, 141–166 (1997). https://doi.org/10.1023/A:1007981523223

22. Imdoukh, M., Ahmad, I. & Alfailakawi, M.G. Machine learning-based auto-scaling for containerized

applications. Neural Comput & Applic 32, 9745–9760 (2020). https://doi.org/10.1007/s00521-019-

04507-z

23. Masdari, M., Khoshnevis, A. A survey and classification of the workload forecasting methods in cloud

computing. Cluster Comput 23, 2399–2424 (2020). https://doi.org/10.1007/s10586-019-03010-3

24. Gavagsaz, E., Rezaee, A. & Haj Seyyed Javadi, H. Load balancing in join algorithms for skewed data in

MapReduce systems. J Supercomput 75, 228–254 (2019). https://doi.org/10.1007/s11227-018-2578-0

25. Paludo Licks, G., Colleoni Couto, J., de Fátima Miehe, P. et al. SMARTIX: A database indexing agent

based on reinforcement learning. Appl Intell 50, 2575–2588 (2020). https://doi.org/10.1007/s10489-020-

01674-8

26. Hu, H., Wen, Y., Chua, T., & Li, X. (2014). Toward Scalable Systems for Big Data Analytics: A

Technology Tutorial. IEEE Access, 2, 652-687.

27. D. E. Diamantis and D. K. Iakovidis, "ASML: Algorithm-Agnostic Architecture for Scalable Machine

Learning," in IEEE Access, vol. 9, pp. 51970-51982, 2021, doi: 10.1109/ACCESS.2021.3069857.

28. W. Chen, W. Li and F. Yu, "Modular Pipeline Architecture for Accelerating Join Operation in RDBMS,"

in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 11, pp. 2662-2666, Nov.

2020, doi: 10.1109/TCSII.2020.2968499.

29. Y. Jiang, "A Survey of Task Allocation and Load Balancing in Distributed Systems," in IEEE

Transactions on Parallel and Distributed Systems, vol. 27, no. 2, pp. 585-599, 1 Feb. 2016, doi:

10.1109/TPDS.2015.2407900.

https://doi.org/10.1007/978-3-642-03095-6_15
https://doi.org/10.1007/s12652-020-01747-z
https://doi.org/10.1007/s42979-020-00199-8
https://doi.org/10.1007/s11227-020-03305-y
https://doi.org/10.1007/s10619-020-07304-z
https://doi.org/10.1007/s10586-020-03048-8
https://doi.org/10.1007/s10586-020-03048-8
https://doi.org/10.1023/A:1007981523223
https://doi.org/10.1007/s00521-019-04507-z
https://doi.org/10.1007/s00521-019-04507-z
https://doi.org/10.1007/s10586-019-03010-3
https://doi.org/10.1007/s11227-018-2578-0
https://doi.org/10.1007/s10489-020-01674-8
https://doi.org/10.1007/s10489-020-01674-8

