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Abstract: In this paper we will investigate what properties are intrinsic to a matrix, or its associated linear application. As 

we will see, the fact that there are many bases in a vector space makes the expression of matrices or linear applications 

relative: it depends on which reference base we take. However, there are elements associated with this matrix, which do not 

depend on the reference base or bases that we choose, for example: a null spaces and a column spaces of a matrix, and their 

respective    dimensions. The eigen values of matrix isa root of a character polynomial. Find a eigenvalue of matrix is 

equivalent to finding a rootof its polynomial. For matrices of size n ≥ 5, there does not generally existclosed expressions for 

the roots of the characteristic polynomial based on primary expressions (additions, subtractions, multiplications, divisions and 

roots). This result implies that the methods to find the valuesof a matrix must be iterativeOne way to calculate the eigen 

values would be to calculate the roots of thecharacteristic polynomial using a numerical method of calculating roots, like 

roots in Matlab. Roots in Python. But find the roots of a polynomial is usually a poorly conditioned problem. The 

conditioning of a problem has not been defined, but a wrong problemconditioned is a problem for which a small change in 

the data can induce an uncontrolled change in the results. 

Keywords: mathematical linear effects, matrix, eigen values 

 

1. Eigenvectors and Eigenvalues 

 

In this paper we will focus on square matrices, with respective matrix applications that can be interpreted as 

transformations of the Rn space. The application x → Ax can transform a given vector x into another, of different 

direction and length. However, there may be some very special vectors for that transformation. For example, the 

set of vectors that are transformed to zero by the application, that is, the nucleus of the application or null space of 

A: {x: Ax = 0}. As much as we change the base, the null space is always the same. Another interesting set is that 

of the vectors that transform themselves, {x: Ax = x}. The two commented sets are associated with the matrix, and 

have a special characteristic: the transformation keeps them invariant, that is, the transformed vectors fall within 

the corresponding sets. As much as we change bases, the sets remain invariant. Give an example of a non-invariant 

set: a line that is transformed into another with a certain angle. 

See A=[
𝟑 −𝟐
𝟏 𝟎

] ,u= [
−𝟏
𝟏

]   and v=[
𝟐
𝟏
].Result that 

Au= [
𝟑 −𝟐
𝟏 𝟎

] [
−𝟏
𝟏

] = [
−𝟓
−𝟏

], Av= [
𝟑 −𝟐
𝟏 𝟎

] [
𝟐
𝟏
] = [

𝟒
𝟐
] =2v. 

The application has transformed v without changing its direction. 

Vectors that are only stretched or shrunk by a linear application are very special to it. 

2. Definition  An eigenvector (or eigenvector) of a matrix A of n× n is a vector x ∈ Rn, other than 0, likethe a 

certain scalar𝛌∈R 

Ax = 𝛌x. 

A scalar 𝛌such is called the eigenvalue (or eigenvalue) of A, that is, 𝛌it is the eigenvalue of A if there is a 

nontrivial solution of Ax =𝛌 x, and x is called the eigenvector associated with the eigenvalue𝛌. 

Be A=  [
𝟏 𝟔
𝟓 𝟐

] . 

1. Check if u=[
𝟔

−𝟓
] and v= [

𝟑
−𝟐

] are eigenvectors of A. 

2. Determine if 𝛌 = 7 is the eigenvalue of A. 

Solution: 

1. You have to determine if the equation 

Ax = 7x  ⬄ (A-7I)x = 0 

)which we have written as a homogeneous system) has a solutionnot trivial. To do this write 

 

A- 7I =[
𝟏 𝟔
𝟓 𝟐

]  − [
𝟕 𝟎
𝟎 𝟕

] = [
−𝟔 𝟔
𝟓 −𝟓

]~[
𝟏 −𝟏
𝟎 𝟎

]. 
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The associated homogeneous system has a free variable, thenthere are nontrivial solvewith 7 is a eigenvalue of 

A. In fact, a solution of the homogeneous system is x1 = x2, that is, in parametric vector form x = x1[
𝟏
𝟏
]these infinite 

vectors (minus 0) are the eigenvectors associated with the eigenvalue 7. 

Summarizing, if for a given matrix A and a scalar 𝛌there are nontrivial solutions of the homogeneous equation 

(A-𝛌I)x=0 

Then𝛌it is an eigenvalue of A, and the set of all solutions is the set of eigenvectors associated with𝛌 (plus 0), 

with call a proper space of A associated with𝛌. Or in another word, a proper space associated𝛌 with is the Nul 

space (A- 𝛌 I), if it is not null. 

Prove that a proper space is a vector subspace. 

The space of the vectors that a matrix transforms into itself is its own space.  Which? 

Be A=  [
4 −1 6
2 1 6
2 −1 8

] . Check that 2 are an eigenvalue, and find a base of the associated proper space. 

Solution: Considering the matrix 

A-2I= [
2 −1 6
2 −1 6
2 −1 6

]~ [
2 −1 6
0 0 0
0 0 0

] 

With which the own space is based 

{[
1/2
1
0

] , [
−3
0
1

]} 

And it is two-dimensional. How does the matrix transformation associated with A act on this proper space? 

The proper space of an array A associated with the value𝛌= 0 has another name.   

If 0 is the eigenvalue of a matrix A, if with just if A is non-invertible. 

Theorem. let v1, ..., vr eigenvector corresponding to different eigenvalue 𝛌1, ...,𝛌r of a matrix A n× n, then 

agroup {v1, …, vr} is linearly independent. 

Demonstration. Suppose that the vector set is linearly dependent. There will be a first vector vp +1 that will be 

a linear combination of the previous ones (theorem 3.20) 

vp +1 = c1 v1 + …+ cpvp.               (1) 

Multiplying by A 

Avp +1 = c1 Av1 + …+ cpAvp⇒p +1vp +1= c1 𝛌1v1 + …+ cp𝛌pvp 

Subtracting 𝛌p + 1 times (6.1) from this last equation. 

C1 (𝛌1   ̶  p+1) v1 + … + cp (𝛌p  ̶  𝛌p +1) vp= 0. 

But { v1, … vp} is linearly independent, and 𝛌i̶ 𝛌p +1≠ 0 if i <p + 1, so c1= … = cp = 0. This is a contradiction, 

and {v1, … vr}must be linearly independent. 

Show that an n× n matrix cannot have more than one distinct eigenvalues. 

 

 

2. A characteristic equations 

 

Example. Find the eigenvalues of A=[
𝟐 𝟑
𝟑 −𝟔

] . Solution 

Theorem (Extension of the invertible matrix theorem). Let A n× n. Then it is equivalent to A being invertible 

any of the following statements. 

s. 0 is not an eigenvalue of A. 

t. The determinant of A is not zero. 

What was said in the previous section shows yes. And Theorem 5.11 shows t. 

The characteristic equation. 

Proposition. A scalar is 𝛌an eigenvalue of a square matrix A if and only if it satisfies the so-called characteristic 

equation 

Det ( A  ̶ 𝛌I)=0 . 

Example. Characteristic equation of 

A=[
𝟓 −𝟐        𝟔    −𝟏
𝟎 𝟑      − 𝟖 𝟎
𝟎 𝟎            𝟓 𝟒

] 

      0       0           0       1 

It is clear that the characteristic equation is equal to a polynomial equation, since given a numerical matrix A 

of n × n, the expression det (A ̶ 𝛌I) is a polynomial in. This polynomial, which is of degree n, is called the 

characteristic polynomial of matrix A. Clearly, its roots are the eigenvalues of A. 
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The algebraic multiplicity of an eigenvalue is its multiplicity as the root of the characteristic polynomial. That 

is, we know that a polynomial with complex coefficients can always be factored into simple factors: 

det(A ̶ 𝛌I) = (𝛌1  ̶𝛌)𝜇1(𝛌2  ̶𝛌)𝜇2 … (𝛌r  ̶𝛌)𝜇𝑟  . 

The roots 𝛌i are the eigenvalues, and the exponents𝜇i are the algebraic multiplicities of the corresponding 

eigenvalues 𝛌i. 

Theorem. The eigenvalues of a triangular matrix are the inputs of its main diagonal. 

.4𝛌12  ̶ 5 𝛌4   ̶6 𝛌The characteristic polynomial of a matrix is  Example. 

1. How big is the matrix? 

2. What are their eigenvalues and corresponding multiplicities? 

Likeness. The row reduction process has been our main tool for solving systems of equations. The fundamental 

characteristic of this procedure is, again, the invariance of the set of solutions; the object sought, with respect to 

the transformations used to simplify the system, the elementary operations by rows. 

   In the case that the objects of interest are the eigenvalues, there is a procedure that keeps them invariant and 

allows simplifying the matrix A. 

Definition. Two matrices A and B of n × n are said to be similar if there is an invertible matrix P of n×n that 

relates them by the following formula 

Demonstration. We know that B = P -1AP. Thus 

B  ̶𝛌I = B = P-1AP ̶𝛌P -1P = P -1(AP ̶𝛌P ) = P -1(A�̶�I)P . 

Therefore, the characteristic polynomial of B 

det(B ̶𝛌I) = det[P -1(A ̶𝛌I)P ] = det(P -1) det(A�̶�I) det(P ) = det(A�̶�I) 

It is the same as that of A. Note that we have used that det (P -1) = 1 / det (P)*. 

It is important to note that row equivalence is not the same as similarity. The row equivalence is written 

matrixally as B = EA, for a certain invertible matrix E; the similarity as B = P -1AP for a certain invertible matrix 

P. 

3. Diagonalization 

 

 A very special class of square matrices is diagonal matrices, those whose elements are all null, except for 

the main diagonal: 

 

D= [
𝑑1 0      … 0
0 𝑑2    … 0
0 0     . . . 𝑑𝑛

] 

Its action on vectors is very simple. 

Example. Be D= [
𝟓 𝟎
𝟎 𝟑

].So 

D[
𝑥1
𝑥2

] =[
𝟓 𝟎
𝟎 𝟑

] [
𝑥1
𝑥2

]= [
5𝑥1
3𝑥2

]. 

2 

We can therefore deduce that D2=  [
𝟓 𝟎
𝟎 𝟑

] [
𝟓 𝟎
𝟎 𝟑

]= [
𝟓 𝟎
𝟎 𝟑

]                 and in general 

k     

Dk=  [
𝟓 𝟎
𝟎 𝟑

] = [
𝟓 𝟎
𝟎 𝟑

] 

  Which is the form for the k-th power of D, and it naturally extends to any diagonal matrix. 

The power of an array is very useful in many applications, as we will see later. In fact, we would like to compute 

the k-th power of any matrix. This is calculated very easily if we manage to diagonalize A, that is, find a diagonal 

matrix D similar to A: A = PDP -1. The reason is very simple, as the following example illustrates. 

Example. Be A= [
𝟕 𝟐

−𝟒 𝟏
]     . It can be verified that A= PDP -1 with 

P= [
𝟏 𝟏

−𝟏 −𝟐
]       and D=[

𝟓 𝟎
𝟎 𝟑

](and P-1 = [
𝟐 𝟏

−𝟏 −𝟏
]) 

With this information, we find a formula for power k-thAk of A. Square A2 is 

A2 = (PDP -1)(P|DP -1) = PDP -1P  DP -1= PDDP-1 = = PD2P -1 

 

                                                   1 

 

= [
𝟏 𝟏

−𝟏 −𝟐
] [

𝟓 𝟎
𝟎 𝟑

] [
𝟐 𝟏

−𝟏 −𝟏
] = [

𝟏 𝟏
−𝟏 −𝟐

] [
𝟐. 𝟓 𝟓
−𝟑 −𝟑

] 

 

                                                  =[
𝟐. 𝟓 − 𝟑 𝟓 − 𝟑

−𝟐. 𝟓 + 𝟐. 𝟑 −𝟓 + 𝟐. 𝟑
] 
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It is easy to deduce that 

 

Ak = PDP -1 PDP -1k  times in total PDP -1 = PDkP-1 

So 

Ak =[
𝟏 𝟏

−𝟏 −𝟐
] [

𝟓 𝟎
𝟎 𝟑

] [
𝟐 𝟏

−𝟏 −𝟏
]  =[

𝟐. 𝟓 − 𝟑 𝟓 − 𝟑
−𝟐. 𝟓 + 𝟐. 𝟑 −𝟓 + 𝟐. 𝟑

]. 

 

A matrix is diagonalizable if it can be diagonalized, that is, if there is a diagonal matrix D similar to A, so A 

= PDP -1. 

The k-th power of a matrix A that can be diagonalized A = PDP -1 is Ak = PDkP-1. 

A= P[
𝜆1

            𝜆2
                                      𝜆𝑛  

] P-1,P= [v1| v2| ,,, |vn] , Avi= 𝛌ivi. 

Demonstration. 

AP =A [v1| v2| ,,, |vn] = [A v1| Av2| ,,, |Avn]  

  = [𝛌1v1|𝛌2v2| ,,, |𝛌nvn]  = [
𝜆1

              𝜆2
                                      𝜆𝑛  

] D =PD 

 

AP =PD ⇒ A = PDP-1 

Because P is invertible as it is square and its columns are independent . 

Viceversa, if A = PDP-1 then AP = PD and if vi is column i of P, then this matrix equality implies that Avi = 

𝛌ivi, that is, the columns of P are eigenvectors. Being P invertible, they are linearly independent.  

 If a matrix does not have n linearly independent eigenvectors, it cannot be diagonalized. 

Example. Let's diagnose 

A = [
1 3 3

−3 −5 −3
3 3 1

] 

Step 1. Find the eigenvalues of A. The characteristic equation is 

Det(A  ̶ 𝛌I) = 𝛌3    ̶3𝛌2 + 4 = - (𝛌  ̶1)(𝛌+2)2 . 

Then there are two eigenvalues, 𝛌= 1 and 𝛌 =   ̶2 (with multiplicity 2(. 

Step 2.Find the eigenvector of A. Solving the systems (A-𝛌I) x = 0 and giving the solution in vector form for 

etrica, we obtain bases of the eigen spaces: 

 

(A-I) x= 0 ⇒ v1 =[
1

−1
1

] 

(A+ 2 I )x = 0 ⇒ v2 = [
−1
1
0

]    , v3 =[
−1
0
1

] 

 

Note: if there are not three independent eigenvectors, the matrix is not can diagonalize. 

Step 3. Build the matrix P. The columns of P are the eigenvectors: 

P = [v1| v2| v3] =[
1 −1 −1

−1 1 0
1 0 1

] 

Step 4. Construct matrix D. Place the diagonal of D on the eigenvalues, in the order corresponding to how 

the eigenvectors are placed in P (v1 is the eigenvector with 𝛌1 = 1, and v2 and v3 corresponda 𝛌2 = -2: 

D=[
1 0 0
0 −2 0
0 0 −2

] 

The similarity can be verified by checking that AP = PD (for do not calculate P -1) 

Is AP = PD fully equivalent to A = PDP-1? 

Is it possible to diagonalizable A=[
2 4 3

−4 −6 −3
3 3 1

] 

Theorem. The fact that A of n× n has n different eigenvalues is sufficient to ensure that it is diagonalizable. 

Example. Is it diagonalizable A= [
5 −8 1
0 0 7
0 0 −2

] ? 

Demonstration. 

Example.Diagonalizable yourself, if possible 
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A=[
𝟓 𝟎       𝟎 𝟎
𝟎 𝟓       𝟎 𝟎
𝟏  𝟒    − 𝟑 𝟎

] 

     -1      -2      0    -3 

 

Example.Diagonalizable yourself, if possible 

A=[
0 1 0
0 0 0
0 0 0

] 

 

 

 

5. Eigenvectors and linear transformations 

 

5.1. Base change and linear transformations. 

Theorem 4.18 assures us that any linear application T from Rn to Rm canbe implemented as a matrix application 

T(x) =Ax                      (2) 

Where A is the canonical matrix of T. This is a matrix m n that by columns was written with the action of the 

transformation on the vectors of the base A= [ T (e1) | … | T (en)]. Let's look first at the particular case n = m, 

whereby T it is a linear transformation of Rn and A is square. Let's denote 

A= [T]E = [ T (e1) | … | T (en)]         (3) 

Indicating that [T] E is the matrix of the application T that acts on vectors in canonical coordinates, and returns 

values as vectors also in the canonical base (later we will also write [T] E = [T] E←E) The formula (6.2) is rewritten 

as 

[T x]E= A[x]E= [T ]E[x]E (4) 

We want to understand how the action of the application would be on vectors coordinated on another base 𝔅 

= {b1,…,bn} from Rn. Recall that the matrix of the coordinate change from 𝔅 to E is one whose columns are the 

vectors of 𝔅 written in the canonical base: 

P𝔅=P𝔅←𝔅= [ b1 |b2| … |bn] 

And the equation x = c1b1 + c2b2 +… + cnbn is written in matrix form 

[x]E = P𝔅[x]𝔅 [x]𝔅 = (c1, c2,…,cn) 

(P𝔅 "passes" coordinates in 𝔅 to coordinates in E) We would like to find a matrix B = [T]𝔅 that would act as 

T, but accepting vectors [x]𝔅in coordinates of 𝔅 and returning the resulting vector in base 𝔅 also: 

[Tx]𝔅 = B[x]𝔅 = [T]𝔅[x]𝔅    (5) 

Using the base change matrix P𝔅 = PE←𝔅 we can deduce how this matrix is. We can multiply P𝔅 [x] 𝔅 = [x] E 

to pass it to canonical coordinates, and act on this vector with A, to obtain the vector [T (x)] E: 

[x] 𝔅 →  [x]E = P [x]𝔅 

→[T (x)]E = A[x]E = AP [x]𝔅 

Finally, to obtain the resulting vector [T x] 𝔅 it is necessary to change the base[T x] E with the inverse matrix 

of the base change P𝔅←E = P-1 

→ [T (x)]𝔅 = P𝔅← E [T (x)]E = P -1AP [x]𝔅 

 

Writing it all together 

[T x]𝔅 = P𝔅←E [T ]EPE←𝔅 [x]𝔅 

[x]E=PE←𝔅[x]𝔅 

 

[T x]E=[T ]E [x]E 

 

[T x]𝔅=P𝔅←E [T x]E 

We have deduced that 

[T x]𝔅 = P -1AP [x]𝔅 

The formula (6.4) was [T x] 𝔅 = B[x] 𝔅, so the matrix we were looking for is B=  [T] 𝔅 = P -1AP. We summarize 

with the following result. 

[T ]𝔅 = P -1[T ]EP siendo P = PE←𝔅 = P𝔅         (6) 

The matrix [T] 𝔅 = [T] 𝔅←𝔅 is called the 𝔅 -matrix of T. 

There is a direct way to calculate the 𝔅-matrix of T. Since x = c1b1 +…+cnb So  

T (x) = T (c1b1 + _ _ _ + cnbn) = c1T (b1) + _ _ _ + cnT(bn) 

is the resulting vector. If we want it in coordinates of 𝔅 we have to use the coordinate's application 

[Tx] 𝔅 = [c1 T(b1)+ …+ cnT (bn)]𝔅=c1 [T(b1)]𝔅 +…+ cnT (bn)]𝔅 

And writing this in matrix form  
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[Tx] 𝔅 = [[T(b1)]𝔅∣ T(b2)]𝔅| … | T (bn)]𝔅[

𝑐1
𝑐2
…
𝑐𝑛

]  = [T]𝔅 [x]𝔅 

The columns of P𝔅 form a base of Rn, and the invertible matrix theorem (theorem 2.27 e. ´o h.) Implies that 

P𝔅 is invertible. We can say then that P -1
𝔅, which acts as 

[x]𝔅 = P -1𝔅 [x]E 

Is the matrix of the coordinate change from the canonical base to the base 𝔅. 

But what if T is a linear application between two arbitrary vector spaces V and W? If the vector spaces are of 

finite dimension, we can use the coordinates, as we did to identify vectors with vectors of Rn, to identify the 

application with a matrix application from Rn to Rm. 

 

The matrix of a linear application. 

 Let T: V→ W a linear applicationwhose domain is a vectors spaces V of dim n with whose codomino is a 

vectors spacesW of dim m. Using a base𝔅 of V and a base C of W, we can associate to T a matrix application 

between Rn and Rm. 

Indeed, given x ∈ V we have that we can write any x ∈ V in coordinates [x] 𝔅 with respect to base 𝔅 and T(x) 

in coordinates [T (x)] C with respect to base C. Let 𝔅 = {b1,…, bn}, and let be the coordinates of x 

[x]𝔅=

[
 
 
 
 
 
 
 
𝑟1
.
.
.
.
.
.

𝑟𝑛]
 
 
 
 
 
 
 

 

That is x = r1b1 +… + rnbn. So, since T is linear 

y = T (x) = T (r1b1 + _ _ _ + rnbn) = r1T (b1) + _ _ _ + rnT (bn): 

Writing this vector in coordinates with respect to C we have to 

[y]C = [T (x)]C = r1[T (b1)]C + _ _ _ + rn[T (bn)]C 

=[ [T (b1)]C|[T (b2)]C|_ _ _| [T (bn)]C]

[
 
 
 
 
 
 
 
𝑟1
𝑟2
.
.
.
.
.

𝑟𝑛]
 
 
 
 
 
 
 

 

It should be noted, as it is easy to deduce from the previous example and from the associated matrix definition, 

that to fully determine a linear application T:V→ W is enough to give its value (in any base C of W) on the vectors 

of a base 𝔅 of V. 

 

Example If V = W and the application is the identity T (x) = Id (x) = 

Ix = x, the matrix 

[Id]C ←𝔅 = [ [Ib1]C| …| [Ibn]c ] ] = [ [b1]C| …|Ibn]c ] ] 

 

Is the matrix of the base change of Theorem 3.61. 

Matrix of a linear transformation of V. The particular case W = V oflinear transformations, that is, linear 

applications T: V→V that act on a space V, is very common. The normal thing is to use the same base 𝔅 of V to 

describe the images and the anti-images, that is, to use [T] 𝔅←𝔅, matrix that is denoted by [T] 𝔅 and is called 𝔅-

matrix of T. With this, if y = T (x): 

    [y]𝔅 = [T (x)]𝔅 = [T ]𝔅 [x]𝔅paratodox ∈V . 

[T]𝔅 is also said to be the matrix of T at base𝔅. 

Example In Example 3.43 we coordinate the space P3of polynomials of up to third degree, using the canonical 

base E=  {1, t, t2,t3}. With this we saw that it is isomorphic to R4: for a polynomialfrom P3 

p(t) = a0 + a1t + a2t2 + a3t3⟷[p]𝔅 = [

𝑎0
𝑎1
𝑎2
𝑎3

] 

The application D: P3→ P3, derived with respect to t is defined by 
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p(t) = a0 + a1t + a2t2 + a3t3→ D(p(t)) = p'(t) = a1 + 2a2t + 3a3t2 

And we know, from what we know about the properties of the derivative,which is linear. Therefore, there will 

be an array that implements it as a matrix application of R4→ R4. That matrix is calculated by puttingas columns 

the transformed vectors of the canonical base, incoordinates of the canonical base: 

D(1) = 0⟷ [D(1)E[

0

0

0

0

]  ,   D(t) = 1⟷ [D(t)]E =[

1

0

0

0

] , 

D(t2) = 2t⟷ [D(t2)]E =[

0

2

0

0

] ,  D(t3) = 3t2 ⟷ [D(t3)]E =[

0

0

3

0

] 

So 

[D]E =[[D(1)]C|[D(t)]C|[D(t2)]C|[D(t3)]C] = [
𝟎 𝟏       𝟎 𝟎
𝟎 𝟎       𝟐 𝟎
𝟎  𝟎       𝟎 𝟑

] 

                                                                                0      0       0    0 

 

It is easy to verify that 

[D]E[

𝑎0
𝑎1
𝑎2
𝑎3

]  == [
𝟎 𝟏       𝟎 𝟎
𝟎 𝟎       𝟐 𝟎
𝟎  𝟎       𝟎 𝟑

] [

𝑎0
𝑎1
𝑎2
𝑎3

]= [

𝑎1
2𝑎2
3𝑎3
0

] 

                          0      0       0    0 

 

Which is equivalent to 

d/dt (a0 +a1t + a2t2 + a3t3) = a1 + 2 a2t + 3 a3t2 

 

Linear transformations of Rn. When in a vector space V we have a base 𝔅 = {b1,…,bn}, we have a way to 

describe its vectors as coordinate vectors, creating an isomorphism between V and Rn, and we have a way to 

describe their linear transformations as matrix transformations of Rn, using the 𝔅-matrix. When we despond of 

more than onebase, we have several ways to write coordinate vectors, and we have several ways to describe 

applications with matrices. 

 

For example, consider Rn, with the canonical base E, and a diagonalizable matrix A of n× n, with whose 

eigenvectors we can construct a base 𝔅 of Rn. There are two bases, we know the E-matrix of the linear application 

x →Ax (A itself), but that application would also have a 𝔅-matrix. That is, the application has matrix A in the 

canonical base, and a different matrix in base 𝔅. 

 

Theorem. Suppose A is similar to a diagonal matrix D of n× n, that is, A = PDP -1. Theorem states that a 

column of P forms a base 𝔅 (of eigenvectors of A) of Rn. So D is a B-matrix of x →Ax on this basis: 

[T ]E = A [T ] = D 

 

Demonstration. If 𝔅 = {b1,.., bn} is the eigenvector base of A, so Abi=  

𝛌ibi, i = 1,…, n (there can be𝛌i repeated if one has greater multiplicitythan 1). The matrix of T (x) = Ax on that 

basis is 

[T]𝔅 = [ [T(b1)] 𝔅| …| [T(bn)] 𝔅] = [ [Ab1] 𝔅| …| [Abn] 𝔅 ] 

        = [ [𝛌1b1)]𝔅 | …| [𝛌nbn)]𝔅]= [[𝛌1[b1]𝔅 | …| [𝛌n[bn]𝔅] 

=[𝛌1 e1 | …| 𝛌n en]= [
λ1 0     ⋯ 0

0 λ2  ⋱ 0

0 0    ⋯ λn

] =D 

It is interesting to note that the matrix P= [b1| …|bn]  is the matrix of changePE←𝔅 base, as we will see in the 

next paragraph. 

If A  = [
𝟕 𝟐

−𝟒 𝟏
]and T (x) = Ax, find a base of  

the base will be the eigenvector base used when diagonal matrix. We already saw in that A = PDP-1 with P 

havingas columns b1=  
1

−1
    ,b2=

1

−2
So statesthat 𝔅 = {b1, b2} is a base on which the application T hasmatrix 
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Similarity and change of coordinates of transformations. We have seen that if a matrix A is similar to 

another D, with A = PDP -1, thenD is the matrix [T] 𝔅 of T (x) = Ax at the base 𝔅given by the columns of P.Since 

A is the matrix [T] E of T in the canonical base, and P = PE←𝔅is the matrix ofcoordinate change from 𝔅 to E, then 

A = PDP -1⟷ [T ]E = PE←𝔅[T ]𝔅 P𝔅←E 

since P-1 = P𝔅←E. This fact is general. 

(Change of base of a matrix application). Let 𝔅 and C be twobases of Rn, and let T: Rn→Rn a linear application 

whose matrix in two basesis [T] 𝔅 and [T] C respectively. So [T]C = P𝔅← C [T] 𝔅P𝔅←C, that is 

[T ]C = P [T ]P -1⟷ [T ]𝔅 = P -1[T ]C P 

Being P = [[b1]C| … |[bn]C]the base change matrix Pc←𝔅. 

A= [
4 −9

4 −8
], b1=

3

2
  and b2 = 

2

1
. 

Find the 𝔅-matrix of x →Ax (matrix A in base ( . 

Solution: The base change matrix PE ←𝔅 is P =[
3 2

2 1
]    , and inverse is P-1 = P𝔅←E=[

−1 2

2 −3
], so that 

[T ]𝔅 = P𝔅← E [T ]E PE ←𝔅 

= P-1AP =  [
−1 2

2 −3
] [
4 −9

4 −8
] [
3 2

2 1
] =  [

−2 1

0 −2
] 

One thing to note for later chapters: the first vectorb1
3

2
  = is an eigenvector of A, with eigenvalue -2. The 

polynomialcharacteristic of A is (𝛌+ 2) 2, so it only has an eigenvalue -2. Yeswe calculate their eigenvectors, we 

will discover that they are cb1, the multiplesfrom b1, and there is only one linearly independent one. Therefore, A 

noit is diagonalizable. Matrix [T] 𝔅 is the best we can findsimilar to A: it is not diagonal, but at least it is triangular. 

I knowcalled Jordan's form of A. 

 

6. Complex eigenvalues 

 

The matrix A   = [
0 −1

1 0
]is a spin of + 𝜋/ 4. Your equationCharacteristic is 

𝛌2 +1=0 

For everything to make sense, we have to consider that the wholeof scalars is C instead of R, and that the vector 

vector spacecolumn is C2 instead of R2, in addition to that the matrices may bemade up of complex elements. With 

this expansion, you havefelt the complex diagonalization 

[
0 −1

1 0
] = [

𝑗 −𝑗
1 1

] [
𝑗 0

0 −𝑗
] 1/2j   [

1 𝑗
−1 𝑗0

] 

 

Diagonalizable the matrix A= [
7 −8

5 −5
] .The character equationsilica and the eigenvalues are 

𝛌2_2   + 5 = 0 = (𝛌 _  1)2 + 42 ) →𝛌 = 1 + 2j, 1 - 2j 

Note that eigenvalues are complexes conjugated to each other.This always happens if the matrix is 2 ×2 and 

real. The eigenvectors are also calculated at the same time, because it can be shown thatthey are also complex 

conjugates if A is real: 

A- (1 + 2j)I =[
6 − 2𝑗 −8

5 −6 + 2𝑗
]→ v1 =[

4

3 − 𝑗
], v2 = [

4

3 + 𝑗
] 

For all 

[
7 −8

5 −5
] = P [

1 + 2𝑗 0

0 1_2𝑗
] P-1  , con P= [

4 4

3 − 𝑗 3 + 𝑗
] 

The complex diagonal shape is not of much interest if we work with real matrices. There is a form of a real 

matrix that is not diagonal, but that would be very useful later, which is the one that adopts the matrix C of the 

following theorem. 

Let A be a real matrix of 2× 2 with complex eigenvalue 𝛌= a –bj (b≠0), and associated eigenvector v ∈ C2. So 

A = P CP -1 , where P = [Rev |Imv]  and   C= [
𝑎 −𝑏
𝑏 𝑎

] 

Note that in the case of the matrix in, thematrix A  = [
0 −1

1 0
]    ,and the associated eigenvectors give rise to P 

= I, theidentity. The geometric interpretation of the transformation in R2associated with A is that of a 90 degree 

rotation in a positive direction,being evident that this application does not have autovectors.  Asare the other C 

transformations of R2 that do not have eigenvectors  ?Take example 6.40, from matrix A[
7 −8

5 −5
]:= eigenvaluesare 

1 - 2j and 1 + 2j, and the eigenvector corresponding to 1 - 2j was[
4

3 + 𝑗
]then P= [

4 0

3 1
], C=  [

1 −2

2 1
]and the 

factorization is 

A=PCP-1 →[
7 −8

5 −5
]  = [

4 0

3 1
] [
1 −2

2 1
]  1/4 [

1 0

−3 4
] 
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The "geometric interpretation of the transformation associated with A= [
𝑎 −𝑏
𝑏 𝑎

]it is a rotation of angle arctanb 

/ a and also a dilation ofmagnitude√𝑎2 + 𝑏2 (see formula (5.2)) 

 

 

7. Summary 

 

An eigenvector (orauto vector) of a matrix A of n×nis a vector x ∈ Rn, other than, such thatfor true scale𝛌∈ 

RAx = 𝛌x.Like the scalar 𝛌is call a eigenvalues (or eigenvalue) of A, that is,𝛌 it is a eigenvalues of A if there is 

the not trivial solve of Ax = 𝛌x, with x is call a eigenvectors associate anda eigenvalue𝛌. 
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