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Abstract: In this paper, LR method has been proposed to mathematical non-linear parametric programming approach for the 

queueing decision problem.  Using LR method, the minimal expected total cost of a crisp queueing system with finite capacity 

using LR – type trapezoidal fuzzy numbers is calculated.  LR method is simple, short and convenient compared to alpha-cut 

method.  Numerical example is illustrated for comparison between alpha – cut method and LR method. 
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1. Introduction 

Queueing decision problem plays an important role in the queueing system design that involves one (or) more 

decision such as the number of servers at a service facility, the efficiency of the servers. Queueing decision 

problem can be solved when the cost coefficient and the arrival (or) service pattern are known exactly.  In Fuzzy 

Queueing literature, fuzzy queues are widely studied by many researchers: (H.M. Parade, 1982; C. Kao, C.C. Li, 

S.P. Chen, 1999; A. Nagoor Gani, 2007; J.P. Mukeba Kanyinda, 2015).   

2. Fuzzy set and Fuzzy number 

2.1. Fuzzy set 

        A fuzzy set is specified by a membership function containing the components of a domain space (or) universe 

‘X’ in the interval [0,1], that is �̃�  = { ( Z, 𝜇𝐴 ̃(z) ) ; z ∈ Z } 

2.2. Membership function 

𝜇𝐴 ̃ :  Z → [0,1] is an interval called the degree of membership function of the fuzzy set �̃� and 𝜇𝐴 ̃(z) represents the 

membership value of z ∈ 𝑍 in the fuzzy set �̃�.  The membership grade is defined by R → [0,1]. 

2.3. Fuzzy number 

       A fuzzy set �̃� in the universe ‘X’ is a fuzzy number if and only if it satisfies the following conditions:   

1. X = ℝ 

2. �̃� is normal 

3. �̃�is convex 

4. The membership function 𝜇𝐴 ̃ is piecewise continuous 

5. There exists one and only one x ∈ ℝ such that 𝜇𝐴 ̃(x) = 1 

3. LR – fuzzy numbers 

     A fuzzy number �̃� is of LR – type if there exist shape functions L (for left) and R( for right) and scalars α >
0 , β > 0 with membership function 

𝜇𝑀 ̃(x) = {
𝐿 (

𝑚−𝑥

𝛼
) ;   𝑖𝑓 𝑥 ≤ 𝑚

𝑅 (
𝑥−𝑚

𝛽
) ;   𝑖𝑓 𝑥 ≥ 𝑚

 

      Where the real number ‘m’ is called mean value of �̃�, α and β are called the left and right spreads respectively. 

3.1. LR – type trapezoidal fuzzy number  

      A fuzzy number �̃� = ( m, n, α, β )LR is said to be LR – type trapezoidal fuzzy numbers if its membership 

function is given by  
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𝜇𝑀 ̃(x) = 

{
 

 𝐿 (
𝑚−𝑥

𝛼
) ;   𝑖𝑓 𝑥 ≤ 𝑚 ;  𝛼 > 0

𝑅 (
𝑥−𝑛

𝛽
) ;  𝑖𝑓 𝑥 ≥ 𝑛 ;  𝛽 > 0

1    ;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

3.2. Basic operations in LR – type trapezoidal fuzzy numbers 

       Using (J. Vahidi, 2013), If A = (a, b, c, d) & B = (e, f, g, h) & ‘λ’ is a parameter, then  

(i) A + B = (a, b, c, d) + (e, f, g, h) = ( a + e, b + f, c + g, d + h)    

(ii) A – B = (a, b, c, d) - (e, f, g, h) =  ( a – f, b – e, c + h, d + g)     

(iii) AB     = (a, b, c, d) . (e, f, g, h) =  ( ae, bf, ag + ec, bh + fd)       

(iv) 𝐴

𝐵
     = 

( 𝑎,𝑏,𝑐,𝑑)

(𝑒,𝑓,𝑔,ℎ)
 = ( 

𝑎

𝑓
,
𝑏

𝑒
,
𝑐

ℎ
,
𝑑

𝑔
 ) 

(v) 𝐴𝑛     = A 

(a, b, c, d)n = (a, b, c, d) 

Where T = { an, an-1 b, an-1 b, an-2 b2 }   

T1= { dn-2 c2, dn-1 c, dn-1 c, dn }    

                 a = min T  = kth element of T 

    b = max T = Ɩth element of T 

     c = min T1 = kth element of T1 

     d = max T1 = Ɩth element of T1 

  where 1 ≤ K ≤ 4     and    1 ≤ Ɩ ≤ 4   

(vi) λ (a,b,c,d)  = ( λa, λb, λc, λd)     

(vii) 1/λ (a,b,c,d) = (a/λ, b/λ, c/λ, d/λ)  

  

4. Numerical example 

  We consider an (FM/M/1) : (N/FCFS) queueing model.  The minimal expected total cost is derived using non-

parametric programming approach. The minimal expected total cost of a crisp queueing system with finite 

capacity (Gross, D. 1998; Hillier, F. S., 2001)  is given by 
E(�̃�)  = µc1 + Lv + Nc3 + xPN𝑐4 

 The following example is taken for comparing alpha – cut method and LR  method.  

A  pizza unlimited restaurant has two franchises Model A has a capacity of 20 Groups  of customers  and  Model  

B can seat  30 groups   of customers.   The monthly operating cost of Model A is a fuzzy trapezoidal number 𝑐1̃ = 

[1000011500    12500    14000]   and the monthly operating cost of Model B is also aFuzzy trapezoidal number 𝑐1̃ 

= [ 10000  15000   19000    20000].  An investor wants  to  set up a pizza  restaurant  and estimates that group of 

customer eachoccupying  one  table  arrive  according   to a poisson distribution at the rate of  �̃� = [ 20    23    27   

30] per hour.  If all the tables are occupied,  customers willgo elsewhere.  Model A will serve 26  groups per hour 

and Model B will serve 29  groups  per hour.  Because  of  the  variation in group sizes and in types of orders, the 

service time is exponential.  The investor estimates that the average cost of lost business per customer group per 

hour is Rs. 15. The cost of serving additional customer is Rs. 5. A delay in serving waiting customers is estimated 

as fuzzy trapezoidal number 𝑐2̃ = [ 5   7   12   16] per customer group per hour.The manager of the restaurant 

wants to determine the optimum model so that the total expected cost per unit time is minimized. 

4.1 Alpha -cut method 

Model A: 

      [  𝑥𝛼
𝐿  , 𝑥𝛼

𝑈 ] = [ 20 + 3α ; 30 - 3α ] 

      [ 𝑢𝛼
𝐿  , 𝑢𝛼

𝑈 ] = [10000 + 1500α, 14000 - 1500α] 

      [ 𝑣𝛼
𝐿 , 𝑣𝛼

𝑈 ]  = [ 5 + 2α, 16 - 4α] 

     Also N = 20; µ = 26 groups / hr ; c3 = Rs. 5; c4 = Rs. 15; 𝜌 = λ / µ 
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     In [ 𝐸 (𝑐) ]𝛼
𝐿  ,   𝜌 = ( 20 + 3α ) / 26 and in [ 𝐸 (𝑐) ]𝛼

𝑈 ,   𝜌 = ( 30 - 3α ) / 26 

     In ( M/M/1) : ( N/FCFS), PN = [ 
(1− 𝜌)

( 1− 𝜌𝑁+1)
 ] 𝜌𝑛 ; for n = 1,2,3,….N  

     Ls = [ 
𝜌

1−𝜌
  -  

( 𝑁+1)𝜌𝑁+1

( 1− 𝜌𝑁+1)
 ] = L 

     The upper bound of E(c) is given by [𝐸 (𝑐)]𝛼
𝑈  =  µc1 + Lc2 + Nc3 + λPN𝑐4 

 

[𝐸 (𝑐)]𝛼
𝑈 = 26 (14000 - 1500α) + (16 - 4α) [ 

( 30−3𝛼)

26

1− 
( 30−3𝛼)

26

  -  
21 ( 

30−3𝛼

26
)21

1−  ( 
30−3𝛼

26
)21

  ] 

                                                                     + 20 x 5 + 15 ( 30 - 3α ) [ 
1− 

( 30−3𝛼)

26

1− ( 
30−3𝛼

26
)21

 ]  ( 
30−3𝛼

26
)20 

  The lower bound of E (c) is given by [𝐸 (𝑐)]𝛼
𝐿   =  µc1 + Lc2 + Nc3 + λPN𝑐4 

[𝐸 (𝑐)]𝛼
𝐿  = 26 (10000+1500α) + (5 + 2α) [ 

( 20+3𝛼)

26

1− 
( 20+3𝛼)

26

  -  
21 ( 

20+3𝛼

26
)21

1−  ( 
20+3𝛼

26
)21

  ] 

                                                                      + 20 x 5 + 15 ( 20 + 3α ) [ 
1− 

( 20+3𝛼)

26

1− ( 
20+3𝛼

26
)21

 ]  ( 
20+3𝛼

26
)20 

 The values of [𝐸 (𝑐)]𝛼
𝐿  lies between 2,60,120 and 2,99,150 and the values of [𝐸 (𝑐)]𝛼

𝑈 lies between 3,25,260 and 

3,64,400. 

Model B 

       [  𝑥𝛼
𝐿  , 𝑥𝛼

𝑈 ] = [ 20 + 3α ; 30 - 3α ] 

       [ 𝑢𝛼
𝐿  , 𝑢𝛼

𝑈 ] = [10000 + 5000α, 20000 - 1000α] 

       [ 𝑣𝛼
𝐿, 𝑣𝛼

𝑈 ]  = [ 5 + 2α, 16 - 4α] 

       Also N = 30; µ = 29 groups / hr ; c3 = Rs. 5; c4 = Rs. 15; 𝜌 = λ / µ 

       In [ 𝐸 (𝑐) ]𝛼
𝐿  ,   𝜌 = ( 20 + 3α ) / 29 and in [ 𝐸 (𝑐) ]𝛼

𝑈 ,   𝜌 = ( 30 - 3α ) / 29 

       The lower bound of E(c) is given by [𝐸 (𝑐)]𝛼
𝐿   =  µc1 + Lc2 + Nc3 + λPN𝑐4 

[𝐸 (𝑐)]𝛼
𝐿  = 29(10000 + 5000α) + (5 + 2α) [ 

( 20+3𝛼)

29

1− 
( 20+3𝛼)

29

  -  
31 ( 

20+3𝛼

29
)31

1−  ( 
20+3𝛼

29
)31

  ] 

                                                                 + 30 x 5 + 15 ( 20 + 3α ) [ 
1− 

( 20+3𝛼)

29

1− ( 
20+3𝛼

29
)31

 ]  ( 
20+3𝛼

29
)30 

       The upper bound of E (c) is given by [𝐸 (𝑐)]𝛼
𝑈  =  µc1 + Lc2 + Nc3 + λPN𝑐4 

[𝐸 (𝑐)]𝛼
𝑈 = 29 (20000-1000α) + (16 - 4α) [ 

( 30−3𝛼)

29

1− 
( 30−3𝛼)

29

  -  
31 ( 

30−3𝛼

29
)31

1−  ( 
30−3𝛼

29
)31

  ] 

                                                                    + 30 x 5 + 15 ( 30 - 3α ) [ 
1− 

( 30−3𝛼)

29

1− ( 
30−3𝛼

29
)31

 ]  ( 
30−3𝛼

29
)30 

    The values of [𝐸 (𝑐)]𝛼
𝐿  lies between 2,90,160 and 4,35,180 and the values of [𝐸 (𝑐)]𝛼

𝑈 lies between 5,51,270 and 

5,80,460. 

4.2 L. R. Method 

Model A 

      The minimal expected total cost of a crisp queueing system with finite Capacity is given by 

E(𝑐)  = µc1 + Lc2 + Nc3 + λPN𝑐4, where 

     Ls = [ 
𝜌

1−𝜌
  -  

( 𝑁+1)𝜌𝑁+1

( 1− 𝜌𝑁+1)
 ]  = L 
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     L = [ 
(𝜆/µ)

1−(𝜆/µ)
   - 

(21)(𝜆/µ)21

1− (𝜆/µ)21
 ] 

L = [ 
<20,23,27,30> / 26

1−(<20,23,27,30> / 26)
  -  

(21)(<20,23,27,30>/ 26)21

1− (<20,23,27,30>/ 26)21
 ] 

L = [ 
< 20/26,23/26,27/26,30/26 >

1− < 20/26,23/26,27/26,30/26 >
  - 

(21)(<20/26,23/26,27/26,30/26 >)21

1− (<20/26,23/26,27/26,30/26 >)21
 ]  ,                       using 3.2(vii)   

L = [ 
<0.7692,0.8846,1.0384,1.1538>

1− <0.7692,0.8846,1.0384,1.1538>
  -   

(21)<0.7692,0.8846,1.0384,1.1538>21

1− <0.7692,0.8846,1.0384,1.1538>21
 ] 

To find the value of < 0.7692, 0.8846, 1.0384, 1.1538 >𝟐𝟏  : 

 Using 3.2(v) 

T = { (0.7692)21, (0.7692)20(0.8846), (0.7692)20(0.8846), (0.7692)19(0.8846)2 } 

T = { 0.0040, (0.0052)(0.8846), (0.0052)(0.8846), (0.0068)(0.7825)} 

T = { 0.0040, 0.0045, 0.0045, 0.0053} 

T1 = { (1.1538)19(1.0384)2, (1.1538)20(1.0384), (1.1538)20(1.0384), (1.1538)21} 

T1 = { (15.1523)(1.0782), (17.4827)(1.0384), (17.4827)(1.0384), (20.1716)} 

  T1 = { 16.3372, 18.1540, 18.1540, 20.1716} 

   a = min {T}  = 0.0040; b = max{T}  = 0.0053, c = min {T1} = 16.3372; d = max {T1}= 20.1716          

 

< 0.7692, 0.8846, 1.0384, 1.1538>21 = < 0.0040, 0.0053, 16.3372, 20.1716 

L = [ 
<0.7692,0.8846,1.0384,1.1538>

1− <0.7692,0.8846,1.0384,1.1538>
  -   

(21)<0.0040,0.0053,16.3372,20.1716>

1− <0.0040,0.0053,16.3372,20.1716>
 ] 

L = [ 
<0.7692,0.8846,1.0384,1.1538>

1− <0.7692,0.8846,1.0384,1.1538>
  -   

<0.084,0.1113,343.0812,423.6036>

1− <0.0040,0.0053,16.3372,20.1716>
 ] 

 

With reference from [8] & [9], taking ‘1’ as trapezoidal fuzzy number we have 1 = < 0.8788, 1.1422, 1.2822, 

1.4922 >  with 0.2634, 0.14 & 0.21 taken as the difference. 

L=[
<0.7692,0.8846,1.0384,1.1538>

<0.8788,1.1422,1.2822,1.4922>− <0.7692,0.8846,1.0384,1.1538>
-                                               

<0.084,0.1113,343.0812,423.6036>

<0.8788,1.1422,1.2822,1.4922− <0.0040,0.0053,16.3372,20.1716>
 ] 

 

L = [ 
<0.7692,0.8846,1.0384,1.1538>

<−0.0058,0.3730,2.436,2.5306>
  -   

<0.084,0.1113,343.0812,423.6036>

<0.8735,1.1382,21.4538,17.8294>
 ]  ,                           using 3.2(ii)    

L = < 2.0621, -152.5172, 0.4103, 0.4736> - < 0.0738, 0.1274, 19.2424, 19.7449>,     using 3.2(iv)    L = < 1.9347, 

-152.591, 20.1552, 19.716 > 

To find the value of PN: 

PN = [ 
(1− 𝜌)

( 1− 𝜌𝑁+1)
 ] 𝜌𝑛 ; for n = 1,2,3,….N 

PN = [ 
(1−(𝜆/µ)

( 1− (𝜆/µ)21)
 ] (𝜆/µ)20 

PN = [ 
1− <

20,23,27,30

26
>

1− <
20,23,27,30

26
>21

 ] <
20,23,27,30

26
>20 

PN = [ 
1−(

20

26
,
23

26
,
27

26
,
30

26
)

1−(
20

26
,
23

26
,
27

26
,
30

26
)21

 ] <
20

26
,
23

26
,
27

26
,
30

26
>20 ,                                                                using 3.2(vii) 

PN = [ 
1−( 0.7692,0.8846,1.0384,1.1538)

1−(0.7692,0.8846,1.0384,1.1538)21
 ] (0.7692, 0.8846, 1.0384, 1.1538)20 

PN = [ 
1−( 0.7692,0.8846,1.0384,1.1538)

1−(0.0040,0.0053,16.3372,20.1716)
 ] (0.7692, 0.8846, 1.0384, 1.1538)20 
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To find the value of < 0.7692, 0.8846, 1.0384, 1.1538 >20 : 

Using 3.2(v), 

T = {(0.7692)20, (0.7692)19 (0.8846), (0.7692)19 (0.8846), (0.7692)18 (0.8846)2} 

T = {0.0052, (0.0068)(0.8846), (0.0068)(0.8846), (0.0088)(0.7825)} 

T = { 0.0052, 0.0060, 0.0060, 0.0068} 

T1={(1.1538)18(1.0384)2, (1.1538)19(1.0384), (1.1538)19(1.0384), (1.1538)20} 

T1 = {(13.1325)(1.0782), (15.1523)(1.0384), (15.1523)(1.0384), (17.4827)} 

T1 = {14.1594, 15.7341, 15.7341, 17.4827} 

a = min {T}  = 0.0052 ; b = max{T}  = 0.0068; c = min {T1} =14.1594, d = max {T1}=17.4827 

< 0.7692, 0.8846, 1.0384, 1.1538 >20 = < 0.0052, 0.0068, 14.1594, 17.4827 > 

PN = [ 
1−(0.7692,0.8846,1.0384,1.1538)

1−(0.0040,0.0053,16.3372,20.1716)
 ] (0.0052, 0.0068, 14.1594, 17.4827) 

Taking ‘1’ as trapezoidal fuzzy number, 1 = <0.8788,1.1422,1.2822, 1.4922> 

PN = [ 
(0.8788,1.1422,1.2822,1.4922)−(0.7692,0.8846,1.0384,1.1538)

(0.8788,1.1422,1.2822,1.4922)−(0.0040,0.0053,16.3372,20.1716)
 ]  

(0.0052, 0.0068, 14.1594,17.4827) 

PN = [ 
< −0.0058,0.3730,2.436,2.5306>

<0.8735,1.1382,21.4538,17.4827>
 (0.0052, 0.0068, 14.1594,17.4827),                     using 3.2(ii) 

PN = < -0.0050, 0.4270, 0.1366, 0.1179> (0.0052, 0.0068, 14.1594, 17.4827) 

PN = < -0.000026, 0.00290, (-0.0707+0.0007), (7.4651+0.00080) >,                        using 3.2(iii) 

PN = < -0.000026, 0.00290, 0.0714, 7.4659 > 

Now the expected cost , 

E(𝑐)  = µc1 + Lc2 + Nc3 + λPN𝑐4 

E(c) = 26 < 10000, 11500, 12500, 14000> + < 1.9347, -152.59, 20.1552, 19.716> 

< 5. 7, 12, 16 > + 100 + < 20, 23, 27, 30 >< -0.000026, 0.00290, 0.0714,  

            7.4659 > (15) 

Taking ‘100’ as trapezoidal fuzzy number, 100 = < 110, 115, 120, 126 > 

E (c) = < 260000, 299000, 325000, 364000 > + < 9.6735, -1068.137, ( 23.2164 + 100.776), 

            ( -2441.456 + 138.012) > + < 110, 115, 120, 126 > +  

< -0.000026, 0.00290, 0.0714, 7.4659 >< 300, 345, 405, 450 > 

E (c) = < 260000, 299000, 325000, 364000 > + < 9.6735, -1068.137, 123.9924, -2303.444 > +  

< 110, 115, 120, 126 > + < -0.0078, 1.0005, ( -0.01053 + 21.42 ), (1.305 + 2575.7355) > 

E (c) = < 260000, 299000, 325000, 364000 > + < 9.6735, -1068.137, 123.9924, -2303.444 > +  

< 110, 115, 120, 126 > + < -0.0078, 1.0005, 21.40947, 2577.0405> 

E (c) = < 260120, 298048, 325265, 364400 > 

Model B : 

The minimal expected total cost of a crisp queueing system with finite capacity is given by 

 E(𝑐)  = µc1 + Lc2 + Nc3 + λPN𝑐4 

  Ls = [ 
𝜌

1−𝜌
  -  

( 𝑁+1)𝜌𝑁+1

( 1− 𝜌𝑁+1)
 ]  = L 
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L = [ 
(𝜆/µ)

1−(𝜆/µ)
   - 

(31)(𝜆/µ)31

1− (𝜆/µ)31
 ] 

L = [ 
<20,23,27,30> / 29

1−(<20,23,27,30> / 29)
  -  

(31)(<20,23,27,30>/ 29)31

1− (<20,23,27,30>/ 29)31
 ] 

L = [ 
< 20/29,23/29,27/29,30/29 >

1− < 20/29,23/29,27/29,30/29>
  - 

(31)(<20/29,23/29,27/29,30/29 >)31

1− (<20/29,23/29,27/29,30/29 >)31
 ]  ,                           using 3.2(vii) 

L = [ 
<0.6896,0.7931,0.9310,1.0344>

1− <0.6896,0.7931,0.9310,1.0344>
  -   

(31)<0.6896,0.7931,0.9310,1.0344>31

1− <0.6896,0.7931,0.9310,1.0344>31
 ] 

 

To find the value of < 0.6896,0.7931,0.9310,1.0344 >𝟑𝟏  : 

Using 3.2(v) 

T = { (0.6896)31, (0.6896)30(0.7931), (0.6896)30(0.7931), (0.6896)29(0.7931)2 } 

T = { 0.00000992, (0.0000144)(0.7931), (0.0000144)(0.7931), (0.00002)(0.6290)} 

T = { 0.00000992, 0.0000113, 0.0000113, 0.0000131} 

T1 = { (1.0344)29(0.9310)2, (1.0344)30(0.9310), (1.0344)30(0.9310), (1.0344)31} 

T1 = {(2.6728)(0.8668), (2.7583)(0.9310), (2.7583)(0.9310), (2.86036)}} 

T1 = { 2.31689, 2.5679, 2.5679, 2.86036} 

a = min {T}  = 0.00000992 

b = max{T}  = 0.0000131 

c = min {T1} = 2.31689  

d = max {T1}= 2.86036 

 

<0.6896,0.7931,0.9310,1.0344>31 = <0.00000992, 0.0000131, 2.31689, 2.86036> 

L = [ 
<0.6896,0.7931,0.9310,1.0344>

1− <0.6896,0.7931,0.9310,1.0344>
  -   

(31)<0.00000992,0.0000131,2.31689,2.86036 >

1− <0.00000992,0.0000131,2.31689,2.86036 >
 ] 

L = [ 
<0.6896,0.7931,0.9310,1.0344>

1− <0.6896,0.7931,0.9310,1.0344>
  -   

<0.00030,0.00040,71.8236,88.6712>

1− <0.00000992,0.0000131,2.31689,2.86036 >
 ] 

 

With reference from [8] & [9], taking ‘1’ as trapezoidal fuzzy number we have 1 = <0.7412, 1.0046, 1.1446, 

1.3546 >  with 0.2634, 0.14 & 0.21 taken as the difference. 

 

L = [ 
<0.6896,0.7931,0.9310,1.0344>

<0.7412,1.0046,1.1446,1.3546>− <0.6896,0.7931,0.9310,1.0344>
  -    

<0.00030,0.00040,71.8236,88.6712>

<0.7412,1.0046,1.1446,1.3546>− <0.00000992,0.0000131,2.31689,2.86036>
 ] 

L = [ 
<0.6896,0.7931,0.9310,1.0344>

<−0.0519,0.315,2.179,2.2856>
  -   

<0.00030,0.00040,71.8236,88.6712>

<0.7411,1.0045,4.00496,3.67149>
 ]  ,                             using 3.2(ii)    

L = < 2.1892, -15.2813, 0.4073, 0.4747 > - < 0.00029, 0.00053, 19.5625, 22.1403>,   using 3.2(iv)      

L = < 2.18867, -15.28159, 22.5476, 20.0377 > 

To find the value of PN: 

PN = [ 
(1−(𝜆/µ)

( 1− (𝜆/µ)31)
 ] (𝜆/µ)30 

PN = [ 
1− <

20,23,27,30

29
>

1− <
20,23,27,30

29
>31

 ] <
20,23,27,30

29
>30 
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PN = [ 
1−(

20

29
,
23

29
,
27

29
,
30

29
)

1−(
20

29
,
23

29
,
27

29
,
30

29
)31

 ] <
20

29
,
23

29
,
27

29
,
30

29
>30 ,                                                                   using 3.2(vii) 

PN = [ 
1−( 0.6896,0.7931,0.9310,1.0344)

1−(0.6896,0.7931,0.9310,1.0344)31
 ] (0.6896,0.7931,0.9310,1.0344)30 

PN = [ 
1−( 0.7692,0.8846,1.0384,1.1538)

1−(0.00000992,0.0000131,2.31689,2.86036)
 ] (0.6896,0.7931,0.9310,1.0344)30 

To find the value of < 𝟎. 𝟔𝟖𝟗𝟔, 𝟎. 𝟕𝟗𝟑𝟏, 𝟎. 𝟗𝟑𝟏𝟎, 𝟏. 𝟎𝟑𝟒𝟒 >𝟑𝟎: 

Using 3.2(v), 

T = {(0.6896)30, (0.6896)29 (0.7931), (0.6896)29 (0.7931), (0.6896)28 (0.7931)2} 

T = {(0.00001438), (0.0002086)(0.7931), (0.0002086)(0.7931),  

       (0.00003024)(0.62900761)} 

T = {0.00001438, 0.00001658, 0.00001658, 0.00001902} 

T1={(1.0344)28(0.9310)2, (1.0344)29(0.9310), (1.0344)29(0.9310), (1.0344)30} 

T1 = {(2.57797)(0.866761), (2.666655)(0.9310), (2.666655)(0.9310), (2.758388)} 

T1 = {2.234483, 2.48265, 2.48265, 2.758388} 

a = min {T}  = 0.00001438 

b = max{T}  = 0.00001902 

c = min {T1} =2.234483 

d = max {T1}=2.758388 

<0.6896,0.7931,0.9310,1.0344>30 = <0.00001438, 0.00001902, 2.2344838, 2.758388> 

 

 

PN = [ 
1−(0.6896,0.7931,0.9310,1.0344)

1−(0.00000992,0.0000131,2.31689,2.86036)
 ] < 0.00001438, 0.00001902, 2.2344838, 2.758388> 

Taking ‘1’ as trapezoidal fuzzy number, 1 = <0.7412, 1.0046, 1.1446, 1.3546 > 

 

PN = [ 
(0.7412,1.0046,1.1446,1.3546 )−(0.6896,0.7931,0.9310,1.0344)

(0.7412,1.0046,1.1446,1.3546 )−(0.00000992,0.0000131,2.31689,2.86036)
 ]  

<0.00001438, 0.00001902, 2.2344838, 2.758388> 

PN = [ 
<−0.0519,0.315,2.179,2.2856>

<0.7411,1.0045,4.00496,3.67149>
]<0.00001438, 0.00001902, 2.2344838, 2.758388> 

PN = < -0.0516, 0.4250, 0.5935, 0.5707><0.00001438, 0.00001902, 2.2344838, 2.758388> 

PN = < -0.0000007, 0.00000808, (-0.115299+0.00000853), (1.1722+0.0000108) >,      using 3.2(iii) 

PN = < -0.0000007, 0.00000808, -0.11529047, 1.1722108 > 

Now the expected cost , 

E(𝑐)  = µc1 + Lc2 + Nc3 + λPN𝑐4 

E(c) = 29 < 10000, 15000, 19000, 20000> + < 2.18869, -15.284286, 22.5476, 20.0377> 

< 5, 7, 12, 16 > + (30)(5) + (15) < 20, 23, 27, 30 > 

< -0.0000007, 0.00000808, -0.11529047,  1.1722108 > 

       = < 290000, 435000, 551000, 580000 > + < 10.94345, -106.9894,                 

           (26. 26428+112.738), (-244.548576+140.2639) > + 150 + < -0.0000007,  

           0.00000808, -0.11529047, 1.1722108 >< 300, 345, 405, 450 > 
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Taking ‘150’ as trapezoidal fuzzy number, 150 = < 149, 154, 158, 160 > 

 

E (c) = < 290000, 435000, 551000, 580000 > + < 10.94345, -106.9894, 139.00228, -104.2846 > 

           + <149, 154, 158, 160 > + < -0.00021, 0.00278, (-34.5871 – 0.000283),   

             (404.4127+0.003636) > 

 

E (c) = < 290000, 435000, 551000, 580000 > + < 10.94345, -106.9894, 139.00228, -104.2846 > 

            + <149, 154, 158, 160 > + < -0.00021, 0.00278, -34.5873, 404.41636) > 

E (c) = < 290160, 435047, 551262, 580460 > 

5.Conclusion   

In this paper, the minimal expected total cost of a crisp queueing system in   ( FM/M/1) : (N/FCFS) queueing 

model using non – linear parametric programming approach has been developed by LR method using LR – type 

trapezoidal fuzzy numbers.  Comparison has been given between alpha – cut method and LR method. 

In alpha – cut method, the minimal total cost lie between 260120 and 364400 for Model A and the minimal 

total cost lie between 290160 and 580460 for Model B.  In LR method, the left spread and the right spread are 

calculated as 260120 and 364400 which give the lower bound and upper bound of the fuzzy measure in Model A.  

Similarly the left and right spreads are calculated as 290160 and 580460 which give the lower bound and upper 

bound of the fuzzy measure in model B.  Therefore LR method is simple and convenient for decision making 

problems. 

    Therefore the manager decides to prefer Model A, since the minimal expected total cost is obtained from the 

specified model in which the minimal total cost of Model A is 260120. 
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