
Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1524-1537

 1524

Research Article

An OpenMP Based Approach for Parallelization and Performance Evaluation of k-
Means Algorithm

Ansari Abdullah

a, Quazi Mateenuddin H b and Zahid Ansari c

a Department of Computer Science and Engineering, Bearys Institute of Technology, Mangalore
b Faculty of Electronics and Communication Engineering, Indian Naval Acadamy, Ezhimala
c
 Department of Computer Science, P A College of Engineering, Mangalore

Email:aansaridx99@gmail.com, bqmateen@rediffmail.com, czahid_cs@pace.edu.in

Article History Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 28 April 2021

Abstract: In today’s digital world, the volume of data is drastically increasing due to the continuous flow of data from various
heterogenous sources such as WWW, social media, environmental sensors, huge enterprise data warehouses, bioinformatic

labs etc. to name a few. This results in creation of many high-volume datasets in various domains. Processing such large
datasets is a tedious task, therefore they need to be categorized into smaller subsets using various supervised or unsupervised

classification techniques. Clustering is the process of statistically analyzing and categorizing data objects with similarity, into
substantially homogeneous groups, called data clusters. k-Means is the most common, simple and popular clustering technique,
due to its ease of implementation, usability and wide range of applications. One of the issues associated with the k-Means
algorithm is that it suffers from the scalability problem due to which, its performance degrades as the dataset sizes grow. In
order to address this issue, we have presented an OpenMP based parallelized k-means algorithm which results in better
computational cost as compared with its sequential counterpart. Computational performance results of both sequential and

OpenMP based k-means algorithms are illustrated and compared.

Keywords: k-Means, OpenMP, Parallel Clustering

1. Introduction

Clustering is one of the common data mining operations that has many applications for data processing and

categorization [1-3]. k-Means algorithm performs partitioning of the dataset objects into various clusters each of

them represented by their centroids. [4-6]. In today’s age of digitization there is a continuous flow of data from

various heterogenous sources such as social media, WWW, environmental sensors, enterprise data warehouses,

bioinformatic labs etc. This results in creation of a large number of high-volume datasets in various domains.

Processing such large datasets is a tedious task, therefore they need to be categorized into smaller subsets using

various supervised or unsupervised classification techniques [7-8].

When k-Means algorithm is applied to these massive datasets of sizes in gigabytes or terabytes, it suffers from

the scalability problem due to which, its performance degrades as the dataset sizes grow. Many times, the

traditional k-Means algorithms fail to execute in-core such high voluminous data or would result in extremely

high computational time [9-10]. In order to speed up the k-Means execution on large datasets the parallel or

distributed variant of k-Means must be used for processing voluminous datasets. Since now days most of the

computational hardware are equipped with multiple cores, the performance of k-Means can be greatly improved

by utilizing these cores and their associated memory units. [11-13]

In this study we have presented an OpenMP based parallelized k-means algorithm to improve the

computational cost as compared with its sequential counterpart. One of the necessary requirements of this

algorithms is that, the clustering result produced by it should match with that of its sequential counterpart.

After providing the introductions in section I, the remaining paper is organized as follows. In Section II, a

review of the literature related to traditional sequential k-Means and its parallel OpenMP based counterpart are

provided. In section III details of the proposed methodology are provided. Section IV describes the comparison of

results of traditional and the proposed OpenMP based k-means. Finally, conclusions are drawn in section V.

2.Related Works

An extensive amount of work related to k-Means and various other clustering techniques has been reported in

literature. In this section, a review of some of the selected work is presented. Clustering algorithms have been

applied in wide range of domains including web mining, bioinformatics, image analysis, telecommunication,

software modelling, business intelligence to name a few [14-28]. In order to prepare the massive datasets for

clustering to be applied, it needs to be preprocessed. Several data preprocessing work have been reported, some of

which can be found in [29-33].

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1524-1537

 1525

Research Article

Ansari et. al. has worked on various clustering techniques in the field of web usage clustering [34-35]. They

have provided the comparative results of these techniques and performed the quantitative evaluation of their

performance based on various performance measuring indices [36-37]. They have also utilized partition-based

clustering algorithms for the clustering of web navigational access data [38] using k-Means, Fast global k-Means

and k-Medoids methods [39-41]. They have also provided the comparison between these algorithms for cluster

formation. When k-Means algorithm is integrated with soft computing techniques it become more robust against

data imperfections, but it becomes computationally expensive. Fuzzy set-based k-Means algorithms have been

extensively applied for data categorization [42-45] where each object may be associated with multiple categories

with a different level of membership. Neural Network based k-Means algorithms add better more and robustness

to k-Means but at the cost of high computational time [46-49]. Rough-set based k-Means algorithm also provides

overlapping clusters but runs too slow [50]. Other soft computing techniques such as modified mountain

clustering have also been used for data categorization [51-52].

To deal with the high voluminous data, several distributed data clustering approaches using Hadoop and

MapReduce have been successfully applied. Tanvir et. al. has reported several works related to MapReduce based

variant of k-Means algorithms for document clustering [53-54]. Many other improved variants of k-Means with

the objective of enhancing their computational performance can be found in [55-56]. There are related works on

OpenMP based parallel k-Means. Huang et al. illustrated performance of k-Means on multi-cores [57]. Nazir et. al

have performed parallel partitioning using OpenMP to optimize the computational cost of k-Means [58].

In this OpenMP based implementation of k-means algorithm, those snippets of code are parallelized which

most expensive computationally such as distance calculation, choosing the cluster etc. This selective

parallelization gives good performance and doesn’t add much overhead. And for solving the problems of false

sharing, OpenMP’s ‘schedule’ clause is used to schedule the iteration between the threads.

3.Methodology

Let us first review the sequential implementation of k-means algorithm for a better understanding the

methodology on OpenMP based k-Means.

Sequential k-Means: Sequential k-Means clustering algorithm is described in Algorithm 1. The initial centroid

Ci can be found for the range values n1 and n2 with k clusters as:

Ci = ((n2 – n1) / k) * (i+1) for i < k (1)

The Euclidean distance in two dimensions between two points p = (p1, p2) and q = (q1, q2) is given by:

 (2)

The new cluster centroid C(i) can be found by,

for i=0 to k-1

sumi = ∑ 𝑑(𝑗, 𝑖)
𝑐𝑜𝑢𝑛𝑡(𝑖)
𝑗=0

Ci = sumi / counti (3)

The advantage of this algorithm is that here we take the initial cluster centroid with the help of the range of the

data items. Hence the performance and the cluster quality will be increased

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1524-1537

 1526

Research Article

OpenMP Based Implementation of k-Means: Parallel K-means clustering algorithm using OpenMP is

described in Algorithm 2. It enables the cluster analysis in shared memory system for very large datasets. In this

implementation we use the number of threads equal to hardware threads because that gives the better efficiency

and the problems with false sharing is also avoided with the help of the schedule clause of the for directive of

OpenMP.

4.Experimental Results

Artificially generated synthetic datasets are used for the experimentation purpose. Data objects are randomly

generated in each synthetic dataset. To observe the influence of the number of dataset size on the computational

performance, datasets with 1000, 10000, 20000, 30000 and 50000 2-dimensional were created for different values

of k ranging from 2 to12. Multiple runs providing execution time of serial and OpenMP k-means clustering were

set, based on the two ways:

1. Varying data size, keeping k (number of cluster) constant.

2. Varying k (number of cluster), keeping data size constant.

Varying data size keeping k constant: Observing the change in execution time keeping k the number of

clusters constant from k=2,4,6,8,10,12 and varying dataset from 1000, 10000, 20000, 30000 and 50000. Table

1,3,5,7,9,11 shows the execution time of Serial vs. OpenMP code where k=2, 4, 6, 8, 10, 12. Table 2, 4, 6, 8, 10,

12 shows the Speedup for Serial vs. OpenMP code where k=2, 4, 6, 8, 10. 12. Fig. 1-6 illustrate the graph of

computational time of Sequential vs. OpenMP implementation where k=2, 4, 6, 8, 10, 12.

Table I Execution Time (ms) of Serial vs OpenMP when k=2

Dataset Serial OpenMP

1000 7 10

10000 50 40

20000 60 60

30000 130 100

50000 200 150

Table II Execution Time (Ms) Of Serial Vs Openmp When K=3

Dataset Speedup (OpenMP)

1000 0.7

10000 1.25

Algorithm 2: K-Means Using OpenMP

Input: D = {d1, d2, … , dn }, set of n data items, k

number of desired clusters

Output: k clusters.

Steps:

1 Master thread initializes the k centroids using (1).

2 Childs threads calculate the distance between

each data items and each cluster using (2) in

parallel.

3 Child threads associates each di to the closest

cluster with minimum distance between them in

parallel.

4 Repeat

a. Master thread calculates new cluster centroid

using (3).

b. Child threads perform distance calculation

between cluster centers and data objects using (2)

in parallel.

c. Child threads associates each di to the closest

cluster with minimum distance between them in

parallel.

Until previous and new cluster count do not

change

Algorithm 1: Sequential K-means

Input: D = {d1, d2, …, dn}, set of n data items, k

number of desired clusters.

 Output: k clusters.

 Steps:

1. Initialize the k centroids using (1).

2. Perform distance calculation between cluster

centers and data objects using (2).

3. Associate each object di to the nearest cluster with

minimum distance.

4. Repeat

a. Calculate new cluster centroid using (3).

b. Perform distance calculation between cluster

centers and data objects using (2).

c. Associate each object di to the nearest cluster

with minimum distance.

Until clusters do not change

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1524-1537

 1527

Research Article

20000 1

30000 1.3

50000 1.333

Table III Execution Time (ms) of Serial vs OpenMP when k=4

Dataset Serial OpenMP

1000 7 10

10000 50 40

20000 110 80

30000 150 110

50000 290 190

Table IV Speedup for Serial vs. OpenMP code for k=4

Dataset Speedup

(OpenMP)

1000 0.7

10000 1.25

20000 1.375

30000 1.364

50000 1.526

Table V Execution Time (ms) of Serial vs OpenMP for k=6

Dataset Serial OpenMP

1000 10 20

10000 100 70

20000 410 250

30000 780 460

50000 1170 690

Fig. 1 Execution Time (ms) of Serial vs OpenMP for k=2

0

100

200

300

1 0 0 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 5 0 0 0 0

E
X

E
C

U
T

IO
N

 T
IM

E

DATASET

EX EC U T I O N T I M E(K = 2)

SERIAL OPENMP

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1524-1537

 1528

Research Article

Fig. 2 Execution Time (ms) of Serial vs OpenMP for k=4

Table VI Speedup for Serial vs OpenMP code for k=6

Dataset Speedup (OpenMP)

1000 0.50

10000 1.429

20000 1.640

30000 1.696

50000 1.696

Fig. 3 Execution Time (ms) of Serial vs OpenMP for k=6

Fig. 4 Execution Time (ms) of Serial vs OpenMP for k=8

Table VII Execution Time (ms) of Serial vs OpenMP for k=8

0

100

200

300

400

1 0 0 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 5 0 0 0 0

E
X

E
C

U
T

IO
N

 T
IM

E
DATASETS

EX EC U T I O N T I M E (K = 4)

SERIAL OPENMP

0

200

400

600

800

1000

1200

1400

1 0 0 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 5 0 0 0 0

E
X

E
C

U
T

IO
N

 T
IM

E

DATASETS

EX EC U T I O N T I M E (K = 6)

SERIAL OPENMP

0

500

1000

1500

2000

1 0 0 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 5 0 0 0 0

E
X

E
C

U
T

IO
N

 T
IM

E

DATASETS

EX EC U T I O N T I M E (K = 8)

SERIAL OPENMP

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1524-1537

 1529

Research Article

Dataset Serial OpenMP

1000 20 20

10000 640 200

20000 700 390

30000 1040 580

50000 1660 950

Table VIII Speedup for Serial vs OpenMP for k=8

Dataset Speedup

(OpenMP)

1000 1

10000 3.2

20000 1.795

30000 1.793

50000 1.747

Table IX Execution Time (ms) of Serial vs OpenMP for k=10

Dataset Serial OpenMP

1000 10 10

10000 210 130

20000 350 210

30000 730 420

50000 1890 1070

Table X Speedup for Serial vs OpenMP for k=10

Dataset Speedup (OpenMP)

1000 1.00

10000 1.615

20000 1.667

30000 1.738

50000 3.405

Table XI Execution Time (ms) of Serial vs OpenMP for k=12

Dataset Serial OpenMP

1000 10 10

10000 220 130

20000 950 530

30000 990 570

50000 1720 950

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1524-1537

 1530

Research Article

Fig. 5 Execution Time (ms) of Serial vs OpenMP for k=10

Table XII Speedup for Serial vs OpenMP for k=12

Dataset Speedup (OpenMP)

1000 1

10000 1.692

20000 1.792

30000 1.737

50000 1.811

Fig. 6 Execution Time (ms) of Serial vs OpenMP for k=12

From Fig. 1-6 we can see that when k=2, 4, 6, 8, 10, 12 and the data size between 1000-50000 there are

variations in execution time. For data size 1000, serial k-means has better execution time but OpenMP based k-

Means provides better performance for all data sizes > 1000. This indicates that OpenMP based k-Means results in

better execution time.

Varying k keeping data size constant: Observing the change in execution time keeping dataset constant from

1000, 10000, 20000, 30000 and 50000 and varying the k from k = 2 to12. Tables 13, 15, 17, 19, 21 shows the

execution time of Serial vs. OpenMP code where dataset= 1000, 10000, 20000, 30000 and 50000. Table 14, 16,

18, 20, 22 shows the Speedup for Serial vs. OpenMP code where dataset= 1000, 10000, 20000, 30000 and 50000.

Fig. 7-11 illustrate graph of execution time of Sequential vs. OpenMP for data size = 1000, 10000, 20000, 30000

and 50000.

Table XIII Execution Time (ms) of Serial vs. OpenMP when dataset=1000

0

500

1000

1500

2000

1 0 0 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 5 0 0 0 0

E
X

E
C

U
T

IO
N

 T
IM

E
DATASETS

EX EC U T I O N T I M E (K = 1 0)

SERIAL OPENMP

0

500

1000

1500

2000

1 0 0 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 5 0 0 0 0

E
X

E
C

U
T

IO
N

 T
IM

E

DATASETS

EX EC U T I O N T I M E(K = 1 2)

SERIAL OPENMP

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1524-1537

 1531

Research Article

k Serial OpenMP

2 7 10

4 7 10

6 10 20

8 20 20

10 10 10

12 10 10

Table XIV Speedup for CPU vs. OpenMP for dataset=1000

k Speedup (OpenMP)

2 0.7

4 0.7

6 0.5

8 1

10 1

12 1

Fig. 7 Execution Time (ms) of Serial vs. OpenMP for dataset=1000

Table XV Execution Time (ms) of Serial vs. OpenMP for dataset=10000

k Serial OpenMP

2 50 40

4 50 40

6 100 70

8 640 200

10 210 130

12 220 130

0

5

10

15

20

25

2 4 6 8 1 0 1 2

E
X

E
C

U
T

IO
N

 T
IM

E

K (NUMBER OF CLUSTER)

EX EC U T I O N T I M E (D A T A S ET = 1 0 0 0)

SERIAL OPENMP

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1524-1537

 1532

Research Article

Table XVI Speedup for CPU vs. OpenMP for dataset=10000

k Speedup (OpenMP)

2 1.25

4 1.25

6 1.42

8 3.2

10 1.62

12 1.69

Fig. 8 Execution Time (ms) of Serial vs. OpenMP for dataset=10000

Table XVII Execution Time (ms) of Serial vs. OpenMP for dataset=20000

k Serial OpenMP

2 60 60

4 110 80

6 410 250

8 700 390

10 350 210

12 950 530

Table XVIII Speedup for CPU vs. OpenMP for dataset=20000

k Speedup (OpenMP)

2 1

4 1.38

6 1.64

8 1.79

10 1.67

12 1.79

Table XIX Execution Time (ms) of Serial vs. OpenMP for dataset=30000

0

200

400

600

800

2 4 6 8 1 0 1 2

E
X

E
C

U
T

IO
N

 T
IM

E

K (NUMBER OF CLUSTER)

EX EC U T I O N T I M E (D A T A S ET = 1 0 0 0 0)

SERIAL OPENMP

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1524-1537

 1533

Research Article

k Serial OpenMP

2 130 100

4 150 110

6 780 460

8 1040 580

10 730 420

12 990 570

Table XX Speedup for CPU vs. OpenMP for dataset=30000

k Speedup (OpenMP)

2 1.30

4 1.36

6 1.70

8 1.79

10 1.74

12 1.74

Fig. 9 Execution Time (ms) of Serial vs. OpenMP for dataset=20000

Table XXI Execution Time (ms) of Serial vs. OpenMP for dataset=50000

k Serial OpenMP

2 200 150

4 290 190

6 1170 690

8 1660 950

10 1890 1070

12 1720 950

Table XXI Speedup for CPU vs. OpenMP for dataset=50000

0

200

400

600

800

1000

2 4 6 8 1 0 1 2E
X

E
C

U
T

IO
N

 T
IM

E

K (NUMBER OF CLUSTER)

EX EC U T I O N T I M E (D A T A S ET = 2 0 0 0 0)

SERIAL OPENMP

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1524-1537

 1534

Research Article

k Speedup (OpenMP)

2 1.33

4 1.53

6 1.70

8 1.75

10 1.77

12 1.81

Figure 10: Execution Time (ms) of Serial vs. OpenMP for dataset=30000

Figure 11: Execution Time (ms) of Serial vs. OpenMP for dataset=50000

From Fig. 7-11, we see that for data size 1000, the performance of OpenMP and serial k-means are

comparable. But when dataset kept constant between 1000 to 50000 varying k from 2 to 12, we obtain better

execution time in OpenMP k-means clustering code compared to serial k-means clustering code. This shows that

OpenMP k-means results in better execution time.

5.Conclusion

In this study, OpenMP based parallelization of k-Means algorithm is attempted with objective reducing the

computational cost of k-Means on large datasets without sacrificing the accuracy. From the experimental results, it

has been observed that the proposed OpenMP based parallel version of the k-Means produces exactly, the same

results as with the Serial algorithm with much lower computational almost inversely proportional to the number of

cores used.

0

200

400

600

800

1000

1200

2 4 6 8 1 0 1 2

E
X

E
C

U
T

IO
N

 T
IM

E

K (NUMBER OF CLUSTER)

EX EC U T I O N T I M E (D A T A S ET = 3 0 0 0 0)

SERIAL OPENMP

0

500

1000

1500

2000

2 4 6 8 1 0 1 2

E
X

E
C

U
T

IO
N

 T
IM

E

K (NUMBER OF CLUSTER)

EX EC U T I O N T I M E (D A T A S ET = 5 0 0 0 0)

SERIAL OPENMP

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1524-1537

 1535

Research Article

Although the experimental results presented in this study is based on artificially generated synthetic data,

OpenMP based parallel version of k-Means can very well be applied on real world huge datasets such as web

access logs, bioinformatics sequences, high dimensional images etc.

6.Acknowledgement

This study is funded by GoK-VGST-CISEE scheme (GRD-No-461). We are also thankful to Saikiran Hegde,

Yusuf Ansar, Shaswath and Prajan Shetty for their support in this work.

References

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1524-1537

 1536

Research Article

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 1524-1537

 1537

Research Article

