Research Article

Hybrid Fuzzy Bi-Ideals In Near-Rings

Dr. M. Himaya Jaleela Begum¹, G.Rama²Reg.

No:18221192092015 ¹Assistant Professor,²Research Scholar. ^{1,2} Department Of Mathematics, Sadakathullah Appa College (Autonomous),Tirunelveli-627 011. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012.Tamilnadu, India.

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 16 April 2021

ABSTRACT: In this paper, we introduce the concept of hybrid fuzzy bi-ideals in near rings and give some characterizations of hybrid fuzzy bi-ideals in near rings. **Key words:** near-ring, hybrid fuzzy bi-ideal, hybrid structures.

AMS subject classification(2010):16Y30,20M17,06D72.

1. Introduction

In 1965, researcher L.A. Zadeh invented the innovative idea the fuzzy set [4]. M.Himaya Jaleela Begum and S. Jeya lakshmi [1] presented the concept of anti fuzzy bi-ideals in near-ring .The Hybrid structures and applications are introduced Young Baejun. Seok-Zunsong, G.Muhiuddin[5].Young Bae Jun, Madad Khan,Saima Anis [2] presented the concept of hybrid ideals in Semigroups. B.Elavarasam,K.Porselvi YoungBae Jin discussed hybrid generalized bi-ideals in Semi groups[3].In this research paper, we introduce the notion of hybrid fuzzy bi-ideals of Near –rings and illustrated with examples.

2.Preliminaries

Definition:2.1 [3] Let N be a near-ring with two binary operations as '+' and ' \cdot ' which satisfy the following conditions:

- (i) (N,+) be a group
- (ii) (N, \cdot) be a semi-group.
- (iii) (x+y) · z= x·z+y·z∀ x,y,z ∈N.
 Precisely because it satisfies the right distributive law, it is a right near-ring. We would instead use the term "near-ring" of near ring right". We denote xy instead of x·y. Note that0 (x)=0 and(-x) y=-xy but in general x (0)≠0 for some x ∈N.

Definition:2.2 [3] Let N be a near-ring and let I be the non-empty subset of near-ring N that is called as an ideal of N which satisfies the following conditions:

- (iv) (I,+) be a normal subgroup of (N,+),
- (v) IN $\subseteq I$,
- (vi) $y(i+x)-yx \in I \forall i \in I; x, y \in N.$

Definition:2.3 [1] Let N be a near-ring. A fuzzy set μ of N is called as an anti fuzzy bi-ideal of N if for all $x, y, z \in N$.

- (i) $\mu(x y) \le \max\{\mu(x), \mu(y)\}.$
- (ii) $\mu(xyz) \le \max\{\mu(x), \mu(z)\}.$

Note: 2.4

Jun et al presented the basic representation of hybrid structure and associated outcome as result [4]. Let $\mathcal{P}(U)$ said to be the power set of an initial universal set U and let I be the unit interval.

Definition: 2.5[5] Let \tilde{f}_{λ} be a hybrid structure in N over U is defined as a mapping $\tilde{f}_{\lambda}:=(\tilde{f},\lambda): N \to \mathcal{P}(U) \times I$ $X \mapsto (\tilde{f}(x),\lambda(x))$ Where $\tilde{f}: N \to \mathcal{P}(U)$ and $\lambda: N \to I$ are mapping. The set of all hybrid structures in N over U is denoted by $\mathbb{H}(N)$. Define a relation '\left' on as follows: $\tilde{f} \ll \tilde{g} \Leftrightarrow \tilde{f} \subseteq \tilde{g}$ $\lambda \ge \mu \forall \tilde{f}, \tilde{g} \in \mathbb{H}(N)$ where $\tilde{f} \subseteq \tilde{g}$ means that $\tilde{f}(x) \subseteq \tilde{g}(x)$ and $\lambda \ge \mu$ means that $\lambda(x) \ge \mu(x) \forall x \in \mathbb{N}$.then $(\mathbb{H}(N), \ll)$ is a partially ordered set

Definition:2.6[5] Let \tilde{f}_{λ} be a hybrid structure in N over U. Then sets

$$\widetilde{f}_{\lambda}[\alpha, t] \coloneqq \left\{ x \in X \middle| \widetilde{f}(x) \supseteq \alpha, \lambda(x) \le t \right\}$$

$$\begin{split} \widetilde{f}_{\lambda}(\alpha,t) &\coloneqq \left\{ x \in X \middle| \widetilde{f}(x) \supseteq \alpha, \lambda(x) \le t \right\} \\ \widetilde{f}_{\lambda}[\alpha,t) &\coloneqq \left\{ x \in X \middle| \widetilde{f}(x) \supseteq \alpha, \lambda(x) < t \right\} \\ \widetilde{f}_{\lambda}(\alpha,t) &\coloneqq \left\{ x \in X \middle| \widetilde{f}(x) \supseteq \alpha, \lambda(x) < t \right\} \end{split}$$

are called the $[\alpha, t]$ - hybrid cut, $(\alpha, t]$ -hybrid cut $[\alpha, t)$ - hybrid cut (α, t) - the hybrid cut of \tilde{f}_{λ} respectively where $\alpha \in \wp(U)$ and $t \in I$

Obviously, $\tilde{f}_{\lambda}(\alpha, t) \subseteq \tilde{f}_{\lambda}(\alpha, t] \subseteq \tilde{f}_{\lambda}[\alpha, t]$ and $\tilde{f}_{\lambda}(\alpha, t) \subseteq \tilde{f}_{\lambda}[\alpha, t] \subseteq \tilde{f}_{\lambda}[\alpha, t]$ Definition: 2.7[3] Let $\tilde{f}_{\lambda} \in \mathbb{H}(N)$. For $\phi \neq A \subseteq N$, the characteristic hybrid structure in N over U is denoted by $\chi_{A}(\tilde{f}_{\lambda}) = (\chi_{A}(\tilde{f}), \chi_{A}(\lambda))$ and it is defined by

$$\chi_A(\tilde{f}): N \to \mathcal{P}(U)x \mapsto \begin{cases} U & x \in A \\ \phi & otherwise \end{cases}$$

and

$$\chi_A(\lambda) \colon N \to Ix \mapsto \begin{cases} 0 & x \in A \\ 1 & otherwise \end{cases}$$

Definition:2.8 [5] Let $\tilde{f}_{\lambda}, \tilde{g}_{\mu} \in \mathbb{H}(N)$, the hybrid intersection of \tilde{f}_{λ} and \tilde{g}_{μ} is denoted by $\tilde{f} \cap \tilde{g}$ and is describes to be a hybrid structure

$$\begin{split} \widetilde{f_{\lambda}} & \cap \widetilde{g}_{\mu} : N \to \mathcal{P}(U) \times I & X \mapsto \left((\widetilde{f} \cap \widetilde{g})(x), (\lambda \lor \mu)(x) \right) \text{ Where} \\ \widetilde{f} \cap \widetilde{g} : N \to \mathcal{P}(U) & X \mapsto \widetilde{f}(x) \cap \widetilde{g}(x) \\ \lambda \lor \mu : N \to I & X \mapsto \lambda(x) \lor \mu(x) \end{split}$$

2. Hybrid Fuzzy Bi-ideals

Definition: 3.1 Let $\tilde{f}_{\lambda} \in \mathbb{H}(N)$, \tilde{f}_{λ} is called a hybrid fuzzy bi-ideal of N over U which satisfies the following conditions:

 $\begin{array}{l} (\mathrm{HB1}): \tilde{f}(x+y) \supseteq \cap \{\tilde{f}(x), \tilde{f}(y)\} \\ (\mathrm{HB2}): \lambda(x+y) \leq \lor \{\lambda(x), \lambda(y)\} \\ (\mathrm{HB3}): \tilde{f}(xyz) \supseteq \cap \{\tilde{f}(x), \tilde{f}(z)\} \forall x, y, z \in N \\ (\mathrm{HB4}): \lambda(xyz) \leq \lor \{\lambda(x), \lambda(z)\} \end{array}$

Example:3.2 The universal set U is given by U=[0,1]

Let $N=\{0,x,y,z\}$ is a near-ring with the binary operation '+' and ' · ' defined by

+	0	х	У	Z		0	1	1	1	1
0	0	х	y	Z	•	0	Х	У	Z	
x	x	0	Z	v	0	0	0	0	0	
T III		-	v	5	Х	0	0	0	0	
У	У	Z	х	0	у	0	0	0	Х	
Z	Z	у	0	Х	Z	0	0	0	х	

Respectively.

Let \tilde{f}_{λ} be a hybrid structure in N over U which is given in the table

N	Ĩ
0	[0,0.6]
Х	[0,0.2]
У	{0}
Z	{0}

 λ be any constant mapping from N to *I*. Then we say that \tilde{f}_{λ} is a hybrid fuzzy bi-ideal of N over U. **Theorem:3.3** Let A be a non-empty subset of N and A is a hybrid fuzzy bi-ideal of N over U. Show that $\chi_A(\tilde{f}_{\lambda})$ is a hybrid fuzzy bi-ideal of N.

Proof:

Let A be a hybrid fuzzy bi-ideal of N and Let x, $y \in N$ **Case (i)** If $x \notin A$, $y \notin A$ then $x + y \notin A$ $\therefore \chi_A(\tilde{f})(x + y) \supseteq \phi = \bigcap \{\chi_A(\tilde{f})(x), \chi_A(\tilde{f})(y)\}$ and $\chi_A(\lambda)(x + y) \le 1 = \lor \{\chi_A(\lambda)(x), \chi_A(\lambda)(y)\}$ Let x, y, $z \in N$ If $x \notin A$, $y \notin A$ and $z \notin A$ then $xyz \notin A$ $\chi_A(\tilde{f})(xyz) \supseteq \phi = \bigcap \{\chi_A(\tilde{f})(x), \chi_A(\tilde{f})(z)\}$ and $\chi_A(\lambda)(xyz) \le 1 = \lor \{\chi_A(\lambda)(x), \chi_A(\lambda)(z)\}$ **Case (ii)** Let x, $y \in N$ Case (ii) If $x \in A$, $y \in A$ then $x + y \in A$ $\therefore \chi_A(\tilde{f})(x + y) \supseteq U = \bigcap \{\chi_A(\tilde{f})(x), \chi_A(\tilde{f})(y)\}$ and $\chi_A(\lambda)(x + y) \le 0 = \lor \{\chi_A(\lambda)(x), \chi_A(\lambda)(y)\}$ Let x, $y, z \in N$ If $x \in A$, $y \in A$ and $z \in A$ then $xyz \in A$ $\chi_A(\tilde{f})(xyz) \supseteq U = \bigcap \{\chi_A(\tilde{f})(x), \chi_A(\tilde{f})(z)\}$ and $\chi_A(\lambda)(xyz) \le 1 = \forall \{\chi_A(\lambda)(x), \chi_A(\lambda)(z)\}$ $\therefore \chi_A(\tilde{f}_{\lambda})$ is a hybrid fuzzy bi-ideal of N.

Proposition:3.4 Let \tilde{f}_{λ} and \tilde{g}_{μ} are the two hybrid structures in N over U. For any $\beta, \delta \in \mathcal{P}(U)$ and $a, b \in I$, we have the following properties:

- If $\beta \subseteq \delta$ and $b \leq a$, then $\tilde{f}_{\lambda}[\delta, b] \subseteq \tilde{f}_{\lambda}[\beta, a]$ (i)
- If $\tilde{f}_{\lambda} \ll \tilde{g}_{\mu}$, then $\tilde{f}_{\lambda}[\beta, b] \subseteq \tilde{g}_{\mu}[\beta, b]$ (ii)
- If $(\tilde{f}_{\lambda} \cap \tilde{g}_{\mu})[\beta, b] = \tilde{f}_{\lambda}[\beta, b] \cap \tilde{g}_{\mu}[\beta, b]$ (iii)

Proof: (i) Let $\beta \subseteq \delta$ and $b \leq a$ and let $x \in \tilde{f}_{\lambda}[\delta, b]$. Then $\tilde{f}(x) \supseteq \delta \supseteq \beta$ and $\lambda(x) \leq b \leq a$, which implies that $x \in \tilde{f}_{\lambda}[\beta, a]$ Thus $\tilde{f}_{\lambda}[\delta, b] \subseteq \tilde{f}_{\lambda}[\beta, a]$

Assume that $\tilde{f}_{\lambda} \ll \tilde{g}_{\mu}$, and let $x \in \tilde{f}_{\lambda}[\beta, b]$ (ii) Then $\tilde{g}(x) \supseteq \tilde{f}(x) \supseteq \beta$ and $\mu(x) \le \lambda(x) \supseteq b$ Hence $x \in \tilde{g}_{\mu}[\beta, b]$ and so $\tilde{f}_{\lambda}[\beta, b] \subseteq \tilde{g}_{\mu}\beta, b$] Let $x \in N$ we have $x \in \tilde{f}_{\lambda} \cap \tilde{g}_{\mu}(\beta, b) \Leftrightarrow (\tilde{f} \cap \tilde{g})(x) \supseteq \beta, (\lambda \lor \mu)(x) \le b$ (iii) $\Leftrightarrow \tilde{f}(x) \cap \tilde{g}(x)) \supseteq \beta , \forall \{\lambda(x), \mu(x)\} \le b$ $\Leftrightarrow \tilde{f}(x) \supseteq \beta, \tilde{g}(x)) \supseteq \beta, \lambda(x) \le b, \mu(x) \le b$ $\Leftrightarrow x \in \widetilde{f}_{\lambda}[\beta, b], x \in \widetilde{g}_{\mu}[\beta, b]$ $\Leftrightarrow x \in \widetilde{f}_{\lambda}[\beta, b] \cap \widetilde{g}_{\mu}[\beta, b].$

Theorem:3.5 If $(A_1, A_2, A_3, \dots, A_n)$ are hybrid fuzzy bi-ideal of N, then $A = \bigcap_{i=1}^n A_i$ is also a hybrid fuzzy biideal of N.

Proof: Let $A_i = \{ (\widetilde{f}_{A_i}, \lambda_{A_i}) : i \in I \}$ be a non-empty family of hybrid fuzzy bi-ideal of N Let x, y, $z \in N$ we have

$$(i)\left(\bigcap_{i\in I}\widetilde{f}_{A_{i}}\right)(x+y) = \bigcap_{i\in I}(\widetilde{f}_{A_{i}}(x+y)) \supseteq \bigcap_{i\in I} (\bigcap\{\widetilde{f}_{A_{i}}(x),\widetilde{f}_{A_{i}}(y)\})$$
$$= \bigcap\{\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(x),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y)),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y)),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y)),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y),\widehat{f}_{A_{i}}(y)),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y),\widehat{f}_{A_{i}}(y),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y),\widehat{f}_{A_{i}}(y),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y),\widehat{f}_{A_{i}}(y),\widehat{f}_{A_{i}}(y),\widehat{f}_{A_{i}}(y),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y),\widehat{f}_{A_{i}}(y),\widehat{f}_{A_{i}}(y),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y),\widehat{f}_{A_{i}}(y),\widehat{f}_{A_{i}}(y),\widehat{f}_{A_{i}}(y),\bigcap_{i\in I}(\widetilde{f}_{A_{i}}(y),\widehat{f}_{A_{i}$$

(ii)
$$\bigvee_{i \in I} \lambda_{A_i}(x+y) = \bigvee_{i \in I} \left(\lambda_{A_i}(x+y) \right) \leq \bigvee_{i \in I} \left(\vee \left\{ \lambda_{A_i}(x), \lambda_{A_i}(y) \right\} \right)$$
$$\leq \bigvee_{i \in I} \left\{ \bigvee_{i \in I} \lambda_{A_i}(x), \bigvee_{i \in I} \lambda_{A_i}(y) \right\}$$

Therefore

$$(\text{iii)} \left(\bigcap_{i\in I} \widetilde{f}_{A_{i}}\right)(xyz) \stackrel{i\in I}{=} \bigcap_{i\in I} (\widetilde{f}_{A_{i}}(xyz)) \supseteq \bigcap_{i\in I} (\widetilde{f}_{A_{i}}(z), \widetilde{f}_{A_{i}}(z))$$
$$= \bigcap \{\bigcap_{i\in I} (\widetilde{f}_{A_{i}}(x), \bigcap_{i\in I} (\widetilde{f}_{A_{i}}(z))$$
$$= \bigcap \{\bigcap_{i\in I} (\widetilde{f}_{A_{i}}(x), \bigcap_{i\in I} (\widetilde{f}_{A_{i}}(z))$$
$$Therefore \left(\bigcap_{i\in I} (\widetilde{f}_{A_{i}})(xyz)\right) \supseteq \bigcap \{\bigcap_{i\in I} (\widetilde{f}_{A_{i}}(x), \bigcap_{i\in I} (\widetilde{f}_{A_{i}}(z))$$

 $(iv) \bigvee_{i \in I} \lambda_{A_i}(xyz) = \bigvee_{i \in I} (\lambda_{A_i}(xyz)) \le \bigvee_{i \in I} (\vee \{\lambda_{A_i}(x), \lambda_{A_i}(z)\}) \le \vee \{\bigvee_{i \in I} \lambda_{A_i}(x), \bigvee_{i \in I} \lambda_{A_i}(z)\}$ Therefore $\bigvee_{i \in I} \lambda_{A_i}(xyz) \leq \bigvee \{ \bigvee_{i \in I} \lambda_{A_i}(x), \bigvee_{i \in I} \lambda_{A_i}(z) \}$ Hence intersection of a non-empty collection of hybrid fuzzy bi-ideal is also a hybrid fuzzy bi-ideal of N.

4. Homomorphism of a hybrid structure

Definition:4.1[3]Let $g: L \to M$ be a mapping from a set L to set an M for a hybrid structure \tilde{f}_{λ} in M over U. Consider a hybrid structure

 $g^{-1}(\tilde{f}_{\lambda}) \coloneqq (g^{-1}(\tilde{f}_{\lambda}), g^{-1}(\lambda))$ in L over U. Where $g^{-1}(\tilde{f}(x)) = \tilde{g}(f(x))$ and $g^{-1}(\lambda)(x)) = \lambda(g(x)) \forall x \in L$. Say that $g^{-1}(\tilde{f}_{\lambda})$ is the hybrid pre-image of \tilde{f}_{λ} under gFor a hybrid structure \tilde{f}_{λ} in L over U. The hybrid image of \tilde{f}_{λ} under g is defined in M over U where for every $k \in M$

$$g\left(\tilde{f}(k)\right) = \begin{cases} \bigcup_{x \in g^{-1}(k)} \tilde{f}(x), & \text{if } g^{-1}(k) \neq \phi \\ \phi, & \text{otherwise} \end{cases}$$
$$g\left(\lambda(k)\right) = \begin{cases} \bigwedge_{x \in g^{-1}(k)} \lambda(x), & \text{if } g^{-1}(k) \neq \phi \\ 1, & \text{otherwise} \end{cases}$$

Definition:4.2[3]Let N₁ and N₂ be two near-rings. Let $g: N_1 \to N_2$ is called a near-ring homomorphism if g(x + y) = g(x) + g(y) and g(xy) = g(x)g(y) for any $x, y \in N_1$

Theorem:4.3

Every Homomorphic hybrid pre-image of a hybrid fuzzy bi-ideal is also a hybrid fuzzy bi-ideal in N₁ **Proof:**

Let $g: N_1 \to N_2$ be a near- ring homomorphism and \tilde{f}_{λ} be a hybrid fuzzy bi-ideal of N_2 over U and let $x, y, z \in N_1$ then

 $\begin{aligned} (i)g^{-1}(\tilde{f})(x+y) &= \tilde{f}(g(x+y)) = \tilde{f}(g(x)+g(y)) \supseteq \cap \{\tilde{f}(g(x)), \tilde{f}(g(y))\} \\ \text{Therefore } g^{-1}(\tilde{f})(x+y) &\supseteq \cap \{g^{-1}(\tilde{f}(x)), g^{-1}(\tilde{f}(y))\} \\ (ii)g^{-1}(\lambda)(x+y) &= \lambda(g(x+y)) = \lambda(g(x)+g(y)) \le \lor \{\lambda(g(x)), \lambda(g(y))\} \\ \text{Therefore } g^{-1}(\lambda)(x+y) &\le \lor \{g^{-1}(\lambda(x)), g^{-1}(\lambda(y))\} \\ (iii)g^{-1}(\tilde{f})(xyz) &= \tilde{f}(g(xyz)) = \tilde{f}(g(x)g(y)g(z)) \supseteq \cap \{\tilde{f}(g(x)), \tilde{f}(g(z))\} \\ \text{Therefore } g^{-1}(\tilde{f})(xyz) &\supseteq \cap \{g^{-1}(\tilde{f}(x)), g^{-1}(\tilde{f}(z))\} \\ (iv)g^{-1}(\lambda)(xyz) &= \lambda(g(xyz)) = \lambda(g(x)g(y)g(z)) \le \lor \{\lambda(g(x)), \lambda(g(z))\} \\ \text{Therefore } g^{-1}(\lambda)(xyz) &\le \lor \{g^{-1}(\lambda(x)), g^{-1}(\lambda(z))\} \\ \text{Therefore } g^{-1}(\tilde{f}_{\lambda}) \text{ is a hybrid fuzzy bi-ideal in N}_1 \end{aligned}$

Theorem:4.4

Let $g: N_1 \to N_2$ be an onto homomorphism of near-rings let $g^{-1}(\tilde{f}_{\lambda}) = (g^{-1}(\tilde{f}), g^{-1}(\lambda))$ be a hybrid fuzzy bi-ideal of N₁ over U where \tilde{f}_{λ} is a hybrid structure in N₂ over U. **Proof:**

Let $x_1, y_1, z_1 \in \mathbb{N}_2$ then $g(x_2) = x_1$, $g(y_2) = y_1, g(z_2) = y_1$ for some $x_2, y_2, z_2 \in \mathbb{N}_1$ Now, $(i)\tilde{f}(x_1 + y_1) = \tilde{f}(g(x_2) + g(y_2)) = \tilde{f}(g(x_2 + y_2)) = g^{-1}(\tilde{f})(x_2 + y_2)$ $\supseteq \cap \{g^{-1}(\tilde{f})(x_2), g^{-1}(\tilde{f})(y_2)$ Therefore $\tilde{f}(x_1 + y_1) \supseteq \cap \{\tilde{f}(x_1), \tilde{f}(y_1)\}$ (ii) $\lambda(x_1 + y_1) = \lambda(g(x_2) + g(y_2)) = \lambda(g(x_2 + y_2)) = g^{-1}(\lambda)(x_2 + y_2)$ $\leq \vee \{g^{-1}(\lambda)(x_2), g^{-1}(\lambda)(y_2)$ Therefore $\lambda(x_1 + y_1) = \vee \{\lambda(x), \lambda(y)\}$ (iii) $\tilde{f}(x_1y_1z_1) = \tilde{f}(g(x_2)g(y_2)g(z_2)) = \tilde{f}(g(x_2y_2z_2)) \supseteq \cap \{\tilde{f}(g(x_2)), \tilde{f}(g(z_2))\}$ Therefore $\tilde{f}(x_1y_1z_1) = \cap \{\tilde{f}(x_1), \tilde{f}(z_1)\}$ (iv) $\lambda(x_1y_1z_1) = \lambda(g(x_2)g(y_2)g(z_2)) = \lambda(g(x_2y_2z_2)) \leq \vee \{\lambda(g(x_2)), \lambda(g(z_2))\}$

REFERENCES

- 1. M.Himaya Jaleela Begum, S.Jeya lakshmi : On anti fuzzy bi-ideals in near-rings International Journal of Mathematics and Soft Computing vol.5,No.2. (2015),75-82.
- 2. Saima Anis, Madad Khan&Young Bae Jun: Hybrid ideals in Semi Groups Cogent Mathematics 4,(2017).
- 3.]B.Elavarasam,K.Porselvi, Young Bae Jun:Hybrid generalized bi-ideals in Semi Groups International Journal of Mathematics and computer science, 14(2019), No.3 601-612.
- 4. L.A.Zadeh: Fuzzy sets, Information, and control,8,(1965) 338-353.

5. Young Bae Jun, Seok-ZunSong, G. Muhiuddin: Hybrid Structures and Applications Ann Commun Math 1(1):11-25(2017).