Quasi-continuity on Product Spaces

Bhagath kumar Soma¹, Vajha Srinivasa kumar²

¹Soma Assistant Professor, Department of Basic Sciences, Gokaraju Rangaraju Institute of Engineering and Technology, Bachupally, Kukatpally, Hyderabad-500090, Telangana State, India

²Assistant Professor, Department of Mathematics, JNTUH College of Engineering, JNTU, Kukatpally, Hyderabad-500085, Telangana State, India.

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021

Abstract: In this present paper, the notion of Quasi-continuity on a product space is introduced. The set of all such bounded Quasi-continuous functions defined on a closed and bounded interval is established to be a commutative Banach algebra under supremum norm.

Keywords: Quasi-continuity, Right and Left Limits, Commutative Banach Algebra, Product space.

1. Introduction

Quasi-continuity is a weaker form of continuity. In 1932, *Kempisty* introduced the notion of quasi-continuous mappings for real functions of several real variables in his classical research article [1]. There are various reasons for the interest in the study of quasi-continuous functions. There are mainly two reasons. The first one is relatively good connection between the continuity and quasi-continuity inspite of the generality of the latter. The second one is a deep connection of quasi-continuity with mathematical analysis and topology.

In this present work, we define quasi-continuity on a product space in a different approach and establish that the set of all such bounded Quasi-continuous functions on a closed and bounded interval forms a commutative Banach algebra under the supremum norm.

In what follows I and X stand for the closed unit interval [0,1] and a commutative Banach algebra with identity over the field \square of real numbers respectively.

2. Preliminaries

In this section we present a few basic definitions that are needed further study of this paper.

Definition – **1.1:** Let $f: I \to X$, $q \in X$ and $x_0 \in [0,1)$. We say that $f(x_0 +) = q$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $||f(t) - q|| < \varepsilon$ for all $t \in (x_0, x_0 + \delta) \subset [0,1]$.

Definition – 1.2: Let $f: I \to X$, $p \in X$ and $x_0 \in (0,1]$. We say that $f(x_0 -) = p$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $||f(t) - p|| < \varepsilon$ for all $t \in (x_0 - \delta, x_0) \subset [0,1]$.

Definition – 1.3: A function $f: I \to X$ is said to be continuous at $x_0 \in I$ if

 $f(x_0 +) = f(x_0 -) = f(x_0)$. We say that f is continuous on I if f is continuous at every point of I.

Definition – 1.4: Let S be any non-empty set. If $c \in \square$, $f: S \to X$ and $g: S \to X$ then we define

a.
$$(f+g)(x) = f(x) + g(x)$$
 for all $x \in S$

b.
$$(cf)(x) = cf(x)$$
 for all $x \in S$

c.
$$(fg)(x) = f(x)g(x)$$
 for all $x \in S$

¹somabagh@gmail.com, ² srinu_vajha@yahoo.co.in

Definition – **1.5:** A function $f: I \to X$ is said to be *bounded* on I if there exists a positive real number M such that $||f(t)|| \le M$ for all $t \in I$.

Definition – 1.6: Let N and N' be normed linear spaces. An *isometric isomorphism* of N into N' is a one-to-one linear transformation T of N into N' such that ||T(x)|| = ||x|| for every x in N and N is said to be *isometrically isomorphic* to if N' there exists an isometric isomorphism of N into N'.

1. Quasi-Continuity on I^2

In this section, we introduce the notion of quasi-continuity on I^2 and present a few results in this context.

Definition – **2.1:** A function $f: I \to X$ is said to be *quasi-continuous* on I if

a. f(0+) and f(1-) exist.

b. f(p+) and f(p-) exist for every $p \in (0,1)$.

Definition – **2.2:** Let $f: I^2 \to X$ and $(x, y) \in I^2$. We define $f_x: I \to X$ and $f_y: I \to X$ by $f_x(t) = f(x,t)$ and $f_y(t) = f(t,y)$ for all $t \in I$.

Definition – **2.3:** Let $(x,y) \in I^2$. A function $f:I^2 \to X$ is said to be quasi-continuous at (x,y) if the functions $f_x:I \to X$ and $f_y:I \to X$ are quasi-continuous on I. We say that $f:I^2 \to X$ is quasi-continuous on I^2 , if f is quasi-continuous at every point of I^2 .

Definition – 2.4: Let $I^2 = I \times I$. A function $f: I^2 \to X$ is said to be *bounded* on I^2 if there exists a positive real number M such that $||f(s,t)|| \le M$ for all $(s,t) \in I^2$.

Notation -2.5:

- 1. The set of all quasi-continuous bounded functions from I into X is denoted by $\mathcal{L}(I,X)$.
- 2. We denote the set of all quasi-continuous bounded functions from I^2 into X by the symbol $\mathcal{L}(I^2,X)$.

Proposition – 2.6: Let $c \in \square$. If $f: I \to X$ and $g: I \to X$ are quasi-continuous on I then so are f+g, fg and cf.

Proposition – 2.7: If $f_n \in \mathcal{Q}(I,X)$ for n=1,2,3,... and if $f_n \to f$ uniformly on I then $f \in \mathcal{Q}(I,X)$.

Proposition – 2.8: $\mathscr{L}(I,X)$ is a commutative Banach algebra with identity over the field \square of real numbers under the supremum norm $||f|| = \sup\{||f(x)|| : x \in I\}$.

Remark -2.9: It is easy to observe the following.

a.
$$(f+g)_x = f_x + g_x$$

b.
$$(f+g)_y = f_y + g_y$$

c.
$$(fg)_x = f_x g_x$$

$$d. \quad (fg)_y = f_y g_y$$

e.
$$(cf)_x = cf_x$$

f.
$$(cf)_y = cf_y$$

Proposition – 2.10: If $f \in \mathcal{L}(I^2, X)$ and $g \in \mathcal{L}(I^2, X)$ then

a.
$$f+g \in \mathcal{L}(I^2,X)$$

b.
$$fg \in \mathcal{L}(I^2, X)$$

c.
$$cf \in \mathcal{C}(I^2, X)$$
 where $c \in \square$.

Proposition – 2.11: The space $\mathcal{L}(I^2, X)$ forms a normed linear space under the supremum norm $||f|| = \sup\{||f(s,t)||: (s,t) \in I^2\}$.

3. Isometric Isomorphism between $\mathscr{Q}(I^2,X)$ and \mathscr{Q}^2

Throughout this section we take \mathcal{Q}^2 to be the product space $\mathcal{Q}(I,X)\times\mathcal{Q}(I,X)$ and establish an isometric isomorphism between $\mathcal{Q}(I^2,X)$ and \mathcal{Q}^2 .

Proposition – 3.1: There exists an isometric isomorphism between $\mathcal{L}(I^2, X)$ and \mathcal{L}^2 .

Proof: Fix
$$(x, y) \in I^2$$
. Define $\varphi : \mathcal{L}(I^2, X) \to \mathcal{L}^2$ by $\varphi(f) = (f_x, f_y)$.

First we prove that φ is 1-1.

Suppose that $\varphi(f) = \varphi(g)$ for $f, g \in \mathcal{L}(I^2, X)$

$$\Rightarrow (f_x, f_y) = (g_x, g_y)$$

$$\Rightarrow f_x = g_x \text{ and } f_y = g_y$$

$$\Rightarrow f_{x}(t) = g_{x}(t)$$
 and $f_{y}(s) = g_{y}(s)$ for all $s, t \in I$

$$\Rightarrow$$
 $f(x,t) = g(x,t)$ and $f(s,y) = g(s,y)$ for all $s,t \in I$

$$\Rightarrow f(x, y) = g(x, y)$$

Since (x, y) is an arbitrary point in I^2 , we have f(x, y) = g(x, y) for every (x, y) in I^2 and hence f = g.

Thus the mapping $\varphi: \mathcal{L}(I^2, X) \to \mathcal{L}^2$ is 1-1.

The norm of
$$(f,g) \in \mathbb{Z}^2$$
 is defined by $||(f,g)|| = \max\{||f||, ||g||\}$.

Now we prove that the mapping $\varphi: \mathcal{L}(I^2, X) \to \mathcal{L}^2$ preserves norm. we have

$$\|\varphi(f)\| = \|(f_x, f_y)\|$$

$$= \max\left\{ \|f_x\|, \|f_y\| \right\}$$

$$\geq ||f_x||$$

$$= \sup \left\{ \left\| f_x(t) \right\| : t \in I \right\}$$

$$\geq ||f_x(t)|| \quad \forall \ t \in I$$

$$= \|f(x,t)\| \quad \forall \quad t \in I$$

In particular, $\|\varphi(f)\| \ge \|f(x,y)\|$

Since (x, y) is an arbitrary point in I^2 , we have $\|\varphi(f)\| \ge \|f(x, y)\|$ for all $(x, y) \in I^2$.

$$\Rightarrow \|\varphi(f)\| \ge \|f\| \qquad \to \quad \text{(1)}$$

Since
$$||f|| = \sup\{||f(s,t)|| : (s,t) \in I^2\}$$
, it follows that $||f|| \ge ||f(s,t)|| \quad \forall \quad (s,t) \in I^2$

$$\Rightarrow$$
 $||f|| \ge ||f(x,t)||$ and $||f|| \ge ||f(s,y)||$ for every s and t in I

$$\Rightarrow$$
 $||f|| \ge ||f_x(t)||$ and $||f|| \ge ||f_y(s)||$ for every s and t in I

$$\Rightarrow$$
 $||f|| \ge ||f_x||$ and $||f|| \ge ||f_y||$

$$\Rightarrow \|f\| \ge \max\{\|f_x\|, \|f_y\|\}$$

$$\Rightarrow ||f|| \ge ||\varphi(f)|| \qquad \to \qquad (2)$$

From (1) and (2) $\|\varphi(f)\| = \|f\|$.

Hence φ preserves norm.

Now it remains to show that φ is linear. If $f,g\in \mathscr{L}\left(I^2,X\right)$ and $c\in\Box$, then

$$\varphi(f+g) = ((f+g)_x, (f+g)_y)$$

$$= (f_x + g_x, f_y + g_y)$$

$$= (f_x, f_y) + (g_x, g_y)$$

$$= \varphi(f) + \varphi(g)$$
Similarly, $\varphi(cf) = ((cf)_x, (cf)_y)$

Similarly,
$$\varphi(cf) = ((cf)_x, (cf)_y)$$

$$= (cf_x, cf_y)$$

$$= c(f_x, f_y)$$

$$= c\varphi(f)$$

Hence arphi is an isometric isomorphism of $\mathscr{L}\left(I^2,X\right)$ into \mathscr{L}^2 .

Proposition – 3.2: If $f_n \in \mathcal{Q}(I^2, X)$ for n = 1, 2, 3... and $f_n \to f$ uniformly on I^2 then $f \in \mathcal{Q}(I^2, X)$.

Proof: Let $\varepsilon > 0$ be given and take $\delta = \varepsilon$.

For
$$f,g \in \mathcal{L}(I^2,X)$$
, suppose that $||f-g|| < \delta$.

Since $\varphi: \mathcal{Q}(I^2, X) \to \mathcal{Q}^2$ is an isometric isomorphism, we have $\|\varphi(f-g)\| < \delta$

$$\Rightarrow \|\varphi(f) - \varphi(g)\| < \varepsilon$$

Hence $\varphi: \mathcal{L}(I^2, X) \to \mathcal{L}^2$ is uniformly continuous on $\mathcal{L}(I^2, X)$.

$$\Rightarrow \varphi : \mathcal{Q}(I^2, X) \rightarrow \mathcal{Q}^2 \text{ is continuous on } \mathcal{Q}(I^2, X).$$

Let $(x,y) \in I^2$. Suppose that $f_n \in \mathcal{L}(I^2,X)$ for n=1,2,3... and $f_n \to f$ uniformly on I^2 .

$$\Rightarrow \varphi(f_n) \rightarrow \varphi(f) \text{ in } \mathcal{Q}^2$$

$$\Rightarrow ((f_n)_x, (f_n)_y) \rightarrow (f_x, f_y) \text{ in } \mathcal{C}^2$$

$$\Rightarrow$$
 $(f_n)_x \to f_x$ and $(f_n)_y \to f_y$ uniformly on I in $\mathscr{L}(I,X)$

$$\Rightarrow f_x \in \mathcal{L}(I,X) \text{ and } f_y \in \mathcal{L}(I,X).$$

$$\Rightarrow$$
 f is quasi-continuous at $(x, y) \in I^2$.

Since
$$(x, y) \in I^2$$
 is arbitrary, $f \in \mathcal{L}(I^2, X)$.

Proposition – 3.3: $\mathcal{L}(I^2, X)$ is a commutative Banach algebra with identity over the field \square of real numbers under the supremum norm.

References

- A. Kempisty, .S., Sur les functions quasicontinues, Fund. Math. XIX, pp. 184 197, 1932.
- B. Kreyszig, E., Introductory Functional Analysis with Applications, John Wiley and Sons, New York, 1978
- C. Neubrunn, T., Quasi-continuity, Real Analysis Exchange, Vol-14, pp.259-306, 1988.
- D. Rudin, W., Principles of Mathematical Analysis, 3rd Edition, Tata McGraw Hill, New York, 1976.
- E. Simmons, G. F., *Introduction to Topology and Modern Analysis*, Tata McGraw Hill, New York, 1963.
- F. Van Rooij, A. C. M. and Schikhof, W. H., *A second Course on Real functions*, Cambridge University Press, Cambridge, 1982.