# Formulas of General Solution for Linear System from Ordinary Differential Equations by Using Novel Transformation

# Hayder N Kadhim<sup>1</sup>, Athraa N Albukhuttar<sup>2</sup>, Hussein A ALMasoudi<sup>3</sup>

<sup>1</sup>Department of Banking & Financial, Faculty of Administration and Economics, University of Kufa, Najaf 54002, Iraq.

**Article History** Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Publishedonline: 28 April 2021

**Abstract:** In this work, we use Novel transform which has the form  $N_I(H(t)) = \frac{1}{\rho} \int_0^\infty e^{-\rho t} H(t) dt$  to solve a system of linear differential equations, while homogeneous or non-homogeneous system. Moreover, general formula of the set solution of systems of first and second order are derived.

Keywords: Novel Transform, Linear System, Constant Coefficients.

#### 1. Introduction

Linear system have great importance in applied mathematics and have a great role in other sciences such as physics, chemistry and other sciences [5]. In the last two centuries, integral transforms have been used successfully to solve many issues in mathematics. These transforms have been used on a large scale to solve differential equations [9].

It has also been extensively in physics, astronomy, and engineering, and most of these transformation are derived from the Laplace transform and Fourier transform [8], which have been used to solve ordinary and partial differential equations Elzaki, Shehu, Sumudu, Temimi,..., etc. [3, 10, 4, 2].

In 2016 introduced a new integral transform which used to solve linear equations with constant coefficients, called the Novel transform[1]. It is also used to solve differential equations arising from the heat transform problem and solve other differential equations [7,6,11].

In this paper, some formulas of general solution for system of one and second order in dimension n, whereas homogenous or non-homogenous from using Novel transform.

In section 2, the definitions, properties and Novel transform for some fundamental functions. In section 3, we derive the general formula for a system of first order in dimension n, while homogeneous or non-homogeneous by using Novel transform. In last section, we used these formulas to solve some examples.

## 2. Basic Definitions and Properties of Novel Transform

The Novel transform for the function H(t), t > 0 is defined by the following integer:

$$\Omega(\rho) = N_I \Big( H(t) \Big) = \frac{1}{\rho} \int_0^\infty e^{-\rho t} H(t) dt, t > 0 \qquad (2.1)$$

where H(t) is a real function,  $\frac{e^{-\rho t}}{\rho}$  is the kernel function, and  $N_I$  is the operator of Novel transform.

The inverse of Novel transform is given by:

$$N_I^{-1}\Omega(\rho) = H(t) \text{ for } t > 0$$
(2.2)

where  $N_I^{-1}$  returns the transformation to the original function.

To display the duality relationship Novel transform and Laplace transform, which Laplace transform

Defined by:

<sup>&</sup>lt;sup>2</sup>Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf 54002, Iraq.

<sup>&</sup>lt;sup>3</sup>Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf 54002, Iraq.

$$g(\rho) = L_I(H(t)) = \frac{1}{\rho} \int_0^{\infty} e^{-\rho t} H(t) dt, \ t > 0, \dots$$
 (2.3)

Where  $L_I$  is the operator of LT.

$$\Omega(\rho) = N_I(H(t)) = \frac{1}{2} \int_0^\infty e^{-\rho t} H(t) dt \cdots$$
 (2.4)

$$\Omega(\rho) = N_I(H(t)) = \frac{1}{\rho} \int_0^\infty e^{-\rho t} H(t) dt \cdots$$

$$\Omega(\rho) = \frac{1}{\rho} L_I(H(t)) = \frac{1}{\rho} g(\rho), t > 0 \cdots$$
(2.4)

Property: If  $H_1(t)$ ,  $H_2(t)$ , ...,  $H_n(t)$  have Novel transform then:

$$N_{I}(\alpha_{1}H_{1}(t) + \alpha_{2}H_{2}(t) + \dots + \alpha_{n}H_{n}(t)) = \alpha_{1}N_{I}(H_{1}(t)) + \alpha_{2}N_{I}(H_{2}(t)) + \dots + \alpha_{n}N_{I}(H_{n}(t))$$
(2.6)

where  $\alpha_1, \alpha_2, ..., \alpha_n$  are constants, the functions  $y_1(t), y_2(t), ..., and y_n(t)$  are defined.

**Theorem (2-1): [6]** Novel transform of derivative.

If the function  $H^{(n)}(t)$  is the derivative of the function H(t) with respect to t then its Novel transform is defined by:

$$N_I(H'(t)) = \rho N_I(H(t)) - \frac{H(0)}{\rho}$$
(2.7)

$$N_I(H''(t)) = \rho^2 N_I(H(t)) - H(0) - \frac{H'(0)}{2}$$
(2.8)

$$N_{I}(H''(t)) = \rho^{2} N_{I}(H(t)) - H(0) - \frac{H'(0)}{\rho}$$

$$N_{I}(H'''(t)) = \rho^{3} N_{I}(H(t)) - \rho H(0) - H'(0) - \frac{H''(0)}{\rho}$$
(2.8)
(2.9)

where n represent the derivatives,  $n \in N$ 

$$N_{I}\left(H^{(n)}(t)\right) = \rho^{n}N_{I}(H(t)) - \rho^{n-2}H(0) - \rho^{n-3}H'(0) - \dots - H^{(n-2)}(0) - \frac{1}{\rho}H^{(n-1)}$$
(2.10)

where,  $H^n(t)$  is the n-order derivative of H(t).

Table 1. The Novel transform for some function

| ID | Function, $H(t)$ | $\Omega(s) = \frac{1}{s}L(H(t))$ |
|----|------------------|----------------------------------|
| 1  | С                | $\frac{c}{\rho^2}$               |
| 2  | t <sup>n</sup>   | $\frac{n!}{\rho(\rho^{n+1})}$    |
| 3  | e <sup>rt</sup>  | $\frac{1}{\rho(\rho-r)}$         |
| 4  | sin rt           | $\frac{r}{\rho(\rho^2 + r^2)}$   |
| 5  | cosrt            | $\frac{1}{(\rho^2 + r^2)}$       |
| 6  | sinh rt          | $\frac{r}{\rho(\rho^2 - r^2)}$   |
| 7  | cosh rt          | $\frac{1}{(\rho^2 - r^2)}$       |

#### The Formula of General Solution for System of First Order 3.

In this section, we derive the general formula for a system of first order in dimension n, while homogeneous or non-homogeneous.

## 3.1. The Formula of General Solution of a Homogeneous System of Order One

The system of first order has the formula H' = CH

Where 
$$H' = \begin{pmatrix} \frac{dH_1}{dt} \\ \frac{dH_2}{dt} \\ \vdots \\ \frac{dH_n}{dt} \end{pmatrix}$$
,  $C = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$ ,  $H = \begin{pmatrix} H_1 \\ H_2 \\ \vdots \\ H_1 \end{pmatrix}$  so,
$$\begin{pmatrix} H_1 \\ H_2 \\ \vdots \\ H_n \end{pmatrix}' = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{pmatrix} \begin{pmatrix} H_1 \\ H_2 \\ \vdots \\ H_n \end{pmatrix}$$
 (3.1)

After taking Novel transform for both sides, yields:

$$\begin{split} \rho N_I(H_1) - \frac{H_1(0)}{\rho} &= c_{11} N_I(H_1) + c_{12} N_I(H_2) + \dots + c_{1n} N_I(H_n) \\ \rho N_I(H_2) - \frac{H_2(0)}{\rho} &= c_{21} N_I(H_1) + c_{22} N_I(H_2) + \dots + c_{2n} N_I(H_n) \\ &\vdots \\ \rho N_I(H_n) - \frac{H_n(0)}{\rho} &= c_{n1} N_I(H_1) + c_{n2} N_I(H_2) + \dots + c_{mn} N_I(H_n), \end{split}$$

where  $H_1(0)$ ,  $H_2(0)$ , ...,  $H_n(0)$  are initial conditions.

$$\begin{split} (\rho - c_{11}) N_I(H_1) - c_{12} N_I(H_2) - \cdots - c_{1n} N_I(H_n) &= \frac{H_1(0)}{\rho} \\ (\rho - c_{22}) N_I(H_2) - c_{21} N_I(H_1) - \cdots - c_{2n} N_I(H_n) &= \frac{H_2(0)}{\rho} \\ &\vdots \\ (\rho - c_{mn}) N_I(H_n) - c_{m1} N_I(H_1) - \cdots - c_{m2} N_I(H_n) &= \frac{H_n(0)}{\rho} \,. \end{split}$$

Moreover, simple calculation to obtain  $N_I(H_1)$ , ...,  $N_I(H_n)$ ,

$$\Delta = \begin{vmatrix} (\rho - c_{11}) & -c_{12} & \dots -c_{1n} \\ -c_{21} & (\rho - c_{22}) \dots -c_{2n} \\ \vdots & \vdots & \dots \vdots \\ -c_{m1} & -c_{m2} & \dots & (\rho - c_{mn}) \end{vmatrix}$$

Also,

$$N_{I}(H_{1}) = \frac{1}{\Delta} \begin{vmatrix} \frac{H_{1}(0)}{\rho} & -c_{12} \dots -c_{1n} \\ \frac{H_{2}(0)}{\rho} & (\rho - c_{22}) \dots -c_{2n} \\ \vdots \dots \vdots \\ \frac{H_{n}(0)}{\rho} - c_{m2} \dots (\rho - c_{mn}) \end{vmatrix}$$

$$\vdots$$

$$N_{I}(H_{n}) = \frac{1}{\Delta} \begin{vmatrix} (\rho - c_{11}) - c_{12} \dots \frac{H_{1}(0)}{\rho} \\ -c_{21}(\rho - c_{22}) \dots \frac{H_{2}(0)}{\rho} \\ \vdots \dots \vdots \\ -c_{m1} - c_{m2} \dots \frac{H_{n}(0)}{\rho} \end{vmatrix}$$

The set solution of system (3.1) yields from taking the inverse of Novel transform for  $N_I(H_i)$ ,  $i = 1, 2, 3, \dots, n$ .

## 3.2. The Formula of General Solution of Non-homogeneous System of Order One

A non-homogeneous system has the formula H' = CH + K

where 
$$H' = \begin{pmatrix} \frac{dH_1}{dt} \\ \frac{dH_2}{dt} \\ \vdots \\ \frac{dH_n}{dt} \end{pmatrix}$$
,  $C = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$ ,  $H = \begin{pmatrix} H_1 \\ H_2 \\ \vdots \\ H_n \end{pmatrix}$ ,  $K = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix}$  so,
$$\begin{pmatrix} H_1 \\ H_2 \\ \vdots \\ H_n \end{pmatrix}' = \begin{pmatrix} c_{11}c_{12} \dots c_{1n} \\ c_{21}c_{22} \dots c_{2n} \\ \vdots \vdots \dots \vdots \\ c_{m1}c_{m2} \dots c_{mn} \end{pmatrix} \begin{pmatrix} H_1 \\ H_2 \\ \vdots \\ H_n \end{pmatrix} + \begin{pmatrix} K_1 \\ K_2 \\ \vdots \\ K_n \end{pmatrix}$$
(3.2)

Novel transform for both side of the above system, yields:

$$\begin{split} \rho N_I(H_1) - \frac{H_1(0)}{\rho} &= c_{11} N_I(H_1) + c_{12} N_I(H_2) + \dots + c_{1n} N_I(H_n) + N_I(k_1) \\ \rho N_I(H_2) - \frac{H_2(0)}{\rho} &= c_{21} N_I(H_1) + c_{22} N_I(H_2) + \dots + c_{2n} N_I(H_n) + N_I(k_2) \\ & \vdots \\ \rho N_I(H_n) - \frac{H_n(0)}{\rho} &= c_{n1} N_I(H_1) + c_{n2} N_I(H_2) + \dots + c_{mn} N_I(H_n) + N_I(k_n), \end{split}$$

where  $H_1(0)$ ,  $H_2(0)$ ,  $\cdots$ ,  $H_n(0)$  are initial conditions.

$$(\rho - c_{11})N_{I}(H_{1}) - c_{12}N_{I}(H_{2}) - \dots - c_{1n}N_{I}(H_{n}) = \frac{H_{1}(0)}{\rho} + N_{I}(k_{1})$$

$$(\rho - c_{22})N_{I}(H_{2}) - c_{21}N_{I}(H_{1}) - \dots - c_{2n}N_{I}(H_{n}) = \frac{H_{2}(0)}{\rho} + N_{I}(k_{2})$$

$$\vdots$$

$$(\rho - c_{mn})N_{I}(H_{n}) - c_{m1}N_{I}(H_{1}) - \dots - c_{m2}N_{I}(H_{n}) = \frac{H_{n}(0)}{\rho} + N_{I}(k_{n}).$$

Similarly, with the formula (3.1), we have

$$\Delta = \begin{vmatrix} (\rho - c_{11}) - c_{12} \dots - c_{1n} \\ -c_{21}(\rho - c_{22}) \dots - c_{2n} \\ \vdots \dots \vdots \\ -c_{m1} - c_{m2} \dots (\rho - c_{mn}) \end{vmatrix}$$

$$N_{I}(H_{1}) = \frac{1}{\Delta} \begin{vmatrix} \frac{H_{1}(0)}{\rho} + N_{I}(K_{1}) - c_{12} \dots - c_{1n} \\ \frac{H_{2}(0)}{\rho} + N_{I}(K_{2})(\rho - c_{22}) \dots - c_{2n} \\ \vdots \dots \vdots \\ \frac{H_{n}(0)}{\rho} + N_{I}(K_{n}) - c_{m2} \dots (\rho - c_{mn}) \end{vmatrix}$$

$$\vdots$$

$$N_{I}(H_{n}) = \frac{1}{\Delta} \begin{vmatrix} (\rho - c_{11}) - c_{12} \dots \frac{H_{1}(0)}{\rho} + N_{I}(K_{1}) \\ -c_{21}(\rho - c_{22}) \dots \frac{H_{2}(0)}{\rho} + N_{I}(K_{2}) \\ \vdots \dots \vdots \\ -c_{m1} - c_{m2} \dots \frac{H_{n}(0)}{\rho} + N_{I}(K_{n}) \end{vmatrix}$$

After taking inverse of Novel transform to  $N_I(H_1), \dots, N_I(H_n)$ , obtaining the solution of the system (3.2).

## 3.3. The Formula of General Solution of Homogeneous System of Second Order

System of second order with constants has the formula H'' = CH' + RH

where 
$$H'' = \begin{pmatrix} \frac{d^{2}H_{1}}{dt^{2}} \\ \frac{d^{2}H_{2}}{dt^{2}} \\ \vdots \\ \frac{d^{2}H_{n}}{dt^{2}} \end{pmatrix}$$
,  $C = \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{pmatrix}$ ,  $H' = \begin{pmatrix} \frac{dH_{1}}{dt} \\ \frac{dH_{2}}{dt} \\ \vdots \\ \frac{dH_{n}}{dt} \end{pmatrix}$ ,  $R = \begin{pmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{n} \end{pmatrix}$ ,  $H = \begin{pmatrix} H_{1} \\ H_{2} \\ \vdots \\ H_{n} \end{pmatrix}$  so,
$$\begin{pmatrix} H_{1} \\ H_{2} \\ \vdots \\ H_{n} \end{pmatrix}'' = \begin{pmatrix} c_{11}c_{12} \cdots c_{1n} \\ c_{21}c_{22} \cdots c_{2n} \\ \vdots \vdots \cdots \vdots \\ c_{m1}c_{m2} \cdots c_{mn} \end{pmatrix} \begin{pmatrix} H_{1} \\ H_{2} \\ \vdots \\ H_{n} \end{pmatrix}' + \begin{pmatrix} r_{11}r_{12} \cdots r_{1n} \\ r_{21}r_{22} \cdots r_{2n} \\ \vdots \vdots \cdots \vdots \\ r_{m1}r_{m2} \cdots r_{mn} \end{pmatrix} \begin{pmatrix} H_{1} \\ H_{2} \\ \vdots \\ H_{n} \end{pmatrix}$$
 (3.3)

By taking Novel transform to (3.3),

$$\begin{split} \rho^2 N_I(H_1) - H_1(0) - \frac{H_1'(0)}{\rho} \\ &= c_{11} \rho N_I(H_1) - c_{11} \frac{H_1(0)}{\rho} + c_{12} \rho N_I(H_2) - c_{12} \frac{H_2(0)}{\rho} + \dots + c_{1n} \rho N_I(H_n) - c_{1n} \frac{H_n(0)}{\rho} \\ &+ r_{11} N_I(H_1) + r_{12} N_I(H_2) + \dots + r_{1n} N_I(H_n) \\ \rho^2 N_I(H_2) - H_2(0) - \frac{H_2'(0)}{\rho} \\ &= c_{21} \rho N_I(H_1) - c_{21} \frac{H_1(0)}{\rho} + c_{22} \rho N_I(H_2) - c_{22} \frac{H_2(0)}{\rho} + \dots + c_{2n} \rho N_I(H_n) - c_{2n} \frac{H_n(0)}{\rho} \\ &+ r_{21} N_I(H_1) + r_{22} N_I(H_2) + \dots + r_{2n} N_I(H_n) \\ &\vdots \\ \rho^2 N_I(H_n) - H_n(0) - \frac{H_n'(0)}{\rho} = c_{m1} \rho N_I(H_1) - c_{m1} \frac{H_1(0)}{\rho} + c_{m2} \rho N_I(H_2) - c_{m2} \frac{H_2(0)}{\rho} + \dots + c_{mn} \rho N_I(H_n) - c_{mn} \frac{H_n(0)}{\rho} + r_{m1} N_I(H_1) + r_{m2} N_I(H_2) + \dots + r_{mn} N_I(H_n) \,, \end{split}$$

Where  $H_1(0)$ ,  $H_2(0)$ ,  $\cdots$ ,  $H_n(0)$  and  $H_1'(0)$ ,  $H_2'(0)$ ,  $\cdots$ ,  $H_n'(0)$  are initial conditions.

$$\begin{split} (\rho^2-c_{11}\rho-r_{11})N_I(H_1)-(c_{12}\rho+r_{12})N_I(H_2)-\cdots-(c_{1n}\rho+r_{1n})N_I(H_n)\\ &=H_1(0)+\frac{H_1'(0)}{\rho}-c_{11}\frac{H_1(0)}{\rho}-c_{12}\frac{H_2(0)}{\rho}-\cdots-c_{1n}\frac{H_n(0)}{\rho}\\ (\rho^2-c_{22}\rho-r_{22})N_I(H_2)-(c_{21}\rho+r_{21})N_I(H_1)-\cdots-(c_{2n}\rho+r_{2n})N_I(H_n)\\ &=H_2(0)+\frac{H_2'(0)}{\rho}-c_{21}\frac{H_1(0)}{\rho}-c_{22}\frac{H_2(0)}{\rho}-\cdots-c_{2n}\frac{H_n(0)}{\rho}\\ &\vdots\\ (\rho^2-c_{mn}\rho-r_{mn})N_I(H_n)-(c_{m1}\rho+r_{m1})N_I(H_1)-\cdots-(c_{m2}\rho+r_{m2})N_I(H_2)=H_n(0)+\frac{H_n'(0)}{\rho}-c_{m1}\frac{H_1(0)}{\rho}-c_{m2}\frac{H_2(0)}{\rho}-\cdots-c_{mn}\frac{H_n(0)}{\rho}\,. \end{split}$$

Through simple steps can be find the formula of  $N_I(H_1)$ , ...,  $N_I(H_n)$ :

$$\Delta = \begin{vmatrix} (\rho^2 - c_{11}\rho - r_{11}) & -(c_{12}\rho + r_{12}) \cdots -(c_{1n}\rho + r_{1n}) \\ -(c_{21}\rho + r_{21}) & (\rho^2 - c_{22}\rho - r_{22}) \cdots -(c_{2n}\rho + r_{2n}) \\ \vdots & \cdots & \vdots \\ -(c_{m1}\rho + r_{m1}) & -(c_{m2}\rho + r_{m2}) & \cdots & (\rho^2 - c_{m1}\rho - c_{mn}) \end{vmatrix}$$

Also,

$$N_{I}(H_{1}) = \frac{1}{\Delta} \begin{vmatrix} \varphi_{1} - (c_{12}\rho + r_{12}) & \cdots - (c_{1n}\rho + r_{1n}) \\ \varphi_{2}(\rho^{2} - c_{22}\rho - r_{22}) \cdots - (c_{2n}\rho + r_{2n}) \\ \vdots & \cdots \vdots \\ \varphi_{m} - (c_{m2}\rho + r_{m2}) & \cdots & (\rho^{2} - c_{m1}\rho - c_{mn}) \end{vmatrix}$$

$$N_{I}(H_{n}) = \frac{1}{\Delta} \begin{vmatrix} (\rho^{2} - c_{11}\rho - r_{11}) - (c_{12}\rho + r_{12}) \cdots \varphi_{1} \\ -(c_{21}\rho + r_{21}) & (\rho^{2} - c_{22}\rho - r_{22}) \cdots \varphi_{2} \\ \vdots \cdots \vdots \\ -(c_{m1}\rho + r_{m1}) & -(c_{m2}\rho + r_{m2}) \cdots \varphi_{m} \end{vmatrix}$$

where,

$$\varphi_{1} = H_{1}(0) + \frac{H'_{1}(0)}{\rho} - c_{11}\frac{H_{1}(0)}{\rho} - c_{12}\frac{H_{2}(0)}{\rho} - \dots - c_{1n}\frac{H_{n}(0)}{\rho}$$

$$\varphi_{2} = H_{2}(0) + \frac{H'_{2}(0)}{\rho} - c_{21}\frac{H_{1}(0)}{\rho} - c_{22}\frac{H_{2}(0)}{\rho} - \dots - c_{2n}\frac{H_{n}(0)}{\rho}$$

$$\vdots$$

$$\varphi_{n} = H_{n}(0) + \frac{H'_{n}(0)}{\rho} - c_{m1}\frac{H_{1}(0)}{\rho} - c_{m2}\frac{H_{2}(0)}{\rho} - \dots - c_{mn}\frac{H_{n}(0)}{\rho}$$

After taking the inverse of Novel transform for  $(N_I(H_i))i = 1,2,3,...,n$ , we obtained the set solution of system (3.3).

#### 3.4. The Formula of General Solution of Non-homogeneous System of Order Two

A non-homogeneous system has the formula H'' = CH' + RH + K

where 
$$H'' = \begin{pmatrix} \frac{d^{2}H_{1}}{dt^{2}} \\ \frac{d^{2}H_{2}}{dt^{2}} \\ \vdots \\ \frac{d^{2}H_{n}}{dt^{2}} \end{pmatrix}$$
,  $C = \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{pmatrix}$ ,  $H' = \begin{pmatrix} \frac{dH_{1}}{dt} \\ \frac{dH_{2}}{dt} \\ \vdots \\ \frac{dH_{n}}{dt} \end{pmatrix}$ ,  $R = \begin{pmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{n} \end{pmatrix}$ ,  $H = \begin{pmatrix} H_{1} \\ H_{2} \\ \vdots \\ H_{n} \end{pmatrix}$ ,  $K = \begin{pmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{n} \end{pmatrix}$  so, 
$$\begin{pmatrix} H_{1} \\ H_{2} \\ \vdots \\ H_{n} \end{pmatrix} = \begin{pmatrix} c_{11}c_{12} \cdots c_{1n} \\ c_{21}c_{22} \cdots c_{2n} \\ \vdots \vdots \cdots \vdots \\ c_{m1}c_{m2} \cdots c_{mn} \end{pmatrix} \begin{pmatrix} H_{1} \\ H_{2} \\ \vdots \\ H_{n} \end{pmatrix} + \begin{pmatrix} r_{11}r_{12} \cdots r_{1n} \\ r_{21}r_{22} \cdots r_{2n} \\ \vdots \cdots \vdots \\ r_{m1}r_{m2} \cdots r_{mn} \end{pmatrix} \begin{pmatrix} H_{1} \\ H_{2} \\ \vdots \\ H_{n} \end{pmatrix} + \begin{pmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{n} \end{pmatrix}$$
 (3.4)

Novel transform for both side of the above system, yields:

$$\begin{split} \rho^2 N_I(H_1) - H_1(0) - \frac{H_1'(0)}{\rho} \\ &= c_{11} \rho N_I(H_1) - c_{11} \frac{H_1(0)}{\rho} + c_{12} \rho N_I(H_2) - c_{12} \frac{H_2(0)}{\rho} + \dots + c_{1n} \rho N_I(H_n) - c_{1n} \frac{H_n(0)}{\rho} \\ &+ r_{11} N_I(H_1) + r_{12} N_I(H_2) + \dots + r_{1n} N_I(H_n) + N_I(k_1) \\ \rho^2 N_I(H_2) - H_2(0) - \frac{H_2'(0)}{\rho} \\ &= c_{21} \rho N_I(H_1) - c_{21} \frac{H_1(0)}{\rho} + c_{22} \rho N_I(H_2) - c_{22} \frac{H_2(0)}{\rho} + \dots + c_{2n} \rho N_I(H_n) - c_{2n} \frac{H_n(0)}{\rho} \\ &+ r_{21} N_I(H_1) + r_{22} N_I(H_2) + \dots + r_{2n} N_I(H_n) + N_I(k_2) \\ &\vdots \\ \rho^2 N_I(H_n) - H_n(0) - \frac{H_n'(0)}{\rho} = c_{m1} \rho N_I(H_1) - c_{m1} \frac{H_1(0)}{\rho} + c_{m2} \rho N_I(H_2) - c_{m2} \frac{H_2(0)}{\rho} + \dots + c_{mn} \rho N_I(H_n) - c_{mn} \frac{H_n(0)}{\rho} + r_{m1} N_I(H_1) + r_{m2} N_I(H_2) + \dots + r_{mn} N_I(H_n) + N_I(k_n), \end{split}$$

where  $H_1(0)$ ,  $H_2(0)$ ,  $\cdots$ ,  $H_n(0)$  and  $H_1'(0)$ ,  $H_2'(0)$ ,  $\cdots$ ,  $H_n'(0)$  are initial conditions.

$$(\rho^{2} - c_{11}\rho - r_{11})N_{I}(H_{1}) - (c_{12}\rho + r_{12})N_{I}(H_{2}) - \dots - (c_{1n}\rho + r_{1n})N_{I}(H_{n})$$

$$= H_{1}(0) + \frac{H'_{1}(0)}{\rho} - c_{11}\frac{H_{1}(0)}{\rho} - c_{12}\frac{H_{2}(0)}{\rho} - \dots - c_{1n}\frac{H_{n}(0)}{\rho} + N_{I}(k_{1})$$

$$\begin{split} (\rho^2 - c_{22}\rho - r_{22})N_I(H_2) - (c_{21}\rho + r_{21})N_I(H_1) - \cdots - (c_{2n}\rho + r_{2n})N_I(H_n) \\ &= H_2(0) + \frac{H_2'(0)}{\rho} - c_{21}\frac{H_1(0)}{\rho} - c_{22}\frac{H_2(0)}{\rho} - \cdots - c_{2n}\frac{H_n(0)}{\rho} + N_I(k_2) \\ &\vdots \\ (\rho^2 - c_{mn}\rho - r_{mn})N_I(H_n) - (c_{m1}\rho + r_{m1})N_I(H_1) - \cdots - (c_{m2}\rho + r_{m2})N_I(H_2) \\ &= H_n(0) + \frac{H_n'(0)}{\rho} - c_{m1}\frac{H_1(0)}{\rho} - c_{m2}\frac{H_2(0)}{\rho} - \cdots - c_{mn}\frac{H_n(0)}{\rho} + N_I(k_n) \end{split}$$

Through simple steps can be find the formula of  $N_I(H_1), \dots, N_I(H_n)$ :

$$\Delta = \begin{vmatrix} (\rho^{2} - c_{11}\rho - r_{11}) - (c_{12}\rho + r_{12}) \dots - (c_{1n}\rho + r_{1n}) \\ -(c_{21}\rho + r_{21}) & (\rho^{2} - c_{22}\rho - r_{22}) \dots - (c_{2n}\rho + r_{2n}) \\ \vdots \dots \vdots \\ -(c_{m1}\rho + r_{m1}) & -(c_{m2}\rho + r_{m2}) & \dots & (\rho^{2} - c_{m1}\rho - c_{mn}) \end{vmatrix}$$

$$N_{I}(H_{1}) = \frac{1}{\Delta} \begin{vmatrix} \gamma_{1} - (c_{12}\rho + r_{12}) & \dots - (c_{1n}\rho + r_{1n}) \\ \gamma_{2}(\rho^{2} - c_{22}\rho - r_{22}) & \dots - (c_{2n}\rho + r_{2n}) \\ \vdots \vdots \dots \vdots \\ \gamma_{m} - (c_{m2}\rho + r_{m2}) & \dots & (\rho^{2} - c_{m1}\rho - c_{mn}) \end{vmatrix}$$

$$\vdots$$

$$N_{I}(H_{n}) = \frac{1}{\Delta} \begin{vmatrix} (\rho^{2} - c_{11}\rho - r_{11}) - (c_{12}\rho + r_{12}) \dots \gamma_{1} \\ -(c_{21}\rho + r_{21}) & (\rho^{2} - c_{22}\rho - r_{22}) \dots \gamma_{2} \\ \vdots \vdots \dots \vdots \\ -(c_{m1}\rho + r_{m1}) & -(c_{m2}\rho + r_{m2}) & \dots \gamma_{m} \end{vmatrix}$$

where,

$$\begin{split} \gamma_1 &= H_1(0) + \frac{H_1'(0)}{\rho} - c_{11} \frac{H_1(0)}{\rho} - c_{12} \frac{H_2(0)}{\rho} - \dots - c_{1n} \frac{H_n(0)}{\rho} + N_I(k_1) \\ \gamma_2 &= H_2(0) + \frac{H_2'(0)}{\rho} - c_{21} \frac{H_1(0)}{\rho} - c_{22} \frac{H_2(0)}{\rho} - \dots - c_{2n} \frac{H_n(0)}{\rho} + N_I(k_2) \\ &\vdots \\ \gamma_m &= H_n(0) + \frac{H_n'(0)}{\rho} - c_{m1} \frac{H_1(0)}{\rho} - c_{m2} \frac{H_2(0)}{\rho} - \dots - c_{mn} \frac{H_n(0)}{\rho} + N_I(k_n) \;. \end{split}$$

After taking the inverse of Novel transform for  $(N_I(H_i))$ , i = 1,2,3,...n, we obtained the set solution of system (3.4).

## 4. Applications

In this section, using the formulas found in the previous section, we apply them to a number of systems.

Example (1): To solve the system of order one in dimension two

$$H' = AH$$
 where  $A = \begin{pmatrix} 5 & -4 \\ 3 & -2 \end{pmatrix}$ ,  $H(0) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$  (4.1)

Solution: By using Novel transform and apply formal (1), yields:

$$N_I(H_1) = \frac{1}{(\rho - 2)(\rho - 1)} \begin{vmatrix} \frac{3}{\rho} & 4\\ \frac{2}{\rho} & (\rho + 2) \end{vmatrix}$$

After simple calculation using partition fraction:

$$N_I(H_1) = \frac{4}{\rho(\rho - 2)} - \frac{1}{\rho(\rho - 1)}$$

Now, taking inverse of Novel transform to both sides of the above equation, we obtain:

$$H_1(t) = 4e^{2t} - e^t$$

In similar way,  $N_I(H_2)$  can be obtained by:

$$N_{I}(H_{2}) = \frac{1}{(\rho - 2)(\rho - 1)} \begin{vmatrix} (\rho - 5) & \frac{3}{\rho} \\ -3 & \frac{2}{\rho} \end{vmatrix}$$
$$N_{I}(H_{2}) = \frac{3}{\rho(\rho - 2)} - \frac{1}{\rho(\rho - 1)}$$

Also, by the inverse of Novel transform for the above equation,

$$H_2(t) = 3e^{2t} - e^t$$
,

where  $H_1(t)$  and  $H_2(t)$  represent the set solution of the system (4.1). Figure (1)



Figure 1.

**Example (2):** To find the general solution of the system H' = AH + K

where 
$$A = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$
,  $K = \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}$ ,  $H(0) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$  (4.2)

**Solution:** Using formal (3.2), yields:

$$N_I(H_1) = \frac{1}{\rho^2 - 1} \begin{vmatrix} \frac{2}{\rho} + \frac{1}{\rho(\rho^2 + 1)} & 1\\ \frac{0}{\rho} + \frac{1}{\rho^2 + 1} & (\rho - 0) \end{vmatrix} = \frac{1}{\rho^2 - 1} \left( \frac{2\rho^2 + 2}{\rho^2 + 1} \right)$$

Simple fiction and taking inverse Novel transform to both sides of the above equation,

$$H_1(t) = 2 \cosh(t)$$

In similar way,  $N_I(H_2)$  can be obtained by:

$$N_{I}(H_{2}) = \frac{1}{\rho^{2}-1} \begin{vmatrix} (\rho - 0) & \frac{2}{\rho} + \frac{1}{\rho(\rho^{2}+1)} \\ 1 & \frac{0}{\rho} + \frac{1}{\rho^{2}+1} \end{vmatrix} = \frac{1}{\rho^{2}-1} \left( \frac{\rho^{2}-2\rho^{2}+3}{\rho(\rho^{2}+1)} \right)$$
$$= \frac{-2}{\rho(\rho^{2}+1)} + \frac{1}{\rho(\rho^{2}-1)}$$

Also, by the inverse of Novel transform for the above equation:

$$H_2 = -2\sin(t) + \sinh(t),$$

where  $H_1(t)$  and  $H_2(t)$  represent the set solution of the system (4.2). Figure (2).



Figure 2.

**Example (3):** To solve the system of order two in dimension two

$$H'' = AH \text{ where } A = \begin{pmatrix} -3 & -2 \\ 4 & 3 \end{pmatrix}, H(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, H'(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdots (4.3)$$

**Solution:** Using formal (3.3), yield:

$$\begin{split} N_{I}(H_{1}) &= \frac{1}{(\rho^{2}+1)(\rho^{2}-1)} \left| \frac{1}{\rho} \quad \frac{2}{(\rho^{2}-3)} \right| \\ &= \frac{2\rho}{\rho(\rho^{2}+1)} - \frac{4}{\rho(\rho^{2}+1)} - \frac{\rho}{\rho(\rho^{2}-1)} + \frac{2}{\rho(\rho^{2}-1)} \end{split}$$

Now, taking inverse Novel transform to both sides of the above equation:

$$H_1(t) = 2\cos(t) - 4\sin(t) - \cosh(t) + 2\sinh(t)$$

In similar way, N<sub>I</sub>(H<sub>2</sub>) can be obtained by:

$$\begin{split} N_I(H_2) &= \frac{1}{(\rho^2+1)(\rho^2-1)} \begin{vmatrix} (\rho^2-3) & 1\\ -4 & \frac{1}{\rho} \end{vmatrix} = \frac{1}{(\rho^2+1)(\rho^2-1)} (\frac{\rho^2+3}{\rho}+4) \\ &= \frac{2}{\rho(\rho-1)} - \frac{2\rho}{\rho(\rho^2+1)} - \frac{1}{\rho(\rho^2+1)} \end{split}$$

taking inverse Novel transform to both sides of the above equation

$$H_2(t) = 2e^t - 2\cos(t) - \sin(t)$$

Where  $H_1(t)$  and  $H_2(t)$  represent the set solution of the system (4.3). Figure (3)



Figure 3.

**Example (4):** To find the general solution of the system H'' = RH + K,

where 
$$R = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$$
,  $K = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ ,  $H(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ ,  $H'(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$  (4.4)

**Solution:** By using Novel transform and apply formula (2.4), yields:

$$N_{I}(H_{1}) = \frac{1}{\rho^{4}} \begin{vmatrix} \frac{2}{\rho^{2}} & 0\\ 1 + \frac{1}{\rho^{2}} & (\rho^{2} + 1) \end{vmatrix} = \frac{1}{\rho^{4}} \left( \frac{2\rho^{2} + 1}{\rho^{2}} \right)$$

Taking inverse of Novel transform of  $N_1(H_1)$ :

$$H_1(t) = \frac{t^2}{2} + \frac{1}{4!}t^4$$

In similar way, N<sub>I</sub>(H<sub>2</sub>) can be obtained by:

$$N_{I}(H_{2}) = \frac{1}{\rho^{4}} \begin{vmatrix} (\rho^{2} - 1) & \frac{2}{\rho^{2}} \\ -1 & 1 + \frac{1}{\rho^{2}} \end{vmatrix} = \frac{1}{\rho^{4}} \left( \frac{(\rho^{2} - 1)}{\rho^{2}} + (\rho^{2} - 1) + \frac{2}{\rho^{2}} \right)$$

Taking inverse of Novel transform to both sides of the above equation obtain:

$$H_2(t) = 1 + \frac{1}{4!}t^4,$$

where  $H_1(t)$  and  $H_2(t)$  represent the set solution of the system (4.4).





Figure 4.

#### References

- 1. Atangana and A. Kilicman, "A novel integral operator transform and its application to some FODE and FPDE with some kind of singularities," *Mathematical Problems in Engineering*, vol. 12(1), 2013.
- 2. Athraa N, and Ali M, "Solving Euler's Equation by Using New Transformation, *Journal Karbala University*", Vol.6, 2008.
- 3. Elzaki TM. On the connections between Laplace and Elzaki transforms. *Advances in Theoretical and Applied Mathematics*. 2011; 6(1): 1-11.
- 4. G.K. Watugala, "Sumudu transform a new integral transform to solve differential equations and control engineering problems," *Math. Engg. in Indust*, vol. 6, 1998.
- 5. Larson .R and David .C, "Elementary linear algebra," New York, USA: Houghton Mifflin Harcourt publishing company, 2009.
- 6. Liang X, Gao F, Gao Y-N, Yang X-J. "Applications of a Novel integral transform to partial differential equations. *Journal of Nonlinear Sciences & Applications (JNSA)*. 2017; 10(2).
- 7. Liang X, Liu G, Su S. Applications of a Novel integral transform to the convection-dispersion equations. *Thermal Science*. 2017; 21(suppl. 1): 233-40.
- 8. R. Murray, "Theory and problems of Laplace transform," New York, USA: Schaum's Outline Series, McGraw-Hill, 1965.
- 9. R.N. Bracewell, "The Fourier transform and its applications", McGraw-Hill, Boston, Mass, USA, 3rd edition, (2000).
- 10. S. Aggarwal, S.D. Sharma and A.R. Gupta, "Application of Shehu Transformation Handling growth and decay problems," *Global Journal of Engineering Science and Researches*, Vol.6, 2019.
- 11. X.J. Yang, "A new integral transform method for solving steady heat-transfer problem," *Thermal Science*, vol. 20, 2016.