Cycle Related Graphs on Square Difference Labeling

J. Rashmi Kumar ${ }^{1}$ and K. Manimekalai ${ }^{2}$

${ }^{1,2}$ Department of Mathematics, Bharath Institute of Higher Education and Research, Chennai, India.
${ }^{1}$ Corresponding author: rashmilenny@gmail.com
Article History Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 28 April 2021

Abstract

: In this study, we prove that the graphs cycle C_{n} with parallel chords, $2-$ tuple of $Z-P_{n}$, Durer-graph, Moserspindle, Herchel graph are Square difference graph (SDG).

Keywords: Square difference Labeling (SDL), Z-P P_{n}, Durer-graph, Moser-spindle, Herchel graph, 2-tuple graph.

1.Introduction

All graphs in this paper are simple, undirected and finite. We refer J. A. Gallian for detailed study [1] and follow [2] for all terminology and notation. The Square difference labeling is introduced by Shiama [6]. A function of a graph G admits one to one and onto function $f: v(G) \rightarrow\{0,1,2, \ldots \ldots p-1\}$ such that the $1-1$ function $f^{*}: E(G) \rightarrow N$ given by $f^{*}(u v)=\mid\left[f(u)^{2}-f(v)^{2} \mid\right.$, for all $u v \in E(G)$, distinct are said to be Square Difference graph $[S D G][1,4]$.
The concept of 2-tuple was introduced by P.L. Vihol [7]. P. Jagadeeswari investigated some various graphs for SDL. [4,5]. In this work, we prove Cycle related graphs on Square difference labeling.
We Commenced some preliminaries which are helpful for our work.

Definition 1.1[5]:

The graph $Z-P n$ is acquired from the two paths $P_{n}{ }^{\prime}$ and $P_{n}{ }^{\prime \prime}$. Let v_{i} and $u_{i}, i=1,2 \ldots \ldots n-1$, are the vertices of path $P_{n}{ }^{\prime}$ and $P_{n}^{\prime \prime}$ respectively. To determine $Z-P n$ attach $i^{\text {th }}$ vertex of path $P_{n}{ }^{\prime}$ with $(i+1)^{\text {th }}$ vertex of path $P_{n}{ }^{\prime \prime}$. for all $i=1,2 \ldots \ldots n-1$.
Definition 1.2[5]:
Let $G=(V, E)$ be a simple graph and let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be another copy of G. Link each vertex V of G to the equivalent vertex V^{\prime} of G^{\prime} by an edge. The new graph thus gained is called 2-tuple of G. We signify 2-tuple graph of G by the notation $T^{2}(G)$.

Definition 1.3[5]:

The Durer graph is the graph termed by the vertices and edges of the durer solid. It is a cubic graph of girth 3 and diameter 4. The Durer graph is Hamiltonian. It has exactly 6 Hamiltonian cycles, each pair of which may be mapped into each other by a symmetry of the graph.

Definition 1.4[5]:

The Moser graph which is also called Moser spindle is an undirected graph with 7 vertices and 11 edges.

Definition 1.5[5]:

The Herschel graph is a bipartite undirected graph with 11 vertices and 18 edges, the smallest non-Hamiltonian polyhedral graph.

Main Results

Theorem 2.1:

The $2-$ tuple graph of $Z-P_{n}$ admits $S D L$.

Proof:

Let G be the graph with $4 n$ vertices and $(8 n-6)$ edges. Consider the vertex set $\quad V=\left\{u_{i}, v_{i} / 1 \leqslant i \leqslant n\right\}$ and the edge set $E=\left\{u_{i} v_{i}, u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} u_{i+8}, v_{i} v_{i+8} / 1 \leqslant i \leqslant n-1\right\}$.
Determine the 1-1 and onto function as:

$$
\begin{aligned}
& f\left(u_{i}\right)=2(i-1) \text { for } 1 \leqslant i \leqslant n \\
& f\left(v_{i}\right)=2 i-1 \\
& f^{*}\left(u_{i} u_{i+1}\right)=8 i-4 \text { for } 1 \leqslant i \leqslant n-1 \\
& f^{*}\left(v_{i} v_{i+1}\right)=8 i \\
& f^{*}\left(u_{i} v_{i}\right)=4 i-3 \\
& f^{*}\left(u_{i} u_{i+8}\right) \equiv 0(\bmod 8) \\
& f^{*}\left(v_{i} v_{i+8}\right) \equiv 0(\bmod 8) \\
& \text { Here } f^{*}\left(u_{i} u_{i+8}\right)>f^{*}\left(v_{i} v_{i+8}\right) \text {, therefore all the edge labeling are dissimilar. Hence the theorem is verified. }
\end{aligned}
$$

Figure 1. 2-tuple of $\mathbf{Z}-\mathbf{P}_{3}$
Theorem 2.2:
Every cycle $\mathrm{C}_{\mathrm{n}}(n \geq 0)$ with parallel chords is Square difference graph.

Proof:

Contemplate the graph G with $V=\left\{v_{i} / 0 \leqslant i \leqslant n-1\right\}$ and $E=\left\{v_{i} v_{i+1}, v_{i} v_{n-i} / 0 \leqslant i \leqslant n-1\right\}$.The labeling f for the vertices and the labeling f^{*} for the edges are given respectively in the following two cases depending on n being even and n being odd .
Also,

$$
\begin{aligned}
& |V(G)|=n \text { and } \\
& |E(G)|=\left\{\begin{array}{l}
\frac{(3 n-3)}{2}, n \text { is odd } \\
\frac{(3 n-2)}{2}, n \text { is even }
\end{array}\right.
\end{aligned}
$$

Case (i) : \boldsymbol{n} is even

Define the bijective function g and the edge labeling g^{*} as:
$g\left(v_{i}\right)=i, 0 \leqslant i \leqslant n-1$
$g^{*}\left(v_{i} v_{i+1}\right)=2 i+1$
$g^{*}\left(v_{i} v_{n-i}\right) \equiv 0(\bmod n)$
$g^{*}\left(v_{0} v_{n-1}\right)=(n-1)^{2}$
$g^{*}\left(v_{0} v_{1}\right)=1$

Figure 2. Cycle Cs with parallel chords

Case(ii): \boldsymbol{n} is odd

$$
\begin{aligned}
& g\left(v_{i}\right)=i, 0 \leqslant i \leqslant n-1 \\
& g^{*}\left(v_{i} v_{i+1}\right)=2 i+1 \\
& g^{*}\left(v_{0} v_{1}\right)=1 \\
& g^{*}\left(v_{i} v_{n-1}\right) \equiv 0(\bmod n) \\
& g^{*}\left(v_{0} v_{n-1}\right)=(n-1)^{2}
\end{aligned}
$$

For the above labeling pattern, the induced edge labeling function $g^{*}: E(G) \rightarrow N$ defined by $g^{*}(u v)=$ $\mid\left[g(u)^{2}-g(v)^{2} \mid\right.$, for every $u v \in E(G)$ are all diverse. such that $g^{*}\left(e_{i}\right) \neq g^{*}\left(e_{j}\right)$ for every $e_{i} \neq e_{j}$. Hence the graph G admits $S D L$.

Figure 3. Cycle \mathbf{C}_{5} with parallel chords

Theorem 2.3:

The Durer graph acknowledges $S D L$.
Proof:
Contemplate the graph G with 12 vertices and 18 edges . Let v_{i} be the vertex set for $0 \leqslant j \leqslant 11$. Now define the function $f: V \rightarrow\{0,1, \ldots, 11\}$ as :

$$
f\left(v_{j}\right)=j \text { for } 0 \leqslant j \leqslant n-1
$$

and the induced function $f *$ satisfies the condition of square difference labeling and it yields the edge labels as

$$
\begin{aligned}
& f^{*}\left(v_{0} v_{1}\right)=1 \\
& f^{*}\left(v_{0} v_{5}\right)=25 \\
& f^{*}\left(v_{i} v_{i+1}\right)=2 i+1, i=1 \text { to } 5 \\
& f^{*}\left(v_{i} v_{i+7}\right) \equiv 0(\bmod 7) i=1 \text { to } 4 \\
& f^{*}\left(v_{i} v_{i+2}\right) \equiv 0(\bmod 4) i=6 \text { to } 9 \\
& f^{*}\left(v_{i} v_{i+4}\right) \equiv 0(\bmod 8) i=6,7
\end{aligned}
$$

Thus the entire 11 edges acquire the discrete edge labels. Hence the theorem is verified.

Figure 4. Durer graph

Theorem 2.4:

The Moser - Spindle graph is Square Difference graph.

Proof:

Consider the Moser Spindle graph with 7 vertices and 11 edges. Let u_{j} be the vertex set for $0 \leqslant j \leqslant 6$.
Then the vertex function f and edge function f^{*} is defined as

$$
\begin{aligned}
& f\left(u_{j}\right)=j, \quad 0 \leqslant j \leqslant n-1 \\
& f^{*}\left(u_{j} u_{j+1}\right)=2 j+1, j=0 \text { to } 3 \\
& f^{*}\left(u_{0} u_{j}\right)=j^{2}, j=1,4,5,6 \\
& f^{*}\left(u_{j} u_{j+3}\right) \equiv 0(\bmod 7), j=2,3 \\
& f^{*}\left(u_{1} u_{5}\right) \equiv 0(\bmod 8) \\
& f^{*}\left(u_{1} u_{4}\right) \equiv 0(\bmod 4)
\end{aligned}
$$

Hence the theorem.

Figure 5. Moser - Spindle graph

Theorem 2.5:

The Herschel graph is $S D G$.
Proof:
Consider the Herschel graph with 11 vertices and 18 edges. The vertex set $V=\{v, u\}$. Then the vertex valued function f and edge function f^{*} is defined as

$$
\begin{aligned}
& f\left(u_{i}\right)=2 i+1,0 \leqslant i \leqslant 4 \\
& f\left(v_{j}\right)=2 j, 0 \leqslant j \leqslant 5 \\
& f^{*}\left(v_{1} u_{1}\right)=5 \\
& f^{*}\left(v_{0} u_{2}\right)=25 \\
& f^{*}\left(v_{1} u_{3}\right)=45 \\
& f^{*}\left(v_{4} u_{1}\right)=55 \\
& f^{*}\left(v_{3} u_{0}\right)=35 \\
& f^{*}\left(v_{2} u_{4}\right)=65 \\
& f^{*}\left(v_{5} u_{2}\right)=75
\end{aligned}
$$

Hence $f^{*}\left(e_{i}\right) \neq f^{*}\left(e_{j}\right) \forall e_{i}, e_{j} \in E(G)$. i.e., all the edge labeling are diverse. Therefore, the theorem is verified.

Figure 6. Herschel graph

REFERENCES:

1. J. A. Gallian, "A Dynamic survey of graph labeling", The electronics journal of Combinatories, 17(2010), \# DS6.
2. F. Harary, Graph Theory, Narosa publication House Reading, New Delhi, 1998.
3. P.Jagadeeswai, "Considering Square difference labeling for validating Theta graphs of dynamic machinaries", International journal of Innovative Technology and Exploring Engineering, ISSN : 22783075, vol-9, Issue-2S4 dec2019.
4. P.Jagadeeswai, K.Manimekalai, K.Bhuvaneswari, "Square difference labeling of cycle, path and tree related graphs", Advancement in Engineering, science \& Technology J.Mech.Cont.\&Math.sci.,Special issue, No.-2, August (2019) pp 627-631.
5. Mydeenbibi \& M.Malathi, "Equality labeling on special graphs", International journal of modern trends in Engineering \& Research, vol5 , issue 04 (Apr2018) ISSN(online) 2349-9745 ISSN(print) 2393-8161.
6. J.Shiama, " Square difference labeling for certain graph " International journal of computer applications (0975-08887), 44(4) (2012).
7. P. L. Vihol et. al., "Difference Cordial Labeling of 2-tuple Graphs of Some Graphs", International Journal of Mathematics and its Applications, Volume 4, Issue 2-A (2016), 111-119.
