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Abstract: T In this article we explained the structure of Frobenius method to solve a homogeneous linear differential equations 

of order two . In any homogeneous linear differential equations of order two we have three cases of two roots ( as a ,b ) of the 

indicial equation : 

Case1 : 𝑎 − 𝑏 = 𝑐/𝑑 such that 𝑐, 𝑑 ∈ 𝑍 where 𝑍 is integer number and 𝑑 ≠ 0, 𝑑 ≠ 1 . Case 2 : 𝑎 − 𝑏 = 0 . Case 3 : 𝑎 − 𝑏 = 𝑐 

, such that  𝑐 ∈ 𝑍 . And we explained how to find the general solution of each case with many examples . 
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1. Introduction  

A linear , second order and homogenous ( for short homo ) ODE can have two independent solutions . Let us 

consider a method of obtaining one of the solutions . The method which is a series expansion will always work , 

provided the point of expansion 𝑥 = 𝑥0 is no worse than a regular singular point . Fortunately in the problems in 

physics this condition is almost always satisfied . 

We write the linear , second order and homo ODE in the form : 

𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥) = 0 .                                                     (1) 

This equation is homo since each term contain 𝑦(𝑥) or a derivative . It is linear because each 𝑦 , 𝑦′ and 𝑦′′ 
appears as the first power , and has no products . 

Equation 1 ( for short Eq. 1 ) can have two linearly independent solutions . Let us find ( at least ) one solution 

of Eq. 1 using a generalized power series . By using the first solution we can develop the second independent 

solution . We will also later prove that a third  independent solution does not exist . 

Let us write the most general solution of Eq. 1 as : 

𝑦(𝑥) = 𝑐1𝑦1(𝑥) + 𝑐2𝑦2(𝑥) .                                                   (2) 

Where 𝑐1 and 𝑐2 any arbitrary constant . 

In some cases we can have a source term as will in the ODE , leading to non-homo , linear , second order ODE 

, 

𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑟(𝑥).                                                   (3) 

The function 𝑟(𝑥) represents a source or driving force . 

Calling this solution 𝑦𝑝 , we may add to it any solution of the corresponding homo Eq. 1 . Therefore the most 

general solution of Eq. 3 is : 

𝑦(𝑥) = 𝑐1𝑦1(𝑥) + 𝑐2𝑦2(𝑥) + 𝑦𝑝(𝑥) .                                           (4) 

We have to fix the two arbitrary constant 𝑐1 and 𝑐2 and that will be done by applying boundary conditions . 

 

2. The structure of Frobenius series in homogenous linear equation of order two : 

At the moment let us 𝑟(𝑥) = 0 and the our DF is homo . We will try to develop the solution of our linear , 

second order and homo DF , Eq. 1 , by substituting in a power series with undetermined coefficients . 
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This generalized power series has a parameter , which is the power of the lowest non vanishing term of series 

. 

As a test bed let us apply this method to an important DF , the linear oscillator Eq.  

𝑦′′ + 𝑤2𝑦 = 0 .                                                   (5) 

Its two independent solution are known  

𝑦 = 𝑐1𝑦1(𝑥) + 𝑐2𝑦2(𝑥) 

= 𝑐1 𝑠𝑖𝑛 𝑠𝑖𝑛 𝑤𝑥 + 𝑐2 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑤𝑥  .                                     (6) 

Let us try the following power series solution  

𝑦(𝑥) = 𝑥𝑘(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ ) 

= ∑∞
𝑙=0 𝑎𝑙𝑥

𝑘+𝑙     , 𝑎0 ≠ 0 .                                             (7) 

With the exponent 𝑘 and all the coefficient 𝑎𝑙 still undetermined . 

Note that 𝑘 could be either positive or negative and it may be a fraction ( it may even be complex , but we shall 

not consider this case ) . 𝑎0 is not zero since 𝑎0𝑥𝑘 is to be the first term of the series . 

The series Eq. 7 is called a generalized power series or Frobenius series . 

By differentiating with respected to 𝑥 we get : 

𝑦′ = ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)𝑥𝑘+𝑙−1 

𝑦′′ = ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1)𝑥𝑘+𝑙−2 

Let us substitute the series form of 𝑦(𝑥) and 𝑦′′(𝑥) into Eq. 5 . We get : 

∑∞
𝑙=0 𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1)𝑥𝑘+𝑙−2 + 𝑤2 ∑∞

𝑙=0 𝑎𝑙𝑥𝑘+𝑙 = 0 .                  (8) 

The uniqueness of power series tells us that , the coefficient of each power of 𝑥 on the L. H. S. of Eq. 8 must 

vanish individually . We have  

(𝑎0𝑘(𝑘 − 1)𝑥𝑘−2 + 𝑎1𝑘(𝑘 + 1)𝑥𝑘−1 + 𝑎2(𝑘 + 1)(𝑘 + 2)𝑥𝑘    + 𝑎3(𝑘 + 2)(𝑘 + 3)𝑥𝑘+1 + ⋯ + 𝑎𝑙(𝑘 +
𝑙)(𝑘 + 𝑙 − 1)𝑥𝑘+𝑙−2 + ⋯ ) + (𝑤2𝑎0𝑥𝑘 + 𝑤2𝑎1𝑥𝑘+1 + 𝑤2𝑎3𝑥𝑘+3 + ⋯ + 𝑤2𝑎𝑙𝑥𝑘+𝑙 + ⋯ ) = 0 .                         (9) 

Combining the coefficients of 𝑥 , the series is expressed as : 

𝑎0𝑘(𝑘 − 1)𝑥𝑘−2 + 𝑎1𝑘(𝑘 + 1)𝑥𝑘−1 + [𝑎2(𝑘 + 1)(𝑘 + 2)+𝑤2𝑎0]𝑥𝑘 

+[𝑎3(𝑘 + 2)(𝑘 + 3) + 𝑤2𝑎1]𝑥𝑘+1 + ⋯ + [𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1) + 𝑤2𝑎𝑙−2]𝑥𝑘+𝑙−2 + ⋯ = 0           (10) 

The lowest power of 𝑥 appearing in Eq. 10 is 𝑥𝑘−2 for 𝑙 = 0 . The requirement that the coefficient vanish yields 

. 

𝑎0𝑘(𝑘 − 1) = 0 .                                         (11) 

We had chosen 𝑎0 as the coefficient of the lowest non-vanishing term of series , Eq. 7 hence by definition , 

𝑎0 ≠ 0 . Therefore we have the constraint  

𝑘(𝑘 − 1) = 0 .                                       (12) 

This equation , coming from the coefficient of the lower power of 𝑥 , is called the indicial equations . 
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The indicial equation and its roots ( or indices of the regular singular point of ODE ) play a crucial role in our 

attempt to find the solutions . 

We have two choices for 𝑘 , 𝑘 = 0 or 𝑘 = 1 . We see that 𝑎1 is arbitrary if 𝑘 = 0 and necessarily zero if 𝑘 = 1 

. Thus we will set 𝑎1 equal to zero . 

Case 𝑘 = 0 : 

We have the general term in the equation  

𝑎𝑙𝑙(𝑙 − 1) + 𝑤2𝑎𝑙−2 = 0 .                                  (13) 

Since  𝑎0 ≠ 0 we have  

𝑎2 . 2 . 1 + 𝑤2𝑎0 = 0 

𝑎3 . 3 . 2 + 𝑤2𝑎1 = 0 

𝑎4 . 4 . 3 + 𝑤2𝑎2 = 0 

𝑎5 . 5 . 4 + 𝑤2𝑎3 = 0 

Until  

𝑎𝑗+2 (𝑗 + 2) (𝑗 + 1) + 𝑤2𝑎𝑗 = 0 

Since 𝑎1 = 0 , then the above set of equations reduced as : 

𝑎2 . 2 . 1 + 𝑤2𝑎0 = 0 

𝑎4 . 4 . 3 + 𝑤2𝑎2 = 0 

Until  

𝑎𝑗+2 (𝑗 + 2) (𝑗 + 1) + 𝑤2𝑎𝑗 = 0 

This gives a two-term recurrence relation for 𝑘 = 0 case : 

𝑎𝑗+2 = −
𝑤2

(𝑗+1)(𝑗+2)
𝑎𝑗  .                                       (14) 

Case 𝑘 = 1 : 

We have the general term in the equation  

𝑎𝑙𝑙(𝑙 + 1) + 𝑤2𝑎𝑙−2 = 0 .                                  (15) 

Since  𝑎0 ≠ 0 we have  

𝑎2 . 2 . 3 + 𝑤2𝑎0 = 0 

𝑎3 . 3 . 4 + 𝑤2𝑎1 = 0 

𝑎4 . 4 . 5 + 𝑤2𝑎2 = 0 

𝑎5 . 5 . 6 + 𝑤2𝑎3 = 0 

Until  

𝑎𝑗+2 (𝑗 + 2) (𝑗 + 3) + 𝑤2𝑎𝑗 = 0 

Again since 𝑎1 = 0 , then the above set of equations reduced as : 
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𝑎2 . 2 . 3 + 𝑤2𝑎0 = 0 

𝑎4 . 4 . 5 + 𝑤2𝑎2 = 0 

Until  

𝑎𝑗+2 (𝑗 + 2) (𝑗 + 3) + 𝑤2𝑎𝑗 = 0 

This gives a two-term recurrence relation for 𝑘 = 1 case : 

𝑎𝑗+2 = −
𝑤2

(𝑗+1)(𝑗+3)
𝑎𝑗  .                                       (16) 

For 𝑘 = 0 we have  

𝑎2𝑙 =
(−1)𝑙𝑤2𝑙

2𝑙!
𝑎0 .                                      (17) 

And our solution is  

𝑦(𝑥)|𝑘=0 = 𝑎0 [1 −
(𝑤𝑥)2

2!
+

(𝑤𝑥)4

4!
−

(𝑤𝑥)6

6!
+ ⋯ ] 

= 𝑎0 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑤𝑥  .                                                               (18) 

For 𝑘 = 1 we have  

𝑎2𝑙 =
(−1)𝑙𝑤2𝑙

(2𝑙+1)!
𝑎0 .                                      (19) 

And then we get  

𝑦(𝑥)|𝑘=1 = 𝑎0𝑥 [1 −
(𝑤𝑥)2

3!
+

(𝑤𝑥)4

5!
−

(𝑤𝑥)6

7!
+ ⋯ ] 

=
𝑎0

𝑤
[𝑤𝑥 −

(𝑤𝑥)3

3!
+

(𝑤𝑥)5

5!
−

(𝑤𝑥)7

7!
+ ⋯ ] 

=
𝑎0

𝑤
𝑠𝑖𝑛 𝑠𝑖𝑛 𝑤𝑥  .                                                                        (20) 

Thus we have arrived at two independent series solutions of the linear oscillator equations using the method of 

generalized series substitution ( Frobenius method ) . 

If 𝑥0 ≠ 0 we get  

𝑦(𝑥) = ∑∞
𝑙=0 𝑎𝑙(𝑥 − 𝑥0)𝑘+𝑙  ,   𝑎0 ≠ 0 .                                     (21) 

 

3.  Explained the Frobenius method to solve DF   

We can explain this method by take some notes and examples : 

From above equations we get , if 𝑥 = 𝑥0 is regular point then the solution can be expression as : 

𝑦(𝑥) = ∑

∞

𝑙=0

𝑎𝑙(𝑥 − 𝑥0)𝑘+𝑙 

And if 𝑥 = 𝑥0 is regular singular point then the solution can be expression as : 
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𝑦(𝑥) = ∑

∞

𝑙=0

𝑎𝑙𝑥
𝑘+𝑙 

Example 1 : find a solution of below DF by Frobenius series  : 

2𝑥𝑦′′ + (𝑥 + 1)𝑦′ + 3𝑦 = 0 

Solution : 

Since 
(𝑥+1)𝑥

2𝑥
 =

1

2
 , 

3𝑥2

2𝑥
 = 0  

Then 𝑥 = 0 is regular singular point and  

𝑦(𝑥) = ∑

∞

𝑙=0

𝑎𝑙𝑥
𝑘+𝑙 

Implies that  

𝑦′ = ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)𝑥𝑘+𝑙−1 

and 

𝑦′′ = ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1)𝑥𝑘+𝑙−2 

By substitute in DF we get  

2𝑥 ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1)𝑥𝑘+𝑙−2 + (𝑥 + 1) ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)𝑥𝑘+𝑙−1 + 3 ∑

∞

𝑙=0

𝑎𝑙𝑥𝑘+𝑙 = 0 

And then we get  

2𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1) + 𝑎𝑙(𝑘 + 𝑙) + 𝑎𝑙−1(𝑙 + 𝑘 + 2) = 0    …   (a) 

If we put 𝑙 = 0 , 𝑎−1 = 0 we get  

𝑎0(𝑘)(2𝑘 − 2 + 1) = 0 

Then  

𝑎0𝑘(2𝑘 − 1) = 0 

Since 𝑎0 ≠ 0 then 𝑘(2𝑘 − 1) = 0 this is indicial equation and either 𝑘 = 0 or 𝑙 =
1

2
 . And by Eq. a , we get 

𝑎𝑙 =
−(𝑘 + 𝑙 + 2)

(𝑘 + 𝑙)(2𝑘 + 2𝑙 − 1)
𝑎𝑙−1  , 𝑛 ≥ 1 

If 𝑘 = 0 we get 

𝑎𝑙 =
−(𝑙 + 2)

(𝑙)(2𝑙 − 1)
𝑎𝑙−1 

And the we get  

𝑎1 = −3𝑎0 
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𝑎2 =
−2

3
𝑎1 = 2𝑎0 

𝑎3 =
−1

3
𝑎2 = −

2

3
𝑎0   , … 

And if 𝑘 =
1

2
 we get  

𝑎𝑙 =
− (𝑙 +

5
2

)

(
1
2

+ 𝑙) (2𝑙)
𝑎𝑙−1 

We get  

𝑎1 =
−

7
2

3
𝑎0 =

−7

6
𝑎0 

𝑎2 =
−9

20
𝑎1 =

21

40
𝑎0 

𝑎3 =
−11

42
𝑎2 = −

11

80
𝑎0   , … 

Let that 𝑎0 = 1 we get 

𝑦 = 𝐴1 [1 − 3𝑥 + 2𝑥2 −
2

3
𝑥3 + ⋯ ] + 𝐴2[1 −

7

6
𝑥 +

21

40
𝑥2 −

11

80
𝑥3 + ⋯ ] 

Note : In any DF we have three cases of two roots ( as 𝑎 , 𝑏 ) of the indicial equation : 

Case1 : 𝑎 − 𝑏 = 𝑐/𝑑 such that 𝑐, 𝑑 ∈ 𝑍 where 𝑍 is integer number and 𝑑 ≠ 0, 𝑑 ≠ 1 . 

Case 2 : 𝑎 − 𝑏 = 0 

Case 3 : 𝑎 − 𝑏 = 𝑐 , such that  𝑐 ∈ 𝑍 . 

In case 1 we solved above Example 1 , and now we will take another example  

Example 2 : find a solution of below DF by Frobenius series : 

2𝑥(1 − 𝑥)𝑦′′ + (1 − 𝑥)𝑦′ + 3𝑦 = 0 

Solution : 

Since 
(1−𝑥)𝑥

2𝑥(1−𝑥)
 =

1

2
 , 

3𝑥2

2𝑥(1−𝑥)
 = 0  

Then 𝑥 = 0 is regular singular point and  

𝑦(𝑥) = ∑

∞

𝑙=0

𝑎𝑙𝑥
𝑘+𝑙 

Implies that  

𝑦′ = ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)𝑥𝑘+𝑙−1 

and 
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𝑦′′ = ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1)𝑥𝑘+𝑙−2 

By substitute in DF we get  

2𝑥(1 − 𝑥) ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1)𝑥𝑘+𝑙−2 + (1 − 𝑥) ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)𝑥𝑘+𝑙−1 + 3 ∑

∞

𝑙=0

𝑎𝑙𝑥
𝑘+𝑙 = 0 

And then we get  

2𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1) + 𝑎𝑙(𝑘 + 𝑙) − 2𝑎𝑙−1(𝑘 + 𝑙 − 1)(𝑘 + 𝑙 − 2) − 𝑎𝑙−1(𝑘 + 𝑙 − 1) + 3𝑎𝑙−1 = 0 

Implies that 

𝑎𝑙(𝑘 + 𝑙)(2𝑘 + 2𝑙 − 1) − 𝑎𝑙−1((𝑘 + 𝑙 − 1)(2𝑘 + 2𝑙 − 5) + 3) = 0    …   (b) 

If we put 𝑙 = 0 , and 𝑎−1 = 0 we get  

𝑎0(𝑘)(2𝑘 − 2 + 1) = 0 

Then  

𝑎0𝑘(2𝑘 − 1) = 0 

Since 𝑎0 ≠ 0 then 𝑘(2𝑘 − 1) = 0 this is indicial equation and either 𝑘 = 0 or 𝑘 =
1

2
 . And by Eq. b , we get 

𝑎𝑙 =
(𝑘 + 𝑙 − 1)(2𝑘 + 2𝑙 − 5) + 3

(𝑘 + 𝑙)(2𝑘 + 2𝑙 − 1)
𝑎𝑙−1  , 𝑛 ≥ 1 

If 𝑘 = 0 we get 

𝑎𝑙 =
(𝑙 − 1)(2𝑙 − 5) + 3

(𝑙)(2𝑙 − 1)
𝑎𝑙−1 

And the we get  

𝑎1 = 3𝑎0 

𝑎2 =
1

3
𝑎1 = 𝑎0 

𝑎3 =
1

3
𝑎2 =

1

3
𝑎0   , … 

And if 𝑘 =
1

2
 we get  

𝑎𝑙 =
(𝑙 −

1
2

) (2𝑙 − 4) + 3

(
1
2

+ 𝑙) (2𝑙)
𝑎𝑙−1 

We get  

𝑎1 =
2

3
𝑎0 

𝑎2 =
3

10
𝑎1 =

1

5
𝑎0 

𝑎3 =
8

21
𝑎2 =

8

105
𝑎0   , … 
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Let that 𝑎0 = 1 we get 

𝑦 = 𝐴1 [1 + 3𝑥 + 𝑥2 +
1

3
𝑥3 + ⋯ ] + 𝐴2[1 +

2

3
𝑥 +

1

5
𝑥2 +

8

105
𝑥3 + ⋯ ] 

In case 2 , if the two roots are equal then the first solution is 𝑦1 = 𝑓(𝑥𝑘) and then  𝑦2 =
𝜕𝑦1(𝑥,𝑘)

𝜕𝑘
  at the regular 

singular point . 

We take a below example on case 2 : 

Example 3 : find a solution of below DF by Frobenius series : 

𝑥2𝑦′′ + 3𝑥𝑦′ + (1 − 2𝑥)𝑦 = 0 

Solution : 

Since 
(3𝑥)𝑥

𝑥2  = 3 , 
(1−2𝑥)𝑥2

𝑥2  = 1  

Then 𝑥 = 0 is regular singular point and  

𝑦(𝑥) = ∑

∞

𝑙=0

𝑎𝑙𝑥
𝑘+𝑙 

Implies that  

𝑦′ = ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)𝑥𝑘+𝑙−1 

and 

𝑦′′ = ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1)𝑥𝑘+𝑙−2 

By substitute in DF we get  

𝑥2 ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1)𝑥𝑘+𝑙−2 + 3𝑥 ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)𝑥𝑘+𝑙−1 + (1 − 2𝑥) ∑

∞

𝑙=0

𝑎𝑙𝑥𝑘+𝑙 = 0 

And then we get  

𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1) + 3𝑎𝑙(𝑘 + 𝑙) + 𝑎𝑙 − 2𝑎𝑙−1 = 0         …   (c) 

If we put 𝑙 = 0 , 𝑎𝑙−1 = 0 we get  

𝑎0((𝑘)(𝑘 + 2) + 1) = 0 

Then  

𝑎0(𝑘 + 1)2 = 0 

Since 𝑎0 ≠ 0 then (𝑘 + 1)2 = 0 this is indicial equation and either 𝑘 = −1 or 𝑘 = −1 . And by Eq. c , we get 

𝑎𝑙 =
2

(𝑙 + 𝑘 + 1)2
𝑎𝑙−1  , 𝑛 ≥ 1 

We can find 𝑎𝑙 by independent of 𝑘 , as follows : 
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𝑎1 =
2

(𝑘 + 2)2
𝑎0 

𝑎2 =
2

(𝑘 + 3)2
𝑎1 =

2

(𝑘 + 3)2

2

(𝑘 + 2)2
𝑎0 =

22

((𝑘 + 2)(𝑘 + 3))
2 𝑎0 

𝑎3 =
2

(𝑘 + 4)2
𝑎2 =

23

((𝑘 + 2)(𝑘 + 3)(𝑘 + 4))
2 𝑎0   , … 

And then we get  

𝑎𝑙 =
2𝑘

((𝑘 + 2)(𝑘 + 3)(𝑘 + 4) … (𝑘 + 𝑙 + 1))
2 

And then we have 

𝑦1(𝑥, 𝑘) = 𝑥𝑘 [1 +
2

(𝑘 + 2)2
𝑥 +

22

((𝑘 + 2)(𝑘 + 3))
2 𝑥2 + ⋯ ] 

Implies that  

𝑦1(𝑥, −1) = 𝑥−1 [1 + 2𝑥 + 𝑥2 +
2

9
𝑥3 + ⋯ ] 

Now let that 𝑦2 =
𝜕𝑦1

𝜕𝑘
 at 𝑘 = −1 , we get : 

       𝑦2(𝑥, 𝑘) =
𝜕𝑦1(𝑥,𝑘)

𝜕𝑘
 

=𝑙𝑛 𝑙𝑛 𝑥 𝑥𝑘 [1 +
2

(𝑘 + 2)2
𝑥 +

22

((𝑘 + 2)(𝑘 + 3))
2 𝑥2 + ⋯ ]

+ 𝑥𝑘 [−
4

(𝑘 + 2)3
𝑥 − 4 (

22

(𝑘 + 2)2(𝑘 + 3)
+

22

(𝑘 + 2)2(𝑘 + 3)3
) 𝑥2 + ⋯ ] 

𝑦2(𝑥, −1) = 𝑥−1 𝑙𝑛 𝑙𝑛 𝑥 [1 + 2𝑥 + 𝑥2 +
2

9
𝑥3 + ⋯ ] + 𝑥−1 [−4𝑥 − 4 (

2

8
+

4

8
) 𝑥2 + ⋯ ] 

Then the general solution is 

𝑦 = 𝐴1𝑥−1 [1 + 2𝑥 + 𝑥2 +
2

9
𝑥3 + ⋯ ] + 𝐴2 (𝑥−1 𝑙𝑛 𝑙𝑛 𝑥 [1 + 2𝑥 + 𝑥2 +

2

9
𝑥3 + ⋯ ] + 𝑥−1[−4𝑥 − 3𝑥2 + ⋯ ]) 

In case 3 , assume that 𝑦1 = 𝑦(𝑥, 𝑘, 𝑎0) , at 𝑘 equal to minimum value of two roots . and 𝑦2 =
𝜕𝑦(𝑥,𝑘,𝑎0)

𝜕𝑘
 , at 𝑘 

equal to minimum value of two roots . and we suppose that 𝑎𝑙 = 𝑏𝑙 − (𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑤𝑜 𝑟𝑜𝑜𝑡𝑠 ) . 

Now we take a below example on case 3 : 

Example 4 : find a solution of below DF by Frobenius series : 

𝑥𝑦′′ − 3𝑦′ + 𝑥𝑦 = 0 

Solution : 

Since 
−3𝑥

𝑥
 = −3 , 

𝑥3

𝑥
 = 0  

Then 𝑥 = 0 is regular singular point and  
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𝑦(𝑥) = ∑

∞

𝑙=0

𝑎𝑙𝑥
𝑘+𝑙 

Implies that  

𝑦′ = ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)𝑥𝑘+𝑙−1 

and 

𝑦′′ = ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1)𝑥𝑘+𝑙−2 

By substitute in DF we get  

𝑥 ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1)𝑥𝑘+𝑙−2 − 3 ∑

∞

𝑙=0

𝑎𝑙(𝑘 + 𝑙)𝑥𝑘+𝑙−1 + 𝑥 ∑

∞

𝑙=0

𝑎𝑙𝑥
𝑘+𝑙 = 0 

And then we get  

𝑎𝑙(𝑘 + 𝑙)(𝑘 + 𝑙 − 1) − 3𝑎𝑙(𝑘 + 𝑙) + 𝑎𝑙−2 = 0            …   (d) 

If we put 𝑙 = 0 , 𝑎𝑙−2 we get  

𝑎0(𝑘)(𝑘 − 4) = 0 

Since 𝑎0 ≠ 0 then (𝑘)(𝑘 − 4) this is indicial equation and either 𝑘 = 0 or 𝑘 = 4 . And by Eq. d , we get 

𝑎𝑙 =
−1

(𝑘 + 𝑙)(𝑘 + 𝑙 − 4)
𝑎𝑙−2  , 𝑛 ≥ 2 

It is clear that 𝑎1 = 0 and all 𝑎2𝑙+1 = 0 . Now we have 

𝑎2 =
−1

(𝑘 + 2)(𝑘 − 2)
𝑎0 

𝑎4 =
−1

(𝑘 + 4)𝑘
𝑎2 =

(−1)2

(𝑘 − 2)𝑘(𝑘 + 2)(𝑘 + 4)
𝑎0    

𝑎6 =
−1

(𝑘 + 6)(𝑘 + 2)
𝑎2 =

(−1)3

(𝑘 − 2)𝑘(𝑘 + 2)2(𝑘 + 4)(𝑘 + 6)
𝑎0    

Then  

𝑦(𝑥, 𝑘, 𝑎0) = 𝑎0𝑥𝑘 [1 −
1

(𝑘 + 2)(𝑘 − 2)
𝑥2 +

1

(𝑘 − 2)𝑘(𝑘 + 2)(𝑘 + 4)
𝑥4

−
1

(𝑘 − 2)𝑘(𝑘 + 2)2(𝑘 + 4)(𝑘 + 6)
𝑥6 + ⋯ ] 

Since if 𝑘 = 0 we cannot find a coefficient of above series the we consider that  

𝑎0 = 𝑏0(𝑘 − 0) , we get  

𝑦(𝑥, 𝑘, 𝑏0) = 𝑏0𝑥𝑘 [𝑘 −
𝑘

(𝑘 + 2)(𝑘 − 2)
𝑥2 +

1

(𝑘 − 2)(𝑘 + 2)(𝑘 + 4)
𝑥4 −

1

(𝑘 − 2)(𝑘 + 2)2(𝑘 + 4)(𝑘 + 6)
𝑥6

+ ⋯ ] 
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Implies that  

𝑦1 = 𝑦(𝑥, 0, 𝑏0) = 𝑏0 [−
1

16
𝑥4 +

1

192
𝑥6 − ⋯ ] 

And  

        
𝜕𝑦(𝑥,𝑘,𝑏0)

𝜕𝑘
= 𝑦(𝑥, 𝑘, 𝑏0) 𝑙𝑛 𝑙𝑛 𝑥  

+𝑏0𝑥𝑘 [1 − (
1

(𝑘 + 2)(𝑘 − 2)
−

𝑘

(𝑘 + 2)2(𝑘 − 2)

𝑘

(𝑘 + 2)(𝑘 − 2)2
) 𝑥2

− (
1

(𝑘 − 2)2(𝑘 + 2)(𝑘 + 4)
+

1

(𝑘 − 2)(𝑘 + 2)2(𝑘 + 4)
+

1

(𝑘 − 2)(𝑘 + 2)(𝑘 + 4)
) 𝑥4 + ⋯ ] 

Then we have  

𝑦2 =
𝜕𝑦(𝑥, 0, 𝑏0)

𝜕𝑘
= 𝑦1 𝑙𝑛 𝑙𝑛 𝑥 + 𝑏0 [1 +

1

4
𝑥2 +

1

64
𝑥4 + ⋯ ] 

Hence the general solution is  

𝑦 = 𝐴1 [−
1

16
𝑥4 +

1

192
𝑥6 − ⋯ ] + 𝐴2 ([−

1

16
𝑥4 +

1

192
𝑥6 − ⋯ ] 𝑙𝑛 𝑙𝑛 𝑥 + [1 +

1

4
𝑥2 +

1

64
𝑥4 + ⋯ ]) 
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