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Abstract: Reading and writing to relational databases requires accessing multiple tables for constraint & quality 

checks. In order to perform these checks, databases use transaction management, wherein index-based checking 

& validation is done, and data is committed to the database only when these checks are satisfied. In case of any 

validation violations, databases need to either fall back to previous data state, or activate violation rule engine and 

resolve the underlying conflicts. Performing these tasks for limited size databases doesn’t compromise on system 

performance, but as database sizes increase, the number of checks increase exponentially, thereby reducing 

database system performance. In order to reduce the effect of database size on transaction scheduling 

performance, this work proposes a genetic algorithm inspired algorithm, which takes into consideration multiple 

performance parameters in order to optimize transaction performance. The underlying system is deployed on 

multiple relational databases, and a performance improvement of 10% in terms of scheduled transaction execution 

delay is observed. This performance is compared with recently proposed state-of-the-art systems, and it is 

observed that the proposed model is able to reduce execution delay by 5% across multiple implementations. 

Keywords: Database, real-time, transaction, scheduling, machine, learning 

1. Introduction 

Transaction based scheduling requires databases to be checked on multiple indexing levels on a per transaction 

basis. These indexing levels include primary key checks, foreign key checks, cascading index checks, views 

update checks, etc. In order to effectively perform transaction-based scheduling, a set of mutually dependent 

operations must be performed effectively and in tandem. These operations are related to sequential query 

processing and are executed in the following order to obtain effective transaction scheduling performance, 

 Evaluate the number of tables being evaluated by the query. 

 Evaluate number of individual fields being evaluated from each of the table. 

 Find out internal aggregate operations being carried out on each of the fields. 

 Segregate the tables into reading & writing tables. 

 Ensure atomicity of the transaction via these steps, and if the transaction is not atomic, then re-evaluate these 

steps. 

 Allocate sufficient buffer space in order to ensure recoverability of the transactions. 

 Provide these transactions to a scheduler in order to ensure serializability of queries to re-order requests. 

 Lock the tables and execute the separated queries. 

 Execute queries on the locked tables, and evaluate its correctness. 

 In case of any errors, rollback transactions from the buffers and re-evaluate query division process. 

 Continue this process, till the entire transaction is executed. 

Based on these steps, each transaction scheduler can be in one of 5 states, which are active (when the transaction 

execution is in process), partially committed (when some transactions have been successfully executed), failed 

(when the transaction is not getting executed), committed (when the transaction is normally and actively getting 

executed) and aborted (when user aborts the transaction). State machine for transition between each of these stages 

must be effectively and clearly defined, so that the overall process of transaction scheduling can be executed with 

utmost efficiency. The state diagram for a typical transaction management system can be observed from figure 1, 
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wherein all these states can be seen. Based on the transition between these stages, different types of transaction 

schedulers are defined by researchers. These schedulers include, 

 Serial schedulers, wherein all the queries in a transaction are executed in serial order. 

 Conflict serializable schedulers, wherein serial schedulers are used in case of conflicts during execution. 

 View serializable schedulers, wherein views are managed using serial execution. 

 Cascading schedulers, wherein the scheduler tries to resolve and recover data using cascaded operations. 

 Cascade-less schedulers, wherein parallel execution is preferred for recovering data. 

 Strict schedulers, wherein scheduling is done based on strict rules, that might affect performance but improve 

execution efficiency. 

 Non-recoverable schedulers, wherein any data lost during scheduling cannot be recovered, and transaction is 

rolled back. 

 

Figure 1. Different stages of a transaction execution system 

Depending upon these scheduler types and their different states, a large variety of scheduling architectures are 

proposed by researchers over the past years. Thus, the next section reviews some of the recently proposed state-

of-the-art models for transaction scheduling. This is followed by the proposed Genetic Algorithm based Model 

for effective transaction scheduling in the network, and its performance evaluation w.r.t. the reviewed models. 

Finally, this work concludes with some interesting observations about the proposed model, and recommends 

methods to improve their performance in terms of different performance metrics. 
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2. Literature Review 

Due to the wide applicability of database deployments, relational database systems are used in every business 

operation irrespective of its size. Because of this wide application, unique transactional scenarios come up, which 

include, updating the same record at multiple different tables; when one table update is mutually dependent on 

others, extraction of data from multiple tables conditionally; based on the data contents of internal queried tables, 

etc. In order to handle such situations, hybrid transactional models are devised by researchers. One such model 

can be observed from [1], wherein a co-scheduling architecture is defined. This architecture uses a combination 

of efficient partitioning with hierarchical processing in order to devise an efficient partitioned scheduling model 

for hybrid transactions. This model has high acceptance ratio due to effective use of upper demand bound 

functions during transaction processing. It uses deadline-based dependency resolution of transactions in order to 

improve the transaction acceptance ratio by 15% when compared with other methods. The performance of this 

model can be improved via addition of load balancing architectures as suggested by [2] and [3], wherein firefly 

and grey wolf architectures are proposed. These architectures are based on stochastic modelling of the queries, 

and assist in improving overall execution performance using learn-once-use-continuously architecture. An 

application of these models on database systems via the use of Coloured Petri Nets is proposed in [4], wherein 

reliability inspired load balancing is performed by the system via active Markov Model (MM). The Coloured Petri 

Nets architecture can be observed from figure 2, wherein each query is marked as a work job, and is divided into 

sub work jobs. Each of these sub work jobs are given to data generators, schedulers, global resource management 

blocks, local resource management blocks and transaction managers in order to improve task modularity. Due to 

this, the overall transaction scheduling efficiency is improved by 15% when compared to a non CPN model. 

 

Figure 2. Coloured Petri Nets (CPN) for effective task scheduling [4] 

This performance improvement is obtained due to the deadline aware nature of CPNs, which can be represented 

using equation 1, wherein reliability of query (𝑅𝑞𝑢𝑒𝑟𝑦) is formulated. 

𝑅𝑞𝑢𝑒𝑟𝑦 = exp (−𝜕 ∗ 𝐷 ∗ [
1

𝜑
+ (∑
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] … (1) 

Where, 𝜕 is transaction arrival rate, ‘D’ is deadline of transaction, 𝜑 is transaction delay, ‘cp’ is transaction 

complexity, ‘c’ is cost of transaction, ‘p’ is probability of occurrence of transaction, 𝜔 is difference between 

different arrival rates of the transaction. From this factor, it can be observed that the reliability of query is inversely 

proportional to query delay, which is reduced by modularizing the query, thereby increasing it. These transactions 

can be verified using complex metrics like conflict detection rate, freeness ratios, conflict resolution rate, etc. A 

survey of these factors can be observed in [5], wherein conflict detection and resolution rate are considered as 
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primary metrics for performance improvement of the transaction scheduling systems. An example of such a high 

performance transaction management system that uses in-memory computations can be observed from [6], 

wherein online transaction processing (OLTP) operations are performed with high efficiency on database 

management systems (DBMS). In order to do this task, the system proposes different policies for conflict 

resolution, which include count & fraction, literal & canonical; which deals in fine grained processing and single 

& all; wherein different policies are applied to single transactions and multiple transactions. Due to these policies, 

the system’s flexibility is improved, thereby making the system capable of adding multiple features during its 

internal performance optimization. The system is extended in [7], wherein different algorithms like weighted 

graph colouring, colouring-based schedule, complete graph scheduling and hypercube & related graphs are 

evaluated. These algorithms are applied to distributed transactional memory, and are combined together to form 

a distributed bucket algorithm. This algorithm is able to improve in memory performance by 18% when compared 

to individual approaches.  

Approaches like neural networks for pattern analysis can also be used for transaction scheduling because of their 

pattern analysis capabilities. The work in [8] suggests use of radial basis function (RBF) based neural network 

design, that aims at reducing delay needed for transaction execution, and improve transaction dependency 

resolution using the following equation, 

𝑅(𝑞𝑖 , 𝑞𝑗) = exp (−
1

2 ∗ 𝜕2
∗ |𝑑𝑞𝑖

− 𝑑𝑞𝑗
|

2

) … (2) 

Where, ‘q’ represents given query, 𝜕 is variance in the query execution cost which is formulated in equation 3, 

and ‘d’ is the dependency level of query on sub queries.  

𝜕 =
1

𝑃
∗ ∑|𝑑𝑖 − 𝑞𝑖 ∗ 𝑐𝑖|

𝑚

𝑖=1

… (3) 

Where, ‘P’ is probability of occurrence of the query, ‘c’ is query cost, and ‘m’ is number of sub-queries for the 

given input query. Due to the use of this error reduction model, reliability of query execution improves by 8%, 

while the delay of subsequent execution reduces by 5%, which improves overall system performance. This 

performance can be further improved by clustering the queries based on location of their application, thereby 

executing queries which require immediate results, while holding queries that require deferred results. Work in 

[9] and [10] propose such models, wherein query performance-based clustering is done in order to improve overall 

system performance. This performance can also be improved via use of hybrid execution environments like the 

ones proposed in [11] and [12], wherein load balancing models like Shortest job scheduling algorithm, Throttled 

algorithm, Genetic Algorithm (GA), Modified Active Monitoring Load Balancer (MAMLB), etc. are defined and 

their combinations are studied for improving query execution performance. A survey of these algorithms suggests 

that transaction scheduling models that use load balancing can be broadly divided into static and dynamic models, 

and a list of these individual models can be observed from figure 3, wherein models like opportunistic load 

balancing (OLB) & Min–Min load balancing (LBMM) are defined. Out of these models the Genetic Algorithm 

(GA) and Ant Colony Optimization (ACO) provide optimum performance due to their stochastic properties. Both 

these techniques propose different fitness functions, all of which are aimed at reducing delay and increase 

reliability of query processing. A sample GA fitness function can be formulated using equation 4, wherein delay 

and reliability are considered for improved query execution performance.  

𝐹(𝑞) =
1

∈∗ 𝑅𝑞 +  𝜕 ∗ 𝐷𝑞

… (4) 

Where, ‘F’ is the fitness, ‘R’ is query reliability, ‘D’ is query delay, ∈ is reliability scaling factor, and 𝜕 is delay 

scaling factor, which are used to normalize the fitness value. Performance of these models can be improved via 

deploying them over the cloud with optimum load balancing models as discussed in [13] and [14]. Here machine 

learning and artificial intelligence models are deployed in order to pre-empt query execution, and thereby 

effectively dividing queries among cloud nodes for utmost efficiency. 
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Figure 3. Load balancing models for transaction scheduling [12] 

Query processing models can also use scheduling algorithms like earliest deadline first (EDF) and its variants in 

order to improve their performance. Work in [15] proposes use of semi-partitioned EDF model for splitting tasks 

for real-time dynamic workloads. Due to this query partitioning, overall delay of execution is reduced by 15%, 

while query execution reliability is improved by 9% when compared with a non-EDF system. This work can be 

used to enhance performance of memory-based scheduling via software transactional memory, which shows high 

atomicity performance, but the performance reduces exponentially due to query conflicts. These conflicts can be 

reduced via the use of partitioned EDF framework, that aims at reducing the queries into multiple sub queries, and 

executing them on software transactional memory for high performance. An application of this model can be 

observed from [17], wherein EDF is combined with in-memory execution. A similar EDF-based algorithm for 

reducing inconsistencies in delay and reliability during transaction scheduling is observed from [18]. This 

algorithm is named as jitter based EDF (JB EDF) and aims at reducing deadline & execution jitters using the 

following modified deadline equation, 

𝐽𝑑 = [
𝐸𝑑

𝐸𝑑 − ∑
𝐷𝑗

𝑁

𝑁
𝑗=1

+  
𝑅𝑑

𝑅𝑑 − ∑
𝑅𝑗

𝑁

𝑁
𝑗=1

]

−1

… (5) 

Where, ‘J’ is the performance jitter, ‘E’ is the EDF deadline, ‘D’ is delay, ‘N’ is number of queries to execute, 

and ‘R’ is reliability factor for executing this query that can be evaluated using equation 2. Due to minimization 

of jitter, overall delay of query execution is reduced by 5%, and reliability is improved by 9% when compared 

with a non-jitter-reduction algorithm. This performance can be further improved by executing queries over 

federated and high-speed clouds as suggested in [19] & [20]. Here, a performance enhancement of over 10% is 

achieved via increasing the processing capabilities of the query execution engine.  

Researchers have worked towards improving query processing performance via use of static locking in distributed 

database. The work in [21] suggests such a novel model that uses a combination of Static Two-Phase Locking 

Protocol & dynamic two-phase locking protocol to form a hybrid locking protocol. This protocol locks 



Reducing Workload On Real-Time Database Using Machine Learning Based Transaction 

Scheduling 

2950 

transactions pre-emptively, and doesn’t allow any modifications to the buffer until all dependencies are resolved. 

Due to this high-end conflict resolution, a performance improvement of 15% is achieved in terms of query 

execution reliability, but delay is increased by 8% when compared to a single-phase locking protocol. This 

performance can be improved via the use of containers for query execution as suggested in [22] & [23], wherein 

different algorithms for speeding up query performance are discussed. One of these algorithms uses a concurrent 

architecture wherein parallel pools of query execution engines are deployed. Each pool is able to effectively 

resolve query dependencies using directed acyclic graphs, thereby improving overall system performance. A 

similar algorithm that aims at optimizing performance of join queries via fine-grained partitioning for skew data 

is mentioned in [24]. This model works on map reduce database, which makes it applicable for big data 

applications. Performance of these models can also be improved via use of efficient indexing, wherein indexes 

are created such that queries are easily separated from each other, and are processed at high speeds. Such a model 

that uses reinforcement learning for indexing is proposed in [25]. Due to the use of reinforcement learning, overall 

efficiency of query execution is improved by 15%, and thus can be used for real-time database deployments. The 

scalability of these algorithms can be improved via the use of machine learning models suggested in [26] and [27]. 

Due to use of machine learning models like Genetic Algorithm, high scalability in infrastructure, computing and 

application layers can be achieved. This architecture is Algorithm agnostic, which indicates dynamic flexibility 

of the system due to changes in data size, table dimensions, index size, etc. The architecture can also be used in 

pipelined mode as suggested in [28], due to which overall throughput of transaction scheduling is increased. A 

comprehensive review done in [29] also suggests use of bio-inspired models for improving efficiency of 

transaction scheduling in real-time databases. Based on this study, this text proposes a novel Genetic Algorithm 

based transaction scheduling model for real-time databases to achieve high transactional efficiency. This model 

is described in the next section, and is followed by its performance analysis and comparison. 

3. Proposed Genetic Algorithm based model for improving transaction scheduling performance 

Genetic algorithm comes from a family of stochastic optimization algorithms, wherein a large number of solutions 

are evaluated in order to solve any problem. A similar approach is undertaken in this text, wherein performance 

for a large number of query combinations is evaluated, and compared internally to form the best possible solution 

for transaction scheduling. The proposed Genetic Algorithm initially divides the entire query set into training and 

testing queries, with a ratio of 70:30, wherein 70% of queries are used for training the system, while remaining 

30% queries are used for testing & optimization of system performance. Flow of algorithm can be observed using 

the following steps, 

 Input, 

o Number of iterations (Ni) 

o Number of solutions (Ns) 

o Learning rate (Lr) 

o Minimum query result length (QLmin) 

 Initially mark all solutions as ‘to be mutated’ 

 For each iteration in 1 to Ni, 

o For each solution in 1 to Ns, 

 If the solution is marked as ‘not to be mutated’, then continue to next solution. 

 Else, divide the query into ‘k’ random parts, such that results of each of the ‘k’ parts is more than QLmin 

𝑘 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑄𝐿𝑚𝑖𝑛, 𝑄𝑚𝑎𝑥) … (6) 

Where, Qmax is the max length of the query. 

 Interleave the queries using ‘m’ percentage EDF algorithm, wherein deadline of the initial m% of queries 

is considered.  

𝑚 = 𝑟𝑎𝑛𝑑𝑜𝑚(1, 𝑘) … (7) 

 Evaluate the transitive dependencies of these queries. 

 If the dependencies are not fulfilled, then re-arrange the query components till all dependencies are 

resolved by using different values of ‘m’. This will evaluate new values of ‘m’ until atomicity of the query 

is achieved. 

 Execute the query on real-time database, and evaluate fitness using the following equation, 
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𝑓𝑖 =

 ∑ 𝑑𝑞𝑖
∗ (

∑
𝐶𝑟𝑗

𝐶𝑗

𝑚
𝑗=1

𝑚
)

−1

𝑘
𝑖=1

𝑘
… (8) 

Where, 𝑑𝑞𝑖
 is delay to execute the 𝑖𝑡ℎ sub-query, 𝐶𝑟𝑗

 is the number of conflicts resolved for the 𝑗𝑡ℎ sub-query, and 

𝐶𝑗 is total number of conflicts that occurred during this execution. 

o Evaluate fitness for all solutions, then evaluate fitness threshold using the following equation, 

𝑓𝑡ℎ =
∑ 𝑓𝑖

𝑁𝑠
𝑖=1

𝑁𝑠
∗ 𝐿𝑟 … (9) 

o Mark all solutions as ‘to be mutated’, where the fitness value is more than threshold, and mark all others as 

‘not to be mutated’ 

 At the end of all iterations, select the solution with minimum fitness, and identify values of ‘k’ and ‘m’ for 

that particular solution. 

 Use the testing set, to evaluate the efficiency of these ‘k’ and ‘m’ values. 

 Efficiency is evaluated by using the values of ‘k’ and ‘m’ for each test query, and comparing its performance 

with the work in [4] and [21] 

 If the performance is lower, then the queries which inhibit low performance are added to the training set, and 

the entire GA is repeated for this new set. 

 Once the new GA has produced results, then they are again tested on the entire test set to optimize 

performance. 

Flow of this algorithm can be observed from figure 4, wherein multiple GA executions are seen depending upon 

current performance. The main aim of this algorithm to select the values of ‘k’ and ‘m’ such that overall query 

execution performance is improved. This also indicates that the system is now able to resolve all dependencies in 

the underlying queries and is ready to schedule real-time queries and execute them effectively on the database. 

 

Figure 4. Flow of the proposed GA based model 
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Result evaluation & comparative of this proposed model is done on Google’s Firebase and Apache’s MongoDB 

databases, and is compared with the implementations provided by [4] and [21]. This result evaluation can be 

observed from the next section. 

4. Result and analysis 

In order to evaluate performance of the proposed model, the primary parameters; which are; execution delay, 

query throughput and conflict resolution accuracy are considered. These parameters are evaluated for 2 real-time 

databases, which are Google’s Firebase and Apache’s MongoDB. Number of transactions on each database were 

varied between 1000 to 500k, and a mix of read, write and access requests were made to the database. Average 

values of execution delay (D), query throughput (T), and conflict resolution accuracy (R) are evaluated using the 

following equations, 

𝐷 =
∑ 𝑇𝑜𝑢𝑡𝑖

− 𝑇𝑖𝑛𝑖

𝑁
𝑖=1

𝑁
… (6) 

𝑇 =
∑ 𝐵𝑟𝑖

+ 𝐵𝑤𝑖

𝑁
𝑖=1

𝑁
… (7) 

𝑅 =

∑
𝑁𝑐𝑟𝑖

𝑁𝑐𝑖

𝑁
𝑖=1

𝑁
… (8) 

Where, 𝑇𝑜𝑢𝑡𝑖
 and 𝑇𝑖𝑛𝑖

 are the time instances at which query result is output and query is input to the system 

respectively, 𝐵𝑟𝑖
 & 𝐵𝑤𝑖

 are the number of bytes read & number of bytes written by the query respectively, 𝑁𝑐𝑟𝑖
 & 

𝑁𝑐𝑖
 are number of conflicts resolved, & total number of conflicts in the 𝑖𝑡ℎ query, and ‘N’ are total number of 

queries which are executed by the system. Results are compared with [4] and [21], due to their applicability and 

high performance of query execution. The results for delay can be observed from table 1, wherein different number 

of transactions are varied and its delay performance is evaluated. 

Num. 

Trans. 

Delay [4]. 

(s) 

Delay [21] 

(s) 

Delay 

[Proposed]. 

(s) 

1000 31.20 65.50 26.56 

2000 39.20 82.30 33.36 

5000 48.40 101.65 41.20 

10k 52.95 111.20 45.08 

20k 56.80 119.30 48.36 

50k 63.95 134.30 54.44 

100k 67.85 142.50 57.76 

200k 69.95 146.90 59.56 

300k 72.85 153.00 62.04 
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400k 81.63 171.46 69.51 

500k 86.78 182.27 73.90 

Table 1. Delay performance for different transactions 

From the delay performance it can be observed that the proposed model is 10% to 25% more effective than state-

of-the-art methods. This can also be observed from figure 5, wherein the delay is visualized against number of 

communications.  

 

Figure 5. Delay v/s Number of transactions 

Similarly, the results for throughput can be observed from table 2, wherein different number of transactions are 

varied and its average throughput performance is evaluated. 

Num. 

Trans. 

T [4]. 

(kbps) 

T [21] 

(kbps) 

T [Proposed]. 

(kbps) 

1000 23.81 12.48 32.75 

2000 29.91 15.68 41.15 

5000 36.94 19.36 50.83 

10k 40.41 21.18 55.60 

20k 43.35 22.72 59.65 

50k 48.81 25.58 67.15 

100k 51.78 27.14 71.25 

200k 53.38 27.98 73.45 

300k 55.60 29.14 76.50 

400k 62.31 32.65 85.73 
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500k 66.23 34.71 91.13 

Table 2. Throughput performance for different transactions 

From the throughput performance it can be observed that the proposed model is 15% to 20% more effective than 

state-of-the-art methods. This can also be observed from figure 6, wherein the throughput is visualized against 

number of communications.  

 

Figure 6. Throughput v/s Number of transactions 

Finally, the results for conflict resolution accuracy can be observed from table 3, wherein different number of 

transactions are varied and its average conflict resolution performance is evaluated. 

Num. 

Trans. R [4]. (%) R [21] (%) 

R [Proposed]. 

(%) 

1000 79.59 79.59 83.78 

2000 80.97 80.99 85.24 

5000 91.41 91.41 96.22 

10k 93.21 93.22 98.12 

20k 88.83 88.82 93.50 

50k 94.25 94.25 99.21 

100k 97.00 97.00 99.10 

200k 96.01 96.02 99.40 

300k 89.24 89.24 93.93 

400k 94.07 94.07 99.02 

500k 95.60 97.30 99.30 
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Table 3. Conflict resolution performance for different transactions 

From the conflict resolution performance, it can be observed that the proposed model is 4% higher effective than 

state-of-the-art methods. This can also be observed from figure 6, wherein the average conflict resolution is 

visualized for the given number of communications.  

 

Figure 6. Average conflict resolution performance 

From these results it is observed that the proposed model is superior in terms of execution delay, throughput and 

overall conflict resolution performance, when compared to the state-of-the art models. 

5. Conclusion and future scope 

Due to use of Genetic Algorithm for query analysis, the overall system performance of transaction scheduling is 

improved. Genetic algorithm analyzes training set queries and uses that information on testing set queries for 

highly efficient predictive analysis. Due to which the system is able to reduce execution delay and estimate conflict 

resolutions with high performance. This performance is compared in terms of overall query execution delay, 

system throughput while executing these queries, and conflict resolution accuracy. It is observed that the proposed 

model is 15% efficient in terms of overall throughput, atleast 10% efficient in terms of query execution delay, and 

4% effective in terms of conflict resolution when compared with Coloured Petri Nets and EDF based 

implementations. Performance of this model can be further improved via use of convolutional neural networks 

for query analysis. Models like long-short-term-memory (LSTM) & gated recurrent units (GRUs) can be used for 

further improvement of delay and throughput performance. 
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