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Abstract: The existing state-of-the-art in image denoising is reflected by patch-based approaches such as Block Matching and 
3D collaborative filtering (BM3D) algorithms. BM3D, however, still suffers from performance degradation in smooth areas as 

well as loss of image information, especially in the presence of high noise levels. Integrating shape adaptive techniques with 
BM3D increases the denoising effect, including the denoted image's visual quality; and retains image information as well. We 
proposed a system in this study that generates multiple images using different shapes. These images were aggregated for both 
stages in BM3D at the pixel or patch levels and, when properly aggregated, resulted in an average of 1.15 dB better denoising 
output than BM3D. 
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1. Introduction  

The field of digital image processing began to develop when it was affiliated with the newspaper industry 

in the early 1920s. The quality of digital images is one of the biggest issues in this area. Figure (1) shows the first 

image sent between New York and London, UK, via a submerged cable in the Atlantic Ocean. There is a 

disturbance in all of the image's grey intensity levels. While the processing of digital images has advanced 

dramatically since this picture, it still faces many challenges today. 

Figure 1: Digital Image produced in 1921 [1] 

Either during image processing or transmission or both, the primary source of noise in digital images appears. 

Relay for image acquisition on imaging sensors sensitive to bright light. The function of the light receptors located 

within the human eye inside the retina membrane is the same. For example, Charge-coupled (CCD) imaging 

equipment, which is a type of camera sensor, contains a sensor presented as a 2-D array of several million small 

solar cells. In this grid, every cell corresponds to a pixel in the digital image. The light from the object is reflected 

in the grid of the sensor, enabling the solar cells to estimate the projected number of photons in each cell. Finally, 

each of these calculated charges is converted into a digital pixel value by the analog-to-digital converter ( ADC). 

In more detail, a high photon estimated value, which is converted to a high intensity value, is provided by the cell 

in the sensor subjected to more light. The pixel will have a value similar to 255 (white) in grey scale images, and 

vice versa. Logically, to perfectly fit the scene, increasing the number of cells in the sensor improves the resolution 

and accuracy of the information in the image. However, because of many factors, this is not a hundred percent 

true.  

On the one side, a number of variables, such as light levels and sensor efficiency, are involved in the image 

acquisition environment. These factors influence the calculation of the final pixel values in the images, causing 

the appearance of noise and artefacts in the image. On the other hand, image transmission through wired or wireless 

networks, due to atmospheric conditions or usually flows in the medium of transformation, induces variations in 

the real pixel values.  

Noise is split into two types: dependent and autonomous noise. Like multiplicative noise, based noise de- pends 

on the pixel value. Although independent noise, including white Gaussian noise, Rayleigh noise, erlang (gamma) 

noise, exponential noise, and salt-and - pepper noise, is not associated with the pixel strength. By generating an 

array that is close in size to the image given, different noise models are simulated. Except for salt and pepper noise, 

the strength values are stochastic numbers with a particular probability density function.  

Dealing with noisy images is a much harder issue in real-world applications. Next, the captured images typically 

involve several models of noise. Images obtained from satellite imagery, for example, include speckle noise, 

Gaussian noise, and impulse noise. Secondly, it needs prior knowledge of the noise model(s) present in the picture 

to choose the best denoising method. Finally, assuming that the noise model is understood, several of the existing 

methods of denoising cause either loss, blurring, disruption in smooth areas or ringing artefacts around the edges 

in some of the image information. 
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One of the most common forms of noise in images is additive white Gaussian noise (AWGN). AWGN is 

distributed over images randomly. A state-of - art patch-based algorithm is block matching and 3D collaborative 

filtering (BM3D). BM3D is an algorithm of two stages. Block matching is applied between neighbouring patches 

in both phases. The matching method does not always provide good results due to the current noise. Consequently, 

at high noise levels, BM3D still suffers from degradation in denoising efficiency. In smooth areas and data loss in 

edge and texture areas, the deterioration occurs as a disturbance. 

2. Background  

The additive white Gaussian noise is clarified in this section. Then, a brief description of methods for assessing 

image quality. Finally, some of the strategies suggested by studies are discussed and contrasted to demonstrate the 

increase in image denoising efficiency. 

2.1 Additive White Gaussian Noise 

Because of changes in the values of the original signal, Gaussian noise happens in pictures. White noise is what it 

is called. The name was derived from the fact that this noise model's Fourier spectrum is constant. In other words, 

it has the physical features of white light, and is made up of an equal proportion of the colour spectrum. In grey 

images, AWGN is simulated as a disruption of the image pixel's grey values caused by adding random values to 

the pixel values, as seen in Equation (1), of the 

Inse = I + σ × rand (m × n)                            (1) 

Inse is the image of the AWGN, σ is the standard deviation, m x n represents the image size. Rand is a function 

that produces distributed normal (Gaussian) variables that can be defined by the function of the following 

probability density function (pdf). Fig. (2), displays the noise and the related PDF curve. of the 

f (x) =1/2πσ2 exp−(x−µ)2 / 2σ2           (2) 

Where x in the image corresponds to a pixel, μ is the sum of all pixels, then σ2 is the variance. The mean is equal 

to zero in the case of Gaussian noise. The Due to the increase in standard deviation, the x-axis reflects the increase 

in the range. 

2.2 Image Denoising Methods 

Image denoising has applications of immense importance. Medical image denoising [2][3][4] and 

remote sensing image denoising [5], for example. In addition to denoising, for classification, 

segmentation, edge detection, ..., etc., it is used as pre-processing.  

Image denoising techniques are divided into two groups in this section: spatial  domain, and methods 

that combine denoising of spatial and transform (hybrid) domain. Later, some of the approaches 

suggested to enhance the efficiency of denoising are discussed. Low-level noise applies to noisy 

sigma images = 10, 20, and 30 in this analysis. Although high-level noise refers to sigma = 40, 50, 

60, 70, 80, 90, and 100 noisy images. 

2.3 Hybrid Domain Image Denoising 

Image denoising techniques that combine both spatial domains and transform domain denoising as 

complements, such as the latest state-of-the-art BM3D, have proven to be effective denoising 

methods. Good quality images are generated by the spatial domain methods, but many of the small 

details are smoothed during the denoising process. The transform domain approach does not, 

however, provide the same high quality. This generates a ringing object around the edges. They 

often retain tiny details in the image's texture. 

2.3.1 Block-matching and 3D filtering (BM3D) 

 BM3D[23] is a denoising philtre that, along with collective filtering, relies on self-similarities that the images 

have. BM3D is split into two main stages: stage one in which identical patches are stacked and shrinkage of the 

wavelet is applied. Step two uses the phase one approximate performance and applies the Wiener philtre to 3D 

clustered patches. 

Figure 2:BM3D filtering flowchart. 

Stage One: Basic Estimation 

In BM3D, the first stage is to stack matching or adjacent blocks into a 3D array so that the data 

sparsity is enhanced when the transform domain is applied. The matrix or vector in which the 

majority of its values are zero is known as sparsity. A wavelet transform is the required image 

processing. 
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Patch Grouping: Assuming ZxR denotes a noisy reference patch, x is the pixel 's spatial 

coordinates. Z(x) as a central patch pixel and N 2 is the size of the patch. Just in Fig. (4) In phase 

one of the BM3D algorithms, the first step begins with block matching using the normalised 

Euclidean distance calculation between Zx blocks specified by Equation (3). 

d(ZxR, Zx) =  
||Ϋ(τℎ𝑎𝑟𝑑

2𝐷 (ZxR))−ϒ(τℎ𝑎𝑟𝑑
2𝐷 (ZxR))|| 2

2

𝑁1
ℎ𝑎𝑟𝑑                 (3) 

After 2D transformation, as referred to by the unitary transform operator, hard thresholding (t hr) is 

applied to the patches identical to ZxR to reduce the noise, then hard threshold operator ⁇  is applied 

with λ2Dσ. To remove the less identical patches, patch grouping is performed by including patches 

with distances less than the threshold value. As the following Equation (4) shows:  

ϒ (λ, λthr) = {
λ              if |λ| >  λ𝑡ℎ𝑟             
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

        (4) 

 

λthr is the maximum distance between two patches that allow the patch to join the set of similar 

patches called ZSx. 

Collaborative Hard Threshold: 

Given a 3D array ZSxR 
with N1 × N1 ×|SxR| dimension. 3D transform consists of 2D transform over the patches 

and 1D Walsh-Hadamard transform over the third dimension. The Walsh- Hadamard transform requires an even 

number of similar patches such that Nhard is always a power of two.  If an even number of patches is not accessible 

then we decrease the number of extracted patches until a power of two can be obtained. The noise is removed using 

hard threshing. τ−1. Finally, the denoised block is estimated as the inverse 3D transform value, as defined in 

Equation (5) 

ŶSxR    =    τ3𝐷
−1 (ϒ(τ3D(ZSxR), λthr3Dσ √2log (N1

2)))             (5) 

 

Projecting from the wavelet transform domain to the spatial domain of the image is not perfect 

because if positioned in several positions in the original image, a single patch may be a valid 

solution. 

Patch Aggregation:  

Unlike areas that mix several distinct textures, the weighting approach gives more weight to 

homogeneous patches, causing edge preservation and preventing ringing artefacts around the edges. 

Currently, each pixel has more than one estimated average weight due to patch overlap, which is 

why aggregation is used to estimate the correct weight that contributes to the final pixel value. The 

weights of the patches in original BM3D are determined as the product of the estimated patch after 

inverse 3D transformation and the Kaiser window, the weight of a pixel in the original BM3D i s 

inversely proportional to the calculation of the total block variance. In the final set of patches, 

weight is specified for each block using the following equation. (6).  

w𝑥𝑅    =  {
1

𝑁ℎ𝑎𝑟
        𝑖𝑓 𝑁ℎ𝑎𝑟  ≥ 1                

1           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       
  (6) 

Nhar is the number of transform coefficients with values other than zero after applying a thresh- old. 

Meaning that the more different the 3D block is the less this block contributes to the weight. The 

final estimate of the pixel yˆ is given by Equation (7) 

ŷ =  
∑ ∑ w𝑥𝑅

 Ŷxm  
xR (𝑥)𝑥𝑚𝜖S𝑥𝑅𝑥𝑅𝜖𝑋

∑ ∑ w𝑥𝑅
 𝑋xm  

xR (𝑥)𝑥𝑚𝜖S𝑥𝑅𝑥𝑅𝜖𝑋
      ,      Ɐ x 𝜖 X                    (7) 

Stage Two: Wiener Filter: 

In this step, a better-denoised approximation of the image is obtained using the basic approximation 

of step one and the noisy image. By applying Wiener philtre shrinkage, the final denoised image is 

obtained by applying the 3D transformed domain stack extracted from the basic image.  

Patch Grouping:  

The second stage in BM3D involves applying the Wiener filter as shown in Fig. (4). The first step 

is to find the matching blocks within the estimated image resulting from stage one using a hard 

threshold on d-distance measure defined by Equation (8). 

S𝑥𝑅
 = x 𝜖 X | 

||(E𝑥𝑟− 𝐸𝑥𝑟
−

 
)−(E𝑥 − 𝐸𝑥  

−
 
)|| 2

2

𝑁1
𝑡ℎ𝑟                          (8) 

Exr and Ex are two matching with E¯x and, E¯x referring to the mean values respectively. The 

mean is subtracted to prevent the patch similarity searching to be biased. 

3. Methodology  

Block-matching and 3D filtering (BM3D) is considered as a prominent state-of-art denoising algorithm. In Fig. 

(5) smooth areas in BM3D suffer from distortion. While edge areas loss details (Lena’s hat). BM3D still has room 

for improvement. In this chapter, a framework is proposed to add different kernel shapes to the original BM3D. 

BM3D originally uses the Kaiser (Gaussian) kernel to determine the denoised pixel value. Instead, the suggested 

kernel shapes shown in Fig. (6) are used. 
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The reason for choosing these shapes is that the edge areas in images can be quantized into four angles 0, 45, 90, 

and 135 degrees. Besides, using these shapes allows BM3D to preserve image details while maintaining smooth 

areas [25]. This framework can be used with more shapes that can improve the denoising performance. However, 

for this study these shapes are sufficient. The multiple kernels are used to produce various images with different 

performances. The combination of these images is the most crucial part of the framework.  

3.2 Framework Analysis 

An experiment is conducted to show the benefit of using various kernel shapes. The kernels are used to estimate 

the final weights of the pixels from multiple patches. The weights are based on the distances from the reference 

patch. The multiple kernels are applied in the aggregation step after stages one and two of the original BM3D. The 

output after utilizing the six shapes are images, as shown in Fig. (7) after BM3D stage one and Fig. (8) after stage 

two. The images show an improvement in the PSNR between the noisy image and the denoised images. However, 

the improvement is less than the original BM3D results in most cases (except for square kernel in some cases when 

the noise is low). The combination of the resulting images using either pixel-based or patch-based methods is a 

significant improvement in PSNR values and consequently, on the quality of the image.  

                                      
             (a)                                        (b)                                               (c)                                          (d)                                           (e) 

 

 

 

             (f)                                               (g)                                             (h)                                           (i) 

Figure 3: Lena image denoised by BM3D using different shaped kernels for stage one: (a) Original image. (b) 

Noisy image with sigma = 20 (PSNR = 22.10). (c) Original BM3D stage one denoised image (PSNR = 32.30). (d) 

square kernel (PSNR = 32.19). (e) Circular kernel (PSNR = 32.12). (f) Horizontal kernel (PSNR = 32.16). (g) 

Vertical kernel (PSNR = 32.15). (h) Diagonal with angle 135 kernel (PSNR = 32.20). (i) Diagonal with angle 45 

kernel (PSNR=32.16). 

 

 

 

   

                           

 

 

          (a)                                     (b)                                     (c)                                      (d)                                       (e)                                                                                  

 

 

 

                                                                                                                                                  

 

                                     

 

 

(f)                                                  (g)                                                   (h)                                               (i) 

Figure 4: Lena image denoised by BM3D using different shaped kernels for stage two: (a) Original image. (b) 

Noisy image with sigma = 20 (PSNR = 22.10). (c) Original BM3D stage two denoised image (PSNR = 32.83). (d) 

Square kernel (PSNR = 33.43). (e) Circular kernel (PSNR = 33.44). (f) Horizontal kernel (PSNR = 33.44). (g) 

Vertical kernel (PSNR = 33.42). (h) Diagonal with angle 135 kernel (PSNR = 33.44). (i) Diagonal with angle 45 

kernel (PSNR=33.45).  

3.3 Proposed Framework 

It is assumed that the given image is corrupted by AWGN, i.e., the noise and image are uncorrelated. Our proposed 

framework replaced the square Gaussian kernel used in BM3D aggregation step by six various flat kernels. Shown 

in Fig. (9), Fig. (10). BM3D originally uses a window of size 8 × 8 for noise levels less than 40. Otherwise, it uses 

a window of size 12 × 12. 
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The input of the aggregation step is 3D stacked patches. These patches should be placed back in their original 

locations in the image. However, due to overlapping and similarities between image patches, each pixel has 

multiple evaluations. In original BM3D, the evaluation of a normalized sum of the pixel values (in each patch) 

multiplied by the kernel values is used to give final pixel estimation. as shown in Equation (9), 

  

Figure 5: Stage one for the proposed framework. 

Where Yˆ refers to the pixel value in patch x. ωxR refers to the weight of the pixel obtained from evaluating its 

location from the center pixel using the kernel in the original BM3D. The proposed framework applies to Equation 

(9) six times, each time with a different kernel. 

ŷ =  
∑ ∑ w𝑥𝑅

 Ŷxm  
xR (𝑥)𝑥𝑚𝜖S𝑥𝑅𝑥𝑅𝜖𝑋

∑ ∑ w𝑥𝑅
 𝑋xm  

xR (𝑥)𝑥𝑚𝜖S𝑥𝑅𝑥𝑅𝜖𝑋
      ,      Ɐ x 𝜖 X      (9) 

The flat kernel gives similar weights to all the pixels in the given patch area, thus reducing the computations. 

Instead of multiplying each pixel by a different value in the kernel depending on its distance from the pixel at the 

patch center, all the pixels in the patch are multiplied by the same value. Another reason for using a flat kernel is 

its ability to fit the underlying structure of the image, i.e., instead of relying on the distance from the central pixel, 

we rely on the shape of the extracted patch and how much it is similar to the structures surrounding it. 

The most crucial step in the framework is aggregating the output images into one final denoised image. Using 

the original noiseless image, we combine the results. The framework does not rely on the original image or 

consider it as part of the algorithm, it is used for feasibility only. The original image allow use to estimate the 

optimal results for the framework and prove that there is still a room for improvement by using adaptive shapes. 

Even though, in our future work, we are looking for other approaches the can be used to aggregate the image 

automatically. 
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Figure 6: Stage two for the proposed framework. 

Given the six images that represent the solution space for each pixel or patch and the original image, the optimal 

solution is the one with the least pixel or patch error. The least error choices are shown in the following Figure 

(11) for stage one and Figure (12) for stage two. 

                                                                                                                                                          

 

 

 

                      

(a)                               

(b)                                

(c)                               (d)                              (e)                            (f)  

Figure 7: Lena image, after stage one, comprising six images that represent the locations of the pixels that should 

be taken from each image to form the optimal denoised image. (a) Square kernel image.  (b) Circular kernel image.  

(c) Horizontal kernel image. (d) Vertical kernel image. (e) D45 kernel image. (f) D135 kernel image. 

Another approach to determine the relationship between the six images is to used patches comparison to the 

original image patches. Extract the corresponding patches from the six images obtained from different kernel 

weights, then compare it to the corresponding original image patch and choosing the absolute minimum difference 

patch results for stage two. 

 

 

 

 

                

 

 

 (a)                                 (b)                                   (c)                              (d)                                   (e)                                  (f) 

Figure 8: Lena image, after stage two, comprising six images that represent the locations of the pixels that should 

be taken from each image to form the optimal denoised image. (a) Square kernel image.  (b) Circular kernel image.  

(c) Horizontal kernel image. (d) Vertical kernel image. (e) D45 kernel image. (f) D135 kernel image. 

 

 

 

 

              

 

 (a)                                   (b)                             (c)                                (d)                                 (e)                              (f)  

Figure 9: Lena image, after stage one, comprising six images that represent the locations of the patches that should 

be taken from each image to form the optimal denoised image. (a) Square kernel image. (b) Circular kernel image. 

(c) Horizontal kernel image. (d) Vertical kernel image. (e) D45 kernel image. (f) D135 kernel image. 

The patch size chosen is 3 × 3, as when the size of the patch increases the improvement declines due to the increase 

of the mismatching between the estimated value and the kernel. The kernel used to calculate the final pixel value 

is not necessarily the same kernel used for all its neighbouring pixels. Finally, the results of aggregated pixels are 

for stage one and stage two. 

 

 

 

 

                                 (a)                                           (b)                                          (c)                                           (d)                           

  

 

 

                                                

                                (e)                                              (f)                                         (g)                                        (h)    

Figure 10: Denoised Lena image results using the proposed framework. (a) Original image. (b) Noisy image with 

sigma = 20 (PSNR = 22.14). (c) Original BM3D after stage one. (PSNR = 32.23) (d) Original BM3D after stage 

two (PSNR = 33.77). Pixel based results, (e) Proposed framework after stage one (PSNR = 33.69). (f) Proposed 
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framework after stage two (PSNR = 33.99). Patch based results, (g) Proposed framework after stage one (PSNR = 

32.74). (h) Proposed framework after stage two (PSNR = 33.26). 

3 Results 

In this section, we will discuss the results of the proposed framework. The performance of the framework is 

compared to the original BM3D after stage one and two. The dataset of images used in the evaluation is shown in 

Fig. (2). Finally, we will conclude the overall numerical and visual results.  

3.1 Numerical Results 

We have applied the proposed framework after both stages one and two of the BM3D scheme on multiple images 

for various noise levels 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. The results include the PSNR of the noisy image, 

the original BM3D image after stage one and stage two, the images obtained from using the different kernels 

(square, circle, horizontal, vertical, diagonal 134 and diagonal 45) and the image generated from the proposed 

framework. For Stage one results, see tables 4.1, 4.3, 4.5, 4.7, 4.9, 4.11, 4.13, 4.15. For Stage two results, see tables 

4.2, 4.4, 4.6, 4.8, 4.10, 4.12, 4.14, 4.16. The results show that the performance of the proposed framework surpasses 

the performance of the original BM3D scheme. This is true, although the denoising performance of each kernel is 

slightly less than the original BM3D and in some cases. 

Table 1: Barbara image PSNR for noisy, original BM3D, six kernel images, the pixel proposed framework 

Sigma Noisy Original Square Circle Horizontal Vertical Diagonal Proposed Improv. 

 135 45  

10 28.12 33.54 33.55 33.15 33.30 33.43 33.47 33.17 34.89 1.35 

20 22.14 29.73 29.66 29.18 29.53 29.59 29.63 29.44 31.14 1.41 

30 18.58 27.13 27.04 26.67 27.00 27.03 27.00 26.90 28.57 1.44 

40 16.11 25.65 25.54 25.15 25.48 25.51 25.50 25.40 27.18 1.53 

50 14.18 24.01 23.90 23.57 23.86 23.85 23.89 23.76 25.57 1.56 

60 12.52 23.06 22.98 22.61 22.89 22.91 22.93 22.80 24.53 1.47 

70 11.24 22.53 22.44 22.06 22.35 22.39 22.37 22.21 24.11 1.58 

80 10.10 21.69 21.63 21.35 21.56 21.51 21.64 21.42 23.15 1.46 

90 9.05 21.09 21.02 20.80 20.88 20.96 20.98 20.80 22.65 1.56 

100 8.15 19.45 19.50 18.85 18.98 19.29 19.29 18.65 21.40 1.95 

Table 2: Barbara image PSNR for noisy, original BM3D, six kernel images, the pixel proposed framework and 

improvement after stage two from 10 to 100 sigma noise levels. 

Sigma Noisy Original Square Circle Horizontal Vertical Diagonal Proposed Improv. 

 135 45  

10 28.12 33.97 34.38 34.38 34.38 34.39 34.40 34.44 35.21 1.24 

20 22.14 30.01 30.52 30.49 30.49 30.51 30.51 30.52 31.32 1.31 

30 18.58 27.62 28.23 28.17 28.17 28.21 28.20 28.17 28.93 1.31 

40 16.11 26.09 26.65 26.63 26.64 26.65 26.65 26.64 27.16 1.07 

50 14.18 24.87 25.49 25.46 25.49 25.49 25.47 25.46 25.98 1.11 

60 12.52 24.00 24.63 24.60 24.62 24.63 24.62 24.60 25.11 1.11 

70 11.24 23.48 24.16 24.09 24.15 24.14 24.15 24.09 24.64 1.16 

80 10.10 22.61 23.25 23.20 23.24 23.22 23.26 23.19 23.74 1.13 

90 9.05 22.22 22.92 22.88 22.91 22.91 22.90 22.86 23.42 1.20 

100 8.15 21.32 22.38 22.31 22.36 22.38 22.34 22.33 22.96 1.64 

 

 

 

 

 

 

                                               

 

 

 

(a)                                                                                                                 (b)  

Figure 11: Barbara image PSNR comparison between noisy, original BM3D and the proposed framework at 

various noise levels (Sigma). (a) After stage one. (b) After stage two. 

Table 3: Baboon image PSNR for noisy, original BM3D, six kernel images, the pixel proposed framework and 

improvement after stage one from 10 to 100 sigma noise levels. 

Sigma Noisy Original Square Circle Horizontal Vertical Diagonal Proposed Improv. 
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 135 45  

10 28.12 33.54 33.55 33.15 33.30 33.43 33.47 33.17 34.89 1.35 

20 22.14 29.73 29.66 29.18 29.53 29.59 29.63 29.44 31.14 1.41 

30 18.58 27.13 27.04 26.67 27.00 27.03 27.00 26.90 28.57 1.44 

40 16.11 25.65 25.54 25.15 25.48 25.51 25.50 25.40 27.18 1.53 

50 14.18 24.01 23.90 23.57 23.86 23.85 23.89 23.76 25.57 1.56 

60 12.52 23.06 22.98 22.61 22.89 22.91 22.93 22.80 24.53 1.47 

70 11.24 22.53 22.44 22.06 22.35 22.39 22.37 22.21 24.11 1.58 

80 10.10 21.69 21.63 21.35 21.56 21.51 21.64 21.42 23.15 1.46 

90 9.05 21.09 21.02 20.80 20.88 20.96 20.98 20.80 22.65 1.56 

100 8.15 19.45 19.50 18.85 18.98 19.29 19.29 18.65 21.40 1.95 

 

Table 4: Baboon image PSNR for noisy, original BM3D, six kernel images, the pixel proposed framework and 

improvement after stage two from 10 to 100 sigma noise levels. 

Sigma Noisy Original Square Circle Horizontal Vertical Diagonal Proposed Improv. 

 135 45  

10 28.10 32.06 32.53 32.52 32.51 32.53 32.53 32.50 32.98 0.92 

20 22.15 28.39 28.94 28.91 28.89 28.92 28.92 28.86 29.30 0.91 

30 18.56 26.65 27.20 27.16 27.16 27.19 27.18 27.13 27.55 0.90 

40 16.06 25.69 26.23 26.21 26.20 26.22 26.22 26.17 26.53 0.84 

50 14.18 25.04 25.55 25.53 25.53 25.54 25.54 25.50 25.86 0.82 

60 12.57 24.65 25.20 25.17 25.17 25.19 25.18 25.14 25.54 0.89 

70 11.20 24.16 24.71 24.68 24.67 24.68 24.71 24.65 25.06 0.90 

80 10.05 23.87 24.42 24.40 24.38 24.40 24.41 24.37 24.79 0.92 

90 9.05 23.51 24.06 24.03 24.04 24.05 24.05 24.03 24.45 0.94 

100 8.13 23.13 23.79 23.74 23.77 23.78 23.77 23.75 24.22 1.09 

 

 

 

 

 

 

                                              

 

 

 

(a)                                                                                                             (b)               

Figure 12: Baboon image PSNR comparison between noisy, original BM3D and the proposed frame- work at 

various noise levels (Sigma). 

Table 5: Boat image PSNR for noisy, original BM3D, six kernel images, the pixel proposed frame- work 

Sigma Noisy Original Square Circle Horizontal Vertical Diagonal Proposed Improv. 

 135 45  

10 28.16 34.79 34.76 34.56 34.56 34.73 34.69 34.54 36.10 1.31 

20 22.10 31.16 31.08 30.99 31.00 31.07 31.07 31.01 32.50 1.34 

30 18.60 29.03 28.93 28.85 28.88 28.90 28.95 28.86 30.39 1.36 

40 16.10 27.42 27.35 27.16 27.25 27.28 27.34 27.16 28.83 1.41 

50 14.14 26.05 25.99 25.75 25.84 25.94 25.94 25.71 27.48 1.43 

60 12.59 25.21 25.15 24.89 25.02 25.09 25.09 24.84 26.68 1.47 

70 11.20 24.46 24.42 24.16 24.25 24.34 24.37 24.11 25.93 1.47 

80 10.10 23.82 23.77 23.58 23.63 23.72 23.70 23.52 25.27 1.45 

90 9.06 23.18 23.14 22.97 22.91 23.07 23.08 22.84 24.64 1.46 

100 8.16 21.83 21.92 21.32 21.25 21.67 21.69 20.92 23.78 1.95 
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 (a)                                                                                              (b) 

Figure 13: Boat image PSNR comparison between noisy, original BM3D and the proposed framework at various 

noise levels (Sigma).      (a) After stage one. (b) After stage two. 

Table 6: Cameraman image PSNR for noisy, original BM3D, six kernel images, the pixel proposed framework 

and improvement after stage one from 10 to 100 sigma noise levels. 

Sigma Noisy Original Square Circle Horizontal Vertical Diagonal Proposed Improv. 

       135 45   

10 28.14 33.33 33.40 32.98 33.03 33.29 33.26 32.87 34.56 1.23 

20 22.13 30.10 30.09 29.85 29.87 30.02 30.01 29.79 31.34 1.24 

30 18.60 28.30 28.25 28.09 28.09 28.21 28.19 28.04 29.59 1.29 

40 16.09 26.93 26.85 26.74 26.79 26.84 26.81 26.73 28.28 1.35 

50 14.14 25.75 25.65 25.55 25.59 25.64 25.62 25.55 27.12 1.37 

60 12.57 24.96 24.86 24.84 24.74 24.83 24.86 24.75 26.39 1.43 

70 11.23 24.03 23.96 23.80 23.84 23.92 23.91 23.76 25.43 1.40 

80 10.06 23.32 23.24 23.13 23.12 23.20 23.21 23.07 24.81 1.49 

90 9.02 22.34 22.31 22.02 22.07 22.23 22.21 21.89 23.97 1.63 

100 8.10 20.62 20.71 20.00 20.05 20.49 20.53 19.63 22.90 2.28 

 

 

                                

  

  

 

                                           

 

 

 

 

 

 

 

 

 (a)                                                                                                     (b) 

Figure 14: Cameraman image PSNR comparison between noisy, original BM3D and the proposed framework at 

various noise levels (Sigma). (a) After stage one. (b) After stage two. 

Table 7: Goldhill image PSNR for noisy, original BM3D, six kernel images, the pixel proposed framework and 

improvement after stage one from 10 to 100 sigma noise levels. 

Sigma Noisy Original Square Circle Horizontal Vertical Diagonal Proposed Improv. 

       135 45   

10 28.16 33.71 33.69 33.43 33.49 33.65 33.63 33.44 34.97 1.26 

20 22.08 30.17 30.11 29.94 29.99 30.08 30.07 29.93 31.49 1.32 

30 18.57 27.93 27.86 27.66 27.79 27.85 27.83 27.73 29.25 1.32 

40 16.07 26.54 26.45 26.33 26.38 26.43 26.44 26.38 27.97 1.43 

50 14.18 25.47 25.40 25.25 25.30 25.38 25.34 25.25 26.88 1.41 

60 12.57 24.56 24.50 24.30 24.41 24.41 24.46 24.27 25.99 1.43 

70 11.26 23.75 23.70 23.49 23.55 23.66 23.61 23.46 25.20 1.45 

80 10.04 23.24 23.20 22.97 23.06 23.15 23.11 22.92 24.70 1.46 

90 9.09 22.81 22.78 22.58 22.55 22.66 22.73 22.51 24.31 1.50 

100 8.08 21.00 21.06 20.48 20.43 20.85 20.80 20.15 23.09 2.09 
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Table 8: Goldhill image PSNR for noisy, original BM3D, six kernel images, the pixel proposed framework and 

improvement after stage two from 10 to 100 sigma noise levels. 

Sigma Noisy Original Square Circle Horizontal Vertical Diagonal Proposed Improv. 

 135 45  

10 28.16 34.11 34.59 34.57 34.57 34.60 34.57 34.56 35.18 1.07 

20 22.08 30.56 31.11 31.06 31.09 31.11 31.09 31.06 31.70 1.14 

30 18.57 28.50 29.12 29.06 29.10 29.13 29.09 29.08 29.69 1.19 

40 16.07 27.28 27.84 27.80 27.82 27.83 27.83 27.81 28.26 0.98 

50 14.18 26.20 26.81 26.75 26.79 26.78 26.79 26.75 27.23 1.03 

60 12.57 25.63 26.27 26.23 26.24 26.23 26.28 26.24 26.72 1.09 

70 11.26 24.77 25.47 25.40 25.46 25.43 25.47 25.44 25.93 1.16 

80 10.04 24.10 24.83 24.79 24.81 24.82 24.81 24.80 25.31 1.21 

90 9.09 23.93 24.70 24.65 24.64 24.65 24.70 24.63 25.17 1.24 

100 8.08 23.02 24.12 24.06 24.08 24.11 24.10 24.08 24.70 1.68 

 

 

 

 

 

 

 

 

                                                        

 (a)                                                                                       (b) 

Figure 15: Goldhill image PSNR comparison between noisy, original BM3D and the proposed frame- work at 

various noise levels (Sigma). (a) After stage one. (b) After stage two. 

The previously discussed results show an improvement in the PSNR between the original BM3D and the final 

result of the proposed framework. Despite the fact that the six different kernel images have lower PSNR in stage 

one. For instance, the average table (7) the square kernel, circular kernel, horizontal kernel, vertical kernel, 

diagonal 135, and diagonal 45, for all sigma values, are less than original BM3D stage one result by 0.04, 0.26, 

0.22, 0.11, 0.11, and 0.31 respectively. Also, the square kernel in some cases gives the same or better results than 

original BM3D such as Cameraman, Lake images. 

The framework stage one output image is the input of stage two. Consequently, stage two six kernels give higher 

results than stage two original BM3D. As shown in average table (8), the square kernel, circular kernel, horizontal 

kernel, vertical kernel, diagonal 135, and diagonal 45, for all sigma values, are more than original BM3D stage 

two result by 0.64, 0.61, 0.62, 0.63, 0.63, and 0.61 respectively. Finally, the combined image produced after stage 

two gives a significant increase with respect to the PSNR. The average improvement between the original BM3D 

and the proposed work for the given dataset is approximately 1.15 dB. 

4 Conclusion  

In this section, we will summarise the conclusion of our framework and the possible approaches that can be 

considered to apply the combination of various kernel images automatically. In this framework, we conduct an 

experiment to improve denoising performance using shape adaptive shapes. First, the results show, for low noise 

images (sigma = 10, 20, and 30), the average improvement of the pixel-based over the eight images is 1.18 

approximately. As for high noise images (sigma = 40, 50, 60, 70, 80, 90, and 100), the average improvement of 

the pixel-based over the same images is 1.13 approximately. Second, the pixel-based combination approach is 

better than the patch-based approach. However, the patch approach has less computational requirements than the 

pixel approach. In the proposed approach, an expansion to the BM3D algorithm is introduced. This method 

outperforms the original BM3D scheme, where the minor details are preserved while maintaining the smoothness 

of texture-less areas. The proposed geometric kernels enable shape adaptivity to the inner image structure details. 
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