Research Article

Best Approximation In Linear K-Normed Spaces

Alaa Adnan Auad^a And Abdulsattar Ali Hussein^b

^a University of Anbar, Education College for pure science, Department of Mathematics, Ramadi, Iraq, Email: alaa.adnan66.aa@gmail.com

^b University of Anbar, Education College for women, Ramadi, Iraq,

Email: edw.abdulsattar@uoanbar.edu.iq

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 16 April 2021

Abstract: The article describes a new idea and established the concept the existence and uniqueness for best approximation in linear k-normed spaces, proved the mapping form k-normed space into finite dimensional subspace of k-normed space is continuous, bounded compact subset of linear k-normed is proximal and characterization of best uniform approximation in same space.

Keyword: k-normed space, best approximation, strictly convex, uniform approximation and proximal

1. Introduction

The concept of linear 2-norm spaces first investigated by Gahler [1] in 1964 and has been extensively by [2,3,4,5]. The introduce a new concept called 2-normed almost linear space and proved some of the results of best approximation in its space by Markandeya [6].

Recently, some results on best approximation theory in linear 2-norm spaces considered by [7,8] and characterization of best uniform approximation real linear 2-normed space by [9]. The theory of k-normed spaces studied by [10,11].

This paper mainly deals with existence, uniqueness, continuity of best approximation with respect to k-normed spaces, bounded compact subset of k-normed linear space is proximal and characterization of best uniform approximation in k-normed space.

2. Preliminaries

Definition 2.1:

Let $k \in \mathbb{N}$ [natural numbers] and \mathcal{A} be linear space of dimensional $d \ge k$. A real valued function $\|\bullet, \dots, \bullet\|$ on $\mathcal{A} \times \mathcal{A} \times \dots \times \mathcal{A} = \mathcal{A}^k$ satisfying the following conditions is called an k-normed on \mathcal{A} . $\forall \mathscr{V}_1, ..., \bullet \parallel$

 $\ldots, \mathscr{V}_{k}, \mathscr{V}, \mathcal{C} \in \mathcal{A}$

$$\begin{split} N_1 : & \| \boldsymbol{r}_1, \dots, \boldsymbol{r}_k \| = 0 \text{ iff } \boldsymbol{r}_1, \dots, \boldsymbol{r}_k \text{ are linearly independent.} \\ N_2 : & \| \boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_k \| \text{ is invariant under any transformation.} \\ N_3 : & \| \boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \delta \boldsymbol{r}_k \| = |\delta| \| \boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_k \| \text{ for all } \delta \in \mathbb{R} \text{ (set of real numbers)} \\ N_4 : & \| \boldsymbol{r}_1, \dots, \boldsymbol{r}_{k-1}, \delta + c \| \leq \| \boldsymbol{r}_1, \dots, \boldsymbol{r}_{k-1}, \delta \| + \| \boldsymbol{r}_1, \dots, \boldsymbol{r}_{k-1}, c \|. \end{split}$$
The pair $(\mathcal{A}, \| \bullet, \dots, \bullet \| \text{) is called an k-normed linear space.} \end{split}$

Definition 2.2:

Let \mathcal{F} be a subset of real k-normed space \mathcal{A} and $r_1, r_2, \dots, r_k \in \mathcal{A}$. Then $f^* \in \mathcal{F}$ is called the *best approxi*. to $r_k \in \mathcal{A}$ from \mathcal{F} if

$$|r_1, r_2, \dots, r_k - \mathfrak{f}^*|| = \inf_{\mathfrak{f} \in \mathfrak{T}} ||r_1, r_2, \dots, r_k - \mathfrak{f}||.$$

The set of all best approximation of \mathcal{A} out of \mathcal{F} denoted by $\Gamma_{\mathcal{F}}(f)$ and define $\Gamma_{\mathcal{F}}(f) = \{f \in \mathcal{F}; inf || a_1, a_2, ..., a_k - f || \forall a_k \in \mathcal{A}\}.$

Definition 2.3

A linear k-normed space $(\mathcal{A}, \|\bullet, ..., \bullet\|)$ is called strictly convex if $\|\mathcal{R}, f\| = \|\mathcal{R}, g\| = 1, f \neq g$ and $\mathcal{R} = (r_1, r_2, ..., r_{k-1}), r_1, r_2, ..., r_{k-1} \in \mathcal{A} / \mathcal{F}(f, g)$ implies $\left\|\mathcal{R}, \frac{1}{2}(\mathcal{J} + \mathcal{G})\right\| < 1$, $\mathcal{F}(\mathcal{J}, \mathcal{G})$ is the subspace of \mathcal{A} generated by \mathcal{J} and \mathcal{G} . **Definition 2.4**

Let \mathcal{A} be k-normed space. The set \mathcal{F} is said to be proximal if $\Gamma_{\mathcal{F}}(\mathfrak{f}) \neq \emptyset$ for every $a_i \in \mathcal{A}, 1 \leq i \leq k$ where $\Gamma_{\mathcal{F}}(\mathfrak{f})$ is the set of all best approximation of \mathfrak{f} to a_i , $1 \leq i \leq k$. **Definition 2.5**

Let $f \in C([\dot{r_0}, \dot{r_1}] \times [\dot{r_1}, \dot{r_2}] \times ... \times [\dot{r_{k-1}}, \dot{r_k}])$ and $\|f\|_{\infty} = \sup\{|f(u_1, u_2, ..., u_k|: u_1 \in [\dot{r_0}, \dot{r_1}], u_2 \in [\dot{r_1}, \dot{r_2}], ..., u_k \in [\dot{r_{k-1}}, \dot{r_k}]\}.$

The set of extreme points of function

 $f \in C([\dot{r_1}, \dot{r_2}] \times [\dot{r_1}, \dot{r_2}] \times ... \times [\dot{r_{k-1}}, \dot{r_k}]) \text{ is define by}$

 $\mathcal{E}(f) = \{ \|f\|_{\infty} = |f(x_1, x_2, \dots, x_k| : x_1 \in [a_0, a_1], x_2 \in [a_2, a_3], \dots, x_k \in [a_{k-1}, a_k] \}.$ Best approximation with respect to this norm is called best uniform approximation.

3. Main Results

In this part, we prove existenss, uniqueness of best approximation in k-normed considered, the mapping from k-normed space \mathcal{A} into finite dimensional subspace \mathcal{F} is continuous, bounded & closed subspace of k-normed homomorphism space is proximal & characterization of best uniform approximation in k-normed space.

Theorem 3.1

Let $\mathcal{F} = \{ f_1, f_2, \dots, f_n \} \subset \mathcal{A}$. Then for all $a_i \in \mathcal{A}, \ 1 \leq i \leq k$, there is best approximation $f \in \mathcal{F}$.

Proof : Let $\dot{r_i} \in \mathcal{A}$, $1 \le i \le k$ and $\mathcal{R} = \dot{r_1}$, ... $\dot{r_{k-1}}$. Then by using definition of infimum, there is a sequence $\{f_k\} \in \mathcal{F}$ such that $\|\mathcal{R}, \dot{r_k} - f_k\| \to \inf \|\mathcal{R}, \dot{r_k} - f_l\|$.

$$|\mathcal{R}, \dot{r_k} - f_k|| \to \inf_{\substack{k \in \mathcal{F}}} ||\mathcal{R}, \dot{r_k} - f_k||$$

This implies that there exist absolute constant c > 0, such that for k.

$$\|\mathcal{R}, f_k\| - \|\mathcal{R}, \dot{r_k}\| \le \inf_{f \in \mathcal{F}} \|\mathcal{R}, \dot{r_k} - f\| + 1c \le \|\mathcal{R}, \dot{r_k}\|$$

For k hence

 $\|\mathcal{R}, \dot{r_k} - f_k\| \le 2\|\mathcal{R}, \dot{r_k}\| + c.$

Thus $\{f_k\}$ is bounded sequences. Then there exists subsequence $\{f_k\}$ of $\{f_k\}$ convergent to $f^* \in \mathcal{F}$ $\lim_{k \to \infty} ||\mathcal{R}, \dot{\mathcal{T}}_k - f_{k_l}|| = ||\mathcal{R}, \dot{\mathcal{T}}_k, f^*||$

 $\begin{array}{l} \mathcal{R}=\dot{r_1}, \dots \dot{r_{k-1}} \in \mathcal{A} \\ \text{implies } f^* \text{ is best approximation to } \dot{r_i} \in \mathcal{A}, 1 \leq i \leq k. \end{array}$

Theorem 3.2

Let \mathcal{A} be the strictly convex lined k-normed space and $\mathcal{F} = \{ f_1, f_2, \dots, f_n \} \subset \mathcal{A}$. Then every $\dot{r_i} \in \mathcal{A}, 1 \leq i \leq k$, there is a only one best approximation from \mathcal{F} . **Proof:**

Let $\dot{r_i} \in \mathcal{A}$, $1 \le i \le k$, we have \mathcal{F} finite dimensional. So, from theorem 3.1 there is element $f^* \in \mathcal{F}$ such that f^* is best approximation $\dot{r_i} \in \mathcal{A}$, $1 \le i \le k$.

For that first, we prove that
$$\mathcal{F}$$
 is convex. Let $\oint_1, \oint_2 \in \mathcal{F}$, $\mathcal{R}=\dot{r_1}, \dots, \dot{r_{k-1}} \in \mathcal{A}$ and $0 \le \lambda \le 1$. Then

$$\begin{aligned} \|\mathcal{R}, \dot{r_k} - (\lambda \oint_1 + (1-\lambda) \oint_2]\| &= \|\mathcal{R}, \lambda(\dot{r_k} - \oint_1) + (1-\lambda)(\dot{r_k} - \oint_2)\| \\ &\le \|\mathcal{R}, \lambda(\dot{r_k} - \oint_1)\| + \|\mathcal{R}, (1-\lambda)(\dot{r_k} - \oint_2)\| \\ &= \lambda \|\mathcal{R}, \dot{r_k} - \oint_1\| + (1-\lambda) \|\mathcal{R}, \dot{r_k} - \oint_2\| \\ &= \lambda \inf_{\substack{f \in \mathcal{F} \\ f \in \mathcal{F}}} \|\mathcal{R}, \dot{r_k} - f\| + (1-\lambda) \inf_{\substack{f \in \mathcal{F} \\ f \in \mathcal{F}}} \|\mathcal{R}, \dot{r_k} - f\| \end{aligned}$$
implies $\lambda \oint_1 + (1-\lambda) \oint_2 \in \mathcal{F}$

so, \mathcal{F} is convex space.

We shall suppose that $f^{**} \in \mathcal{F}$, implies $\frac{1}{2}(f^* + f^{**}) \in \mathcal{F}$.

$$\left\|\mathcal{R}, \frac{1}{2}((\dot{r_{k}} - f^{*}) + (\dot{r_{k}} - f^{**}))\right\| + \left\|\mathcal{R}, \dot{r_{k}} - \frac{1}{2}(f^{*} + f^{**})\right\| = \inf_{\substack{f \in \mathcal{F} \\ f \in \mathcal{F}}} \left\|\mathcal{R}, \dot{r_{k}} - f\right)\right\|$$

implies $\dot{r}_k - f = \dot{r}_k - f^{**}$, we obtain $f = f^{**}$. Thus \mathcal{F} contain only one best approximation to $\dot{r}_i \in \mathcal{A}$, $1 \le i \le k$.

Theorem 3.3

Let $\mathcal{F} = \{ f_1, f_2, \dots, f_n \} \subset \mathcal{A}$ with the property that every function with domain $\mathcal{A} \times \mathcal{A} \times \dots \times \mathcal{A}$ has only one best approximation from \mathcal{F} . Then for all $\hat{a}, \tilde{a} \in \mathcal{A}$,

$$\left| \inf_{\vec{f} \in \mathcal{F}} \| \dot{r}_1, \dot{r}_2, \dots \dot{r}_{k-1}, \acute{a} - f f \| - \inf_{\vec{f} \in \mathcal{F}} \| \dot{r}_1, \dot{r}_2, \dots \dot{r}_{k-1}, \ddot{a} - f f \| \right|$$

$$\leq \|\dot{r_1}, \dot{r_2}, \dots \dot{r_{k-1}}, \acute{\mathbf{a}} - \ddot{\mathbf{a}}\|, \dot{r_1}, \dot{r_2}, \dots \dot{r_{k-1}} \in \mathcal{A}/\mathcal{F} \text{ and} \\ \mathcal{Q}_{\mathcal{F}}: \mathcal{A} \times \mathcal{A} \times \dots \times \mathcal{A} \to \mathcal{F} \text{ is continuous.}$$

Proof:

Suppose that $Q_{\mathcal{F}}$ discontinuous. Then there exist an element $\hat{a} \in \mathcal{A}$ and sequence $\{\hat{a}_k\}$ in \mathcal{A} such that $Q_{\mathcal{F}}(\hat{a}_k) \not\rightarrow Q_{\mathcal{F}}(\hat{a})$.

Since \mathcal{F} is finite dimensional, there exist subsequence $\{\hat{a}_{k_l}\}$ of $\{\hat{a}_k\}$ such that

 $\begin{aligned} \mathcal{Q}_{\mathcal{F}}: \{\hat{a}_{k_l}\} &\to \text{$\mathbf{f} \in \mathcal{F}, $\mathbf{f} \neq \mathcal{Q}_{\mathcal{F}}(\hat{a})$ and we shall show that the mapping} \\ \mathbf{f} \to \underbrace{\inf}_{\mathcal{I}} \|a_1, a_2, \dots, a_{k-1}, \hat{a} - \mathbf{f}\| \text{ is continuous, } \hat{a} \in \mathcal{A}. \end{aligned}$

Let $\dot{a}, \ddot{a} \in \mathcal{A}$ and $\mathcal{R} = \dot{r_1}, \dots \cdot \dot{r_{k-1}} \in \mathcal{A}$. Then there exist $f_1 \in \mathcal{F}$ such that $\|\mathcal{R}, \ddot{a} - f_1\| = \inf \|\mathcal{R}, \ddot{a} - f\|$ and $\inf_{\substack{inf \\ f \in \mathcal{F}}} \|\mathcal{R}, \dot{a} - f\| \le \|\mathcal{R}, \dot{a} - f_1\| \le \|\mathcal{R}, \dot{a} - \ddot{a}\| + \|\mathcal{R}, \ddot{a} - f_1\|$

$$= \|\mathcal{R}, \acute{a} - \ddot{a}\| + \inf_{\substack{i \in \mathcal{F} \\ \notin \in \mathcal{F}}} \|\dot{r_1}, \dot{r_2}, \dots \dot{r_{k-1}}, \ddot{a} - f_1\|$$

implies

$$\inf_{\substack{f \in \mathcal{F} \\ f \in \mathcal{F}}} \|\mathcal{R}, \acute{\mathbf{a}} - f_{f}\| - \inf_{\substack{f \in \mathcal{F} \\ f \in \mathcal{F}}} \|\mathcal{R}, \acute{\mathbf{a}} - f_{f}\| \le \|\mathcal{R}, \acute{\mathbf{a}} - \mathring{\mathbf{a}}\|, \qquad , \mathcal{R} = \dot{r_{1}}, \dots \dot{r_{k-1}} \in \mathcal{A}/\mathcal{F}$$

This proves that

$$\underbrace{\inf_{\substack{f \in \mathcal{F} \\ f \in \mathcal{F}}} \|\mathcal{R}, \dot{a} - f_{f}\| - \inf_{\substack{f \in \mathcal{F} \\ f \in \mathcal{F}}} \|\mathcal{R}, \ddot{a} - f_{f}\| \le \|\mathcal{R}, \dot{a} - \ddot{a}\|.$$

By continuity it surveys that

$$\left\|\mathcal{R}, \hat{\mathbf{a}}_{k_l} - \mathcal{Q}_{\mathcal{F}}(\hat{\mathbf{a}}_{k_l})\right\| = \inf\left\|\mathcal{R}, \hat{\mathbf{a}}_{k_l} - \mathbf{f}\right\|$$

implies

$$\begin{split} & \inf_{\boldsymbol{f} \in \mathcal{F}} \lim_{l \to \infty} \left\| \mathcal{R}, \hat{\mathbf{a}}_{k_l} - \boldsymbol{f} \right\| = \left\| \mathcal{R}, \hat{\mathbf{a}} - \boldsymbol{f} \right\| \text{ and} \\ & \lim_{l \to \infty} \left\| \mathcal{R}, \hat{\mathbf{a}}_{k_l} - \mathcal{Q}_{\mathcal{F}}(\hat{\mathbf{a}}_{k_l}) \right\| \to \left\| \mathcal{R}, \hat{\mathbf{a}} - \mathcal{Q}_{\mathcal{F}}(\hat{\mathbf{a}}) \right\|. \end{split}$$

We obtain f and $Q_{\mathcal{F}}(\hat{a})$ are two distinct best approximation of \hat{a} , this contradiction with the hypothesis where \mathcal{A} has a unique best approximation from \mathcal{F} .

So, $Q_{\mathcal{F}}: \mathcal{A} \times \mathcal{A} \times ... \times \mathcal{A} \to \mathcal{F}$ is continuous.

Theorem 3.4

If \mathcal{A} is k-normed linear spaces & \mathcal{F} compact subset of \mathcal{A} . Then \mathcal{F} is proximal in \mathcal{A} .

Proof :

Let \mathcal{F} be closed and \mathscr{V} ounded subset of \mathcal{A} and $\{\mathscr{F}_n\}_{n=1}^{\infty}$ sequence in \mathcal{F} and $\mathcal{R} = \dot{r_1}, \dots, \dot{r_{k-1}} \in \mathcal{A}$ such that $\|\mathcal{R}, \dot{r_k} - \mathscr{F}\| = \lim_{n \to \infty} \|\mathcal{R}, \dot{r_k} - \mathscr{F}_n\|$. Since \mathcal{F} is bounded for some $\epsilon > 0$, there exist positive integer \mathbb{N} such that

 $\|\mathcal{R} - f_n\| \le \|\mathcal{R}, \dot{r_k} - f_1\| + \epsilon \le K + \epsilon \quad \forall n \ge \mathbb{N}$ Where $K = \max\{K_1, K_2\}$ $\mathbf{K}_1 = \|\mathcal{R}, \dot{\mathbf{r}_k} - f_1\| + \epsilon \quad \text{and} \quad$ $\mathsf{K}_2 = max \|\mathcal{R}, \dot{\mathcal{r}_k} - f_n\|a_k \text{ for } n \leq \mathbb{N} .$ Now, $\|\mathcal{R}, f_n\| \leq \|\mathcal{R}, \dot{r_k} - f_n\| + \|\mathcal{R}, \dot{r_k}\| \leq K + \|\mathcal{R}, \dot{r_k}\|$ this, implies that $\{f_n\}_{n=1}^{\infty}$ is bounded. So, $\{f_n\}_{n=1}^{\infty}$ approximate to f in \mathcal{F} . Hence, we have $\inf \|\mathcal{R}, \dot{\mathcal{r}_k} - f_1\| \leq \lim_{n \to \infty} \|\mathcal{R}, \dot{\mathcal{r}_k} - f_n\| = \|\mathcal{R}, \dot{\mathcal{r}_k} - f_1\|$ but $\|\mathcal{R}, \dot{\mathcal{T}}_k - f\| \ge \|\mathcal{R}, \dot{\mathcal{T}}_k - f_1\|$ implies $\inf \|\mathcal{R}, \dot{\mathcal{r}_k} - f\| \ge \|\mathcal{R}, \dot{\mathcal{r}_k} - f_1\|.$ $\inf \|\mathcal{R}, \dot{\mathcal{P}}_k - f\| = \|\mathcal{R}, \dot{\mathcal{P}}_k - f_1\|.$ We obtain Thus, f_1 is best approximation to $\dot{r_k}$ from \mathcal{F} . Hence \mathcal{F} is proximal in \mathcal{A} . Theorem 3.5 Let \mathcal{F} be a subspace of $\mathcal{C}([\dot{r_0}, \dot{r_1}] \times [\dot{r_1}, \dot{r_2}] \times ... \times [\dot{r_{k-1}}, \dot{r_k}])$ and $\alpha \in C([\dot{r_0}, \dot{r_1}] \times [\dot{r_1}, \dot{r_2}] \times ... \times [\dot{r_{k-1}}, \dot{r_k}])$. Then the follow. Statement are equivalents . : i. For every function $f \in \mathcal{F}$, the points $\mathcal{U} = \dot{\mathfrak{u}}_1, \dot{\mathfrak{u}}_2, \dots, \dot{\mathfrak{u}}_k \in \mathcal{E}(\alpha - f_{\circ}),$ $(\alpha(\mathcal{U}) - f_{\circ}(\mathcal{U}))(f(\mathcal{U})) \leq 0, f_{\circ} \in \mathcal{F}.$ The function ii. f_{\circ} is best uniform approximation of α from \mathcal{F} . **Proof**: Suppose that (i) holds and we need to prove that f_{\circ} is best uniform approximation to α from \mathcal{F} . From (i) there exist points $\mathcal{U} = \dot{\mathfrak{u}}_1, \dot{\mathfrak{u}}_2, \dots, \dot{\mathfrak{u}}_k \in \mathcal{E}(\alpha - \mathfrak{f}_{\circ})$ such that $(\alpha(\mathcal{U}) - f_{\circ}(\mathcal{U}))(f(\mathcal{U})) \leq 0$. So, we have $\|\alpha - \mathfrak{f}_{\circ}\|_{\infty} \leq |\alpha(\mathcal{U}) - \mathfrak{f}_{\circ}(\mathcal{U})| + |\mathfrak{f}(\mathcal{U}) - \mathfrak{f}_{\circ}(\mathcal{U})|$ $= |\alpha(\mathcal{U}) - f_{\circ}(\mathcal{U}) + f_{\circ}(\mathcal{U}) - f(\mathcal{U})|$ $= |\alpha(\mathcal{U}) + f(\mathcal{U})| \le ||\alpha - f||_{\infty} .$ Which shows f_{\circ} is best uniform approximation to α from \mathcal{F} . Conversely suppose that (ii) holds and to prove (i). Assume (i) be unsuccessful. Then there exist function $f_1 \in \mathcal{F}$ such that $\mathcal{U} \in \mathcal{E}(\alpha - \mathfrak{f}_{\circ}),$ $(\alpha(\mathcal{U}) - \mathfrak{f}_{\circ}(\mathcal{U}))(\mathfrak{f}_{1}(\mathcal{U})) > 0$. Since $\mathcal{E}(\alpha - \mathfrak{f}_{\circ})$ is closed & bounded, $\exists C_{1} > 0 \& C_{2} > 0 \ni$ for each $\mathcal{U} \in \mathcal{U}$ $\mathcal{E}(\alpha - f_{\alpha})$ $(\alpha(\mathcal{U}) - \mathfrak{f}_{\circ}(\mathcal{U}))(\mathfrak{f}_{1}(\mathcal{U})) > C_{1}.$ (1)Further, there exists an open ball \mathcal{N} of $\mathcal{E}(\alpha - f_{\circ})$ such that for all $\mathcal{U} \in \mathcal{N}$ and $C_1(\alpha(\mathcal{U}) - f_{\circ}(\mathcal{U}))(f_1(\mathcal{U})) > C_2.$ (2) $|\alpha(\mathcal{U}) - \mathfrak{f}_{\circ}(\mathcal{U})| \geq C_2 \|\alpha - \mathfrak{f}_{\circ}\|_{\infty} .$ (3)Since $[\dot{r_0}, \dot{r_1}]/\mathbb{N}$ is compact, there exist a positive real number C_3 such that for all $\mathcal{U} \in [a_0, a_1]/\mathbb{N}$, $|\alpha(\mathcal{U}) - \mathfrak{f}_{\circ}(\mathcal{U})| < \|\alpha - \mathfrak{f}_{\circ}\|_{\infty} - C_{3}$ (4)Now we shall assume that $\|f_1\|_{\infty} \leq \min\{C_3, \|\alpha - f_{\infty}\|\}$. (5)Let $f_2 = f_0 + f_1$. Then by (4) and (5) for all $\dot{u}_1, \dot{u}_2, \dots, \dot{u}_k \in [a_0, a_1]/\mathcal{N}$, $|\alpha(\mathcal{U}) - f_2(\mathcal{U})| = |\alpha(\mathcal{U}) - f_0(\mathcal{U}) - f_1(\mathcal{U})|$ $\leq |\alpha(\mathcal{U}) - \mathfrak{f}_{\circ}(\mathcal{U})| + |\mathfrak{f}_{1}(\mathcal{U})|$ $\leq \|\alpha - \mathfrak{f}_{\circ}\|_{\infty} - C_3 + \|\mathfrak{f}_1\|_{\infty} \leq \|\alpha - \mathfrak{f}_{\circ}\|_{\infty}.$ For all $\mathcal{U} \in \mathbb{N}$ from (3),(4) and (5), we obtain $|\alpha(\mathcal{U}) - f_2(\mathcal{U})| = |\alpha(\mathcal{U}) - f_\circ(\mathcal{U}) - f_1(\mathcal{U})| \le |\alpha(\mathcal{U}) - f_\circ(\mathcal{U})| + |f_1(\mathcal{U})|$ $\leq \|\alpha - \mathfrak{f}_{\circ}\|_{\infty} - C_3 + \|\mathfrak{F}_1\|_{\infty} \leq \|\alpha - \mathfrak{f}_{\circ}\|_{\infty}.$ Implies, $\|\alpha - f_2\|_{\infty} \le \|\alpha - f_{\circ}\|_{\infty}$. Hence f_{\circ} is not best uniform approximation to α which is a contradiction. So, (i) holds.

Conclusion

In this paper, we conclude that when linear k-normed space is bounded compact then best approximation of the functions existence and a unique and the map from k-normed space into finite dimensional subspace of it is continuous, bounded and closed.

References

- 1. Gahler, S. (1964), Linear 2-norm space, Math. Nachr., 28, 1-43.
- 2. Freese, R. and Ghler, S. (1982), Remarks on semi 2-normed spaces, Math. Nachr., 105, 151-161.
- 3. Cho, Y.J., Diminmi, C., ect. (1992) Isosceles orthogonal triples in linear 2-normed space, Math. Nachr., 157, 225-234.
- 4. Freese, R., Cho., Y.J. and Kim, S.S. (1992), Strictly 2-convex linear 2-normed spaces, Journal Korean Math. Soc. 29, 391-400.
- 5. Kim ,S.S., Cho., Y.J. and White, A. (1992), Linear operators on linear 2-normed spaces , Glasink Math. 27(1992), 63-70.
- 6. Makandeya, T. and Bharathi, D. (2013), Best approximation in 2-normed almost linear space, International journal of engineering research and technology, 12, 3569-3573.
- 7. Elumalia, S. and Ravi, R. (1992), Approximation in linear 2-normed space, Indian journal Math. 34, 53-59.
- 8. Kim, S.S. and Cho. ,Y.J. (1996), Strictly convexity in linear k-normed spaces, Demonstration Math. 29No.4, 739-744.
- 9. Vijayaragavan, R. (2013), Best approximation in real 2-normed spaces, IOSR Journal of Mathematics 6, 16-24.
- 10. Malceski, R. (1997), Strong convex n-normed space, Math. Bilten , No.21, 81-102.
- 11. Gunawan, H. and Mashadi , M. (2001), On k-normed spaces, International journalliumath., Math. Sci. 27, No. 10, 631-639.