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Abstract  

The infusion of technology into school mathematics has intensified in the last two 

decades.  This article discusses the effects of this infusion on the mathematics 

curriculum.  After a review of the different roles technology plays in mathematics 

and the diversity of the tools and their functions in teaching and learning 

mathematics, an epistemological perspective is offered to understand how 

technology could affect our cognition and perception while doing mathematics. With 

this background, specific examples are offered for the ways in which our curricular 

goals are re-prioritized in algebra and geometry.  The paper is concluded with a 

discussion of teachers’ proficiency as a factor to promote effective use of technology 

in the high school mathematics curriculum based on Beaudin &Bowers’ (1997) 

PURIA model.   
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1. Introduction  

Man has been using technology in mathematics for thousands of years, starting with own 

fingers and stones for counters.  He then progressed to using the stones in an Abacus, which 

is still used for complex arithmetic computations by some in Japan (and perhaps in other 

countries). The Slide rule was invented in the 17th century, and is credited as the tool of 

computation used for  the Apollo moon missions in the 1950’s and 60’s (Oughtred Society, 

2011).  Various mathematicians, using the slide rule and other tools) then laboriously did 

millions of calculations to formulate logarithmic and trigonometric tables for all to use. 

However, these fell into disuse in the mid-1970’s, when the first hand held scientific 

calculators were used by students. Nowadays, graphing calculators are common in many 

mathematics classrooms in western countries.  Most graphing calculators also include a 

cable for data transfer from probes to calculators or from calculators to computers.  

Since the calculator and computer have become household items in the last two decades, 

the number and types of electronic tools for mathematics classrooms have.  These tools of 

technology typically serve to do and learn mathematics. However, some are primarily used 

to teach mathematics, while others are for publishing mathematics content (Usiskin, 2011).   
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Technological tools used in doing and learning mathematics abound.  The most 

common examples are dynamic geometry systems (e.g., Jackiw, 2001; Hohenwarter, 2002), 

computer algebra systems (e.g., Maplesoft, 2005), graphing calculators (e.g., Texas 

Instruments, 2001), spreadsheets, electronic virtual manipulatives (e.g., National Library of 

Virtual Manipulatives, 2001), internet applets (e.g., Shodor, 1994), and special micro-

worlds (e.g., SimCalc, 2003).   

Special tools to facilitate teaching mathematics include interactive whiteboards, and 

tablet computers.  Other examples of technology that help in teaching  are machine scorable 

tests, e-mail facilities to message parents and students, and instant student response systems 

(SRS) (e.g., Turningpoint, 2012) for formative assessment.   

These tools typically help to push further our ability or alleviate our human limitations 

for information processing in computations and visualization.  They also help to graph 

mathematical functions, simulate complicated mathematical processes and manipulate 

mathematical symbols accurately and efficiently.   In general, we can now do numerical 

computations much faster, visualize mathematical relationships more easily, even perform 

symbolic manipulations more accurately - sometimes all at the same time.   

Astronomers can see further by using a telescope, but they still have to interpret what 

they see to understand astronomical phenomena.  Similarly, students can compute and 

visualize mathematical relationships using technology more quickly, and more of their 

mental resources are freed to ask new questions, interpret mathematical information and 

solve more difficult mathematical problems.   

So exactly what role does technology play in the natural evolution of school 

mathematics curriculum?  What skills are still critical? What skills have become less 

important?  In the remainder of this paper, we will attempt to answer these questions by 

using insights from pertinent literature.  By providing a review of different roles technology 

play in teaching and learning mathematics in high schools, this article will be of interest to 

teachers, curriculum planners and researchers in Turkey and abroad.  

 

2. An Epistemological Perspective on Mathematical Experience  

One important idea in understanding how we relate to mathematics is the construct of 

mathematical objects.  Mathematics in a sense is a system of knowledge and it is a 

collection of abtract ideas that we call mathematical objects.  Examples of mathematical 

objects include the concepts of set, integer, rate, ratio, equation, function, binomial 

expression, or circle, or square.  We access these abstract ideas only by creating and using 

their external representations, or signifiers (Duval, 2000).  When we do mathematics or 

solve problems, we function cognitively within a system of signifiers.  A system of 

signifiers include tools of representation, transforming the same representation from one 

tool to another of the same kind, and converting one signifier to a different kind of signifier.  

For example, as seen in Figure 1 below, we can ‘represent’ a mathematical object, binomial 

expression using symbolic signifier (a + b)
2
.  We can ‘transform’ this signifier by using 
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certain rules into a
2
 + 2ab + b

2
.   We can also ‘convert’ this symbolic register or signifier 

into its diagrammatic signifier.  

 

Figure 1. A system of signifiers for binomial expression. 

An important part of mathematical problem solving is the ability to move between 

settings and representations.  Mathematical objects and their signifiers, plus the rules of 

operations on these signifiers make up a setting (see Figure 2).   For example, equations and 

allowed rules of operations accessed on the symbols reside in the setting of algebra.  In 

solving problems, a student under the guidance of a teacher starts with a signifier in which 

the problem is given and the setting in which the problem is situated. When finding the 

solution with the tools of the initial setting is not possible, the student moves on to another 

signifier and/or setting (Douady, 1985). 

 

Figure 2. Algebraic setting  
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The symbolic expressions (or representations) favors analytical reasoning, the pictorial 

(diagrammatic) representation cognitively supports gestaltist  (holistic) reasoning, and 

verbal representations support sequential reasoning (Hollebrands, Laborde & Sträβer, 

2008).  Mathematicians use various signifiers not only to communicate a mathematical 

object, but also to process it in problem solving and while doing mathematics.  Multiple 

signifiers of a mathematical object bridge the difference between a geometric figure and its 

drawing. A figure is an idealized shape, where as a drawing is an imperfect representation 

of the figure.  Certain types of signifiers with the associated rules of operation on them 

come together to make broad settings, which we call an arithmetical setting, or algebraic 

setting (see Figure 2 and 3), or geometric setting (see Figure 4).  A mathematical object 

may be primarily situated within a setting, e.g., a circle being in a geometric setting, but it 

may have signifiers in a different setting as well (e.g., algebraic, x
2
 + y

2
 = r). 

 

Figure 3.  Arithmetical setting 

 

Figure 4. Geometric setting 
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To illustrate problem solving within and between settings, lets consider the problem 

(NCTM, 2005) illustrated in Figure 5.  

 

Figure 5.  The popcorn problem (from www.figurethis.org) 

This problem is about the volume enclosed by two cylinders made by folding two same 

sized rectangular sheets of papers, one vertically and one horizantally (Figure 5).  The 

question is whether they enclose the same or different amounts of volume.  Solving this 

problem is not easy if we stay in the original setting in which it is given, that is the 

geometric setting, -because it does not readily provide a useful path for solution.  The 

problem needs to be translated into a setting in which it is easier to look into it analytically.  

When we do that, we will find out that the volumes of the cylinders can be expressed as, 

Vtall = ht.
 rt

2  
and Vshort = hs.

 rs
2
.  The interested reader will see that it is the radii of the 

base of cylinders that makes a bigger difference in creating a volume, rather than the height 

of the cylinders.  The heights will add to volume linearly, where as the radii will add to it 

quadratically because they are squared.   To solve this problem, we had to change the 

setting in which the problem was given and move to an algebraic setting.  The new setting 

afforded us to think in a new way which is more condusive to a solution.    

A computer environment offers a set of objects and tools in doing mathematics (such as 

those in the problem above).  Interplay betwen settings can be exemplified in a microworld 

such as SimCalc (SimCalc, 2003) as shown in Figure 6. 

http://www.figurethis.org/
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Figure 6.  Multiple mathematical settings in one computer platform in SimCalc. 

In microworlds such as SimCalc, a given mathematical function can be represented by 

using multiple signifiers; algebraic (symbolic) representation, arithmetical (tabular) 

representation, graphical representation, and pictorial representation.  What is more, the 

effects of changing one parameter in any of these representations can be seen immediately 

and simultaneously in the other representations.  Running animations of the “story” with 

moving “fish” can be traced through these four different representations simultaneously.  

Observing and reflecting about the interplay between these multiple settings can afford 

students to see the conceptual links among different conceptual facets and components of 

mathematical functions.  Seeing these links is much more difficult in a paper and pencil 

platform (Hollebrands, Laborde & Sträβer, 2008).  

3. The Shift in Algebra and Technology  

Algebra is one of the biggest strands of school mathematics at high school level (MEB, 

2005; NCTM, 2000).  Historically, computational routines and symbol manipulation have 

dominated algebra instruction.  For example, the picture in Figure 7 shows a page from an 

entrance examination to a high School in 1885 (Kelly, 2003).  Some items required recall of 

algebraic nomenclature in this test, while most were about manipulating symbols using 

prescribed algebraic rules. 
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Figure 7. An algebra examination at a high school in the US in 1885 (Kelly, 2003, p. 

1040).  

At the beginning of the 20th century, the function concept entered school curricula, and 

textbooks and tests gradually adopted the change (Heid & Blume, 2008).  Especially in the 

last 3 decades, function has gained a central place in mathematics curriculum as an 

organizing construct, as many types of quantitative relationships in real life could be 

modeled by functions in the form of, for example; linear, quadratic, exponantial, 

logarithmic, and trigonometric functions.  This shift was facilitated in part by the increasing 

relevance of technology to mathematics to compute for these type sof relationships:  The 

first mainframe computer was available in 1942, the first four-function calculator in 1967, 

the first microcomputer in 1978, and the first graphing calculator in 1985 (Kelly, 2003).  

Technology can contribute to learning algebra in a number of different ways.   

Spreadsheets for example can help conceptualize the construct of variable by demonstrating 

assignment of a series of values to something that can vary.  Computer algebra systems 

(CAS) can faciliate students in seeing a function as an ‘object,’ in addition to the more 

common view of it being a computational rule or a process.     

Technology can also help students consider simultaneously multiple representations of 

algebraic objects such as function.  Microworlds (e.g., SimCalc, 2003) can link symbolic, 
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graphical and tabular representation of functions to enable visualization of important 

concepts such as rate of change, local maxima, minima, and optimal values, and 

monotonocity of functions.  These concepts are often difficult to ‘see’ in a purely symbolic 

setting.   

Generalization is another goal that technology can help materialize in instruction. 

Spreadsheets can carry out large number of numerical computations and generate numerical 

values both by a using rule and on a random basis.  This capability can, for example afford 

simulations of the Law of Large Numbers and the Central Limit Theorem (Heid & Blume, 

2003).   

Functions coming to the forefront in algebra in the last centry has brought the 

possibilities with them of different types of functions modeling real life situations or 

scientific phenomena.  Technological tools such as videos, microcomputers, calculator-

based laboratory devices, spreadsheets and microworlds can now serve as tools to talk 

about many quantitative relationships.  When for example, a teacher is introducing 

trigonometric functions, it is often wise to use a physical phenomena.  A trigonometric 

function can help students understand important parameters of such functions.  The 

problem shown in Figure 8 is one such task.  Solving this problem requires coming up with 

a function, in which input values would be months and output values would be light 

intensity in btu/ft
2 

 (British thermal unit / foot squared).  However, it is difficult to foresee 

the shape of this function before entering them into a spreadsheet and graphing the values 

to see how they change each month.  Figure 9 shows this changing relationship.  

 

Figure 8.  Sunlight received in Ankara: A problem of periodicity 
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Figure 9. A scatter plot of the sunlight data from Ankara 

The shape of the graph in Figure 9 would immediately remind a student of a sine 

function for reference.  By considering the component parameters of the sine function, one 

can then deduce the modeling function for this data set as shown in Table 1.  

Table 1.  Summary of deduction of the parameters of the modeling function 

Reference Function  Modeling Function  

y = a. sin(bx) + c y = 730.sin[( /6)x] + 1185 

a: amplitude [-1, 1]  a: (max-min)/2  (1420 – 460)/2  

b: 360
0
 or 2  b: 2 /2  =   /6 

c: starting value (0) c: 1185 

 

Taking advantage of the capabilities of technology, modeling real life or scientific 

phenomena like the one discussed above can be used to teach elementary algebraic 

functions in high school mathematics.  These modeling experiences will help students 

understand the structure of functions. In addition, there are motivational aspects as students 

experience the application and use of mathematics in real life.   

4. Proof in Geometry with Technology 

Historically, since the beginning of 20
th

 century in the West, proofsare an important 

instructional goal in geometry as a way of establishing reasons for patterns and truths 

(Herbst, 2002). Proofs are still an important goal in school mathematics emphasizing 

students’ need to rely on their own logic, rather than on an external authority, to determine 

the soundness of a geometric argument (NCTM, 2000).  The recent emphasis on letting 

students invest personally in the conjecture to be proved or discover a pattern on their own, 

and to plan and complete a proof, all point to the need for providing motivation for the 

process.  When students do not observe a pattern or develop a conjecture on their own, it is 

difficult to motivate them to prove somebody else’s argument. The process thus generally 

becomes an exercise in rote learning for many. 

Dynamic geometry systems (DGS) has brought much ease and power to represent 

geometric objects on the computer screen.  DGS can also automatically measure features of 

figures such as length and area, while the user is dynamically changing its size and position 
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on the screen (Hollebrands, Laborde and Sträβer, 2008).  This can let students to 

experiment and come up with conjectures of their own.  They can then attempt to prove 

these conjectures on their own.  

One example of this is related to a student’s investigation on the well-known 

Pythogeras’ theorem (Martinez-Cruz, McAlister, and Gannon, 2004).  A student was 

captivated with a geometric pattern he observed while working on Pythogeras’ triple in 

Geometers’ Sketchpad (GSP) (Jackiw, 2001).   The student combined the corners of 

adjacent squares to make three new triangles and measured and compared their areas.  

These triangles are shown yellow in Figure 10b.  

 

a: Pythogeras’ triple   b: Pythogeras’ triple with corner triagles 

Figure 10.  Comparing areas of the three corner triangles in Pythogera’s theorem 

The student could discover that the three new (yellow) triangles in Figure 10b have the 

same area as the inner triangle, using calculations or GSP.  However, using GSP, they 

would discover that when the shape and size of the right triangle in the middle is changed 

by dragging, the areas of the other three triangles change equally to the area of the right 

triangle in the middle.  The student could then be encouraged to come up with a deductive 

argument and ‘prove’ this observation.   

It is easy to see that  (ABC), is congruent to the triangle in the middle due to the SAS 

rule.  (We will leave it to the reader to explain why the remaining two triangles have the 

same area.)  After explaining his observation through proof, the student could be 

encouraged to generalize it to any triangle in the middle (Jackiw, 2001).  That is, would the 

same realationship hold for a triangle in the middle when it is not a right angled triangle?  
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After a quick contruction as in Figure 11, the student can empirically observes that the 

relationship holds for any triangle  (HIG) in the middle.  

  

Figure 11.  Generalizing the Pythogeras’ triple conjecture to any triangle 

He can test his conjecture once again by dynamically changing the shape of the triangle 

 (HIG), using GSP and observes that the areas of the four triangles in question are all the 

same regardles of the shape of  (HIG).  He could then attempt to explain synthetically 

why this is the case.   

It is important to note here that empirical observations that come from the mesurement 

functions of GSP served as a step to develop a deductive argument.  Developing a 

deductive argument is the valued essence of proof in mathematics.  Investigations afforded 

by the dynamic geometry system here provided a way to personally invest into a conjecture, 

which then served as a meaningful context for a proof.  This is obviously a more 

meaningful activity for a student than proving somebody else’s theorem that is always true.  

However, Hollebrands et al. (2008) point out that “a positive evolution in proofs elaborated 

by students” result from the combination of software use, skillfully designed 

teaching/learning situations and tasks, the social organization of the classroom and the role 

of the teacher.  

5. Development of Teachers’ Proficiency in Using Technology  

One factor that affects the realization of technology’s potential in the classroom is the 

teachers’ knowledge about and attitude toward technology.  To implement a software 

package in teaching effectively, the teacher needs to become familiar with all aspects of the 

program. According to Beaudin and Bowers (1997) the teacher needs to proceed through a 

number of steps in a set order, to become a confident user and teacher with the software. 

They suggested the PURIA model of technology use, as stages through which a teacher 

must progress before they can teach mathematics with a given software package.  Although 
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Beaudin and Bowers (1997) designed their “modes of use” for CAS, Zbiek and Hollebrands 

(2008) expanded it to include other software programs.  

The PURIA model incorporates the steps of Play, Use, Recommend, Incorporate and 

Assess. The user needs to spend as much time as needed at each stage, with assistance 

where necessary, before moving onto the next stage. A brief description of each stage is 

given in Table 2 below. 

Table 2. The PURIA model of development of teachers’ proficiency with technology 

(Beaudin and Bowers, 1997 and extended by Zbiek and Hollebrands, 2008) 

PURIA mode Activity in each mode Nature of activity 

Play User plays with the technology No clear mathematical purpose in 

playing with the software. 

 

Uses Technology is used as a personal 

tool 

Does mathematics of own design. 

May use it as a learner of 

mathematics but not in a formal 

classroom setting or with students 

 

Recommends Suggests to others that they 

investigate/use the technology 

Recommends the use to a peer, 

individual or small group of 

students. Still not in a formal 

classroom setting or integrated 

part of teaching. 

 

Incorporates Uses the technology as part of 

classroom teaching 

Starts using the technology in a 

formal teaching environment. 

Incorporates technology into 

lessons to varying degrees. 

(Positive experiences in Play and 

Recommends required) 

 

Assesses Uses the technology to assess 

students 

Uses the technology to assess 

what the students are learning in 

terms of technology and 

mathematics. 

 

In this model, the teacher progresses in the use of the technology package, until he or 

she is confident enough to go on to the next level. Levels can overlap and are negotiated at 

different speeds, depending on the capability of the user. However, most time is spent in the 

Play to Recommend modes. If a mode is skipped, the teacher may not develop far enough to 

allow students the freedom to explore for themselves, as he/she will be fearful of not being 

able to assist students or solve problems at the students’ level. 
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During the modes of Use, Recommend, Incorporate and Assess, support in the form of a 

technical assistant, demonstrations, workshops and manuals guide the teacher and iron out 

any problems encountered. If technical assistance is available, teachers persevere longer 

and thus progress further. Without support, they may not even reach the incorporate mode.  

The role of the teacher with technology and the questioning style of the teacher are 

influenced by the teachers’ confidence of technology use (Zbiek and Hollebrands, 2008). 

As teachers gain confidence in the use of software, they change their questioning styles to 

incorporate higher order questions and allow students to play, explore, experiment, reason 

in mathematically valuable ways and thus enhance their learning experiences. 

With much evidence that the teacher’s attitude to technology influences students’ 

attitude, it is important that the teacher himself or herself has a positive learning experience 

with technology. Thus a positive experience with technology, and especially in the first two 

PURIA modes are important if the teacher is to become a facilitator of “construction of 

deep learning” (Zbiek and Hollebrands, 2008).  
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