Series solution with Frobenius method

Suad Mohammed Hassan ${ }^{1}$

${ }^{1}$ Affiliation Directorate Education of Karbala
${ }^{1}$ suadohmadhasanalsafee@gmail.com
Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021

Abstract

$\overline{\text { Abstract: T In this article we explained the structure of Frobenius method to solve a homogeneous linear differential equations }}$ of order two. In any homogeneous linear differential equations of order two we have three cases of two roots (as a , b) of the indicial equation : Case1 : $a-b=c / d$ such that $c, d \in Z$ where Z is integer number and $d \neq 0, d \neq 1$. Case $2: a-b=0$. Case $3: a-b=c$, such that $c \in Z$. And we explained how to find the general solution of each case with many examples .

Keywords: Frobenius method, homogeneous linear differential equations

1. Introduction

A linear, second order and homogenous (for short homo) ODE can have two independent solutions . Let us consider a method of obtaining one of the solutions. The method which is a series expansion will always work , provided the point of expansion $x=x_{0}$ is no worse than a regular singular point. Fortunately in the problems in physics this condition is almost always satisfied .

We write the linear, second order and homo ODE in the form :

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x)=0 . \tag{1}
\end{equation*}
$$

This equation is homo since each term contain $y(x)$ or a derivative. It is linear because each y, y^{\prime} and $y^{\prime \prime}$ appears as the first power, and has no products .

Equation 1 (for short Eq. 1) can have two linearly independent solutions . Let us find (at least) one solution of Eq. 1 using a generalized power series . By using the first solution we can develop the second independent solution. We will also later prove that a third independent solution does not exist .

Let us write the most general solution of Eq. 1 as :
$y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$.
Where c_{1} and c_{2} any arbitrary constant .
In some cases we can have a source term as will in the ODE , leading to non-homo, linear, second order ODE ,

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{3}
\end{equation*}
$$

The function $r(x)$ represents a source or driving force .
Calling this solution y_{p}, we may add to it any solution of the corresponding homo Eq. 1. Therefore the most general solution of Eq. 3 is :

$$
\begin{equation*}
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x) . \tag{4}
\end{equation*}
$$

We have to fix the two arbitrary constant c_{1} and c_{2} and that will be done by applying boundary conditions .

2. The structure of Frobenius series in homogenous linear equation of order two :

At the moment let us $r(x)=0$ and the our DF is homo. We will try to develop the solution of our linear , second order and homo DF , Eq. 1, by substituting in a power series with undetermined coefficients .

Research Article

This generalized power series has a parameter, which is the power of the lowest non vanishing term of series

As a test bed let us apply this method to an important DF , the linear oscillator Eq.

$$
\begin{equation*}
y^{\prime \prime}+w^{2} y=0 \tag{5}
\end{equation*}
$$

Its two independent solution are known

$$
\begin{equation*}
y=c_{1} y_{1}(x)+c_{2} y_{2}(x) \tag{6}
\end{equation*}
$$

$=c_{1} \sin \sin w x+c_{2} \cos \cos w x$.
Let us try the following power series solution

$$
\begin{equation*}
y(x)=x^{k}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right) \tag{7}
\end{equation*}
$$

$=\sum_{l=0}^{\infty} \quad a_{l} x^{k+l}, a_{0} \neq 0$.
With the exponent k and all the coefficient a_{l} still undetermined .
Note that k could be either positive or negative and it may be a fraction (it may even be complex, but we shall not consider this case) . a_{0} is not zero since $a_{0} x^{k}$ is to be the first term of the series .

The series Eq. 7 is called a generalized power series or Frobenius series .
By differentiating with respected to x we get :

$$
\begin{gathered}
y^{\prime}=\sum_{l=0}^{\infty} a_{l}(k+l) x^{k+l-1} \\
y^{\prime \prime}=\sum_{l=0}^{\infty} a_{l}(k+l)(k+l-1) x^{k+l-2}
\end{gathered}
$$

Let us substitute the series form of $y(x)$ and $y^{\prime \prime}(x)$ into Eq. 5 . We get :
$\sum_{l=0}^{\infty} \quad a_{l}(k+l)(k+l-1) x^{k+l-2}+w^{2} \sum_{l=0}^{\infty} \quad a_{l} x^{k+l}=0$.
The uniqueness of power series tells us that, the coefficient of each power of x on the L. H. S. of Eq. 8 must vanish individually. We have

$$
\begin{align*}
& \left(a_{0} k(k-1) x^{k-2}+a_{1} k(k+1) x^{k-1}+a_{2}(k+1)(k+2) x^{k}+a_{3}(k+2)(k+3) x^{k+1}+\cdots+a_{l}(k+\right. \\
& \left.l)(k+l-1) x^{k+l-2}+\cdots\right)+\left(w^{2} a_{0} x^{k}+w^{2} a_{1} x^{k+1}+w^{2} a_{3} x^{k+3}+\cdots+w^{2} a_{l} x^{k+l}+\cdots\right)=0 . \tag{9}
\end{align*}
$$

Combining the coefficients of x, the series is expressed as:

$$
\begin{gather*}
a_{0} k(k-1) x^{k-2}+a_{1} k(k+1) x^{k-1}+\left[a_{2}(k+1)(k+2)+w^{2} a_{0}\right] x^{k} \\
+\left[a_{3}(k+2)(k+3)+w^{2} a_{1}\right] x^{k+1}+\cdots+\left[a_{l}(k+l)(k+l-1)+w^{2} a_{l-2}\right] x^{k+l-2}+\cdots=0 \tag{10}
\end{gather*}
$$

The lowest power of x appearing in Eq. 10 is x^{k-2} for $l=0$. The requirement that the coefficient vanish yields

$$
\begin{equation*}
a_{0} k(k-1)=0 \tag{11}
\end{equation*}
$$

We had chosen a_{0} as the coefficient of the lowest non-vanishing term of series, Eq. 7 hence by definition, $a_{0} \neq 0$. Therefore we have the constraint
$k(k-1)=0$.
This equation, coming from the coefficient of the lower power of x, is called the indicial equations .

The indicial equation and its roots (or indices of the regular singular point of ODE) play a crucial role in our attempt to find the solutions .

We have two choices for $k, k=0$ or $k=1$. We see that a_{1} is arbitrary if $k=0$ and necessarily zero if $k=1$. Thus we will set a_{1} equal to zero .

Case $k=0$:
We have the general term in the equation

$$
\begin{equation*}
a_{l} l(l-1)+w^{2} a_{l-2}=0 . \tag{13}
\end{equation*}
$$

Since $a_{0} \neq 0$ we have

$$
\begin{aligned}
& a_{2} \cdot 2.1+w^{2} a_{0}=0 \\
& a_{3} \cdot 3.2+w^{2} a_{1}=0 \\
& a_{4} \cdot 4 \cdot 3+w^{2} a_{2}=0 \\
& a_{5} \cdot 5 \cdot 4+w^{2} a_{3}=0
\end{aligned}
$$

Until

$$
a_{j+2}(j+2)(j+1)+w^{2} a_{j}=0
$$

Since $a_{1}=0$, then the above set of equations reduced as :

$$
\begin{aligned}
& a_{2} \cdot 2 \cdot 1+w^{2} a_{0}=0 \\
& a_{4} \cdot 4 \cdot 3+w^{2} a_{2}=0
\end{aligned}
$$

Until

$$
a_{j+2}(j+2)(j+1)+w^{2} a_{j}=0
$$

This gives a two-term recurrence relation for $k=0$ case :
$a_{j+2}=-\frac{w^{2}}{(j+1)(j+2)} a_{j}$.
Case $k=1$:
We have the general term in the equation
$a_{l} l(l+1)+w^{2} a_{l-2}=0$.
Since $a_{0} \neq 0$ we have

$$
\begin{aligned}
& a_{2} \cdot 2.3+w^{2} a_{0}=0 \\
& a_{3} \cdot 3.4+w^{2} a_{1}=0 \\
& a_{4} \cdot 4.5+w^{2} a_{2}=0 \\
& a_{5} \cdot 5.6+w^{2} a_{3}=0
\end{aligned}
$$

Until

$$
a_{j+2}(j+2)(j+3)+w^{2} a_{j}=0
$$

Again since $a_{1}=0$, then the above set of equations reduced as :

$$
\begin{aligned}
& a_{2} \cdot 2.3+w^{2} a_{0}=0 \\
& a_{4} \cdot 4.5+w^{2} a_{2}=0
\end{aligned}
$$

Until

$$
a_{j+2}(j+2)(j+3)+w^{2} a_{j}=0
$$

This gives a two-term recurrence relation for $k=1$ case :
$a_{j+2}=-\frac{w^{2}}{(j+1)(j+3)} a_{j}$.
For $k=0$ we have
$a_{2 l}=\frac{(-1)^{l} w^{2 l}}{2 l!} a_{0}$.
And our solution is

$$
\begin{equation*}
\left.y(x)\right|_{k=0}=a_{0}\left[1-\frac{(w x)^{2}}{2!}+\frac{(w x)^{4}}{4!}-\frac{(w x)^{6}}{6!}+\cdots\right] \tag{18}
\end{equation*}
$$

$=a_{0} \cos \cos w x$.
For $k=1$ we have
$a_{2 l}=\frac{(-1)^{l} w^{2 l}}{(2 l+1)!} a_{0}$.
And then we get

$$
\begin{gather*}
\left.y(x)\right|_{k=1}=a_{0} x\left[1-\frac{(w x)^{2}}{3!}+\frac{(w x)^{4}}{5!}-\frac{(w x)^{6}}{7!}+\cdots\right] \\
\quad=\frac{a_{0}}{w}\left[w x-\frac{(w x)^{3}}{3!}+\frac{(w x)^{5}}{5!}-\frac{(w x)^{7}}{7!}+\cdots\right] \tag{20}
\end{gather*}
$$

$=\frac{a_{0}}{w} \sin \sin w x$.
Thus we have arrived at two independent series solutions of the linear oscillator equations using the method of generalized series substitution (Frobenius method).

If $x_{0} \neq 0$ we get
$y(x)=\sum_{l=0}^{\infty} \quad a_{l}\left(x-x_{0}\right)^{k+l}, a_{0} \neq 0$.

3. Explained the Frobenius method to solve DF

We can explain this method by take some notes and examples :
From above equations we get, if $x=x_{0}$ is regular point then the solution can be expression as :

$$
y(x)=\sum_{l=0}^{\infty} a_{l}\left(x-x_{0}\right)^{k+l}
$$

And if $x=x_{0}$ is regular singular point then the solution can be expression as :

$$
y(x)=\sum_{l=0}^{\infty} a_{l} x^{k+l}
$$

Example 1 : find a solution of below DF by Frobenius series :

$$
2 x y^{\prime \prime}+(x+1) y^{\prime}+3 y=0
$$

Solution :

Since $\frac{(x+1) x}{2 x}=\frac{1}{2}, \frac{3 x^{2}}{2 x}=0$
Then $x=0$ is regular singular point and

$$
y(x)=\sum_{l=0}^{\infty} a_{l} x^{k+l}
$$

Implies that

$$
y^{\prime}=\sum_{l=0}^{\infty} a_{l}(k+l) x^{k+l-1}
$$

and

$$
y^{\prime \prime}=\sum_{l=0}^{\infty} a_{l}(k+l)(k+l-1) x^{k+l-2}
$$

By substitute in DF we get

$$
2 x \sum_{l=0}^{\infty} a_{l}(k+l)(k+l-1) x^{k+l-2}+(x+1) \sum_{l=0}^{\infty} a_{l}(k+l) x^{k+l-1}+3 \sum_{l=0}^{\infty} a_{l} x^{k+l}=0
$$

And then we get
$2 a_{l}(k+l)(k+l-1)+a_{l}(k+l)+a_{l-1}(l+k+2)=0 \quad \ldots \quad$ (a)
If we put $l=0, a_{-1}=0$ we get

$$
a_{0}(k)(2 k-2+1)=0
$$

Then

$$
a_{0} k(2 k-1)=0
$$

Since $a_{0} \neq 0$ then $k(2 k-1)=0$ this is indicial equation and either $k=0$ or $l=\frac{1}{2}$. And by Eq. a, we get

$$
a_{l}=\frac{-(k+l+2)}{(k+l)(2 k+2 l-1)} a_{l-1}, n \geq 1
$$

If $k=0$ we get

$$
a_{l}=\frac{-(l+2)}{(l)(2 l-1)} a_{l-1}
$$

And the we get

$$
a_{1}=-3 a_{0}
$$

$$
\begin{gathered}
a_{2}=\frac{-2}{3} a_{1}=2 a_{0} \\
a_{3}=\frac{-1}{3} a_{2}=-\frac{2}{3} a_{0}, \ldots
\end{gathered}
$$

And if $k=\frac{1}{2}$ we get

$$
a_{l}=\frac{-\left(l+\frac{5}{2}\right)}{\left(\frac{1}{2}+l\right)(2 l)} a_{l-1}
$$

We get

$$
\begin{gathered}
a_{1}=\frac{-\frac{7}{2}}{3} a_{0}=\frac{-7}{6} a_{0} \\
a_{2}=\frac{-9}{20} a_{1}=\frac{21}{40} a_{0} \\
a_{3}=\frac{-11}{42} a_{2}=-\frac{11}{80} a_{0}, \ldots
\end{gathered}
$$

Let that $a_{0}=1$ we get

$$
y=A_{1}\left[1-3 x+2 x^{2}-\frac{2}{3} x^{3}+\cdots\right]+A_{2}\left[1-\frac{7}{6} x+\frac{21}{40} x^{2}-\frac{11}{80} x^{3}+\cdots\right]
$$

Note : In any DF we have three cases of two roots (as a, b) of the indicial equation :
Case1 : $a-b=c / d$ such that $c, d \in Z$ where Z is integer number and $d \neq 0, d \neq 1$.
Case 2 : $a-b=0$
Case 3 : $a-b=c$, such that $c \in Z$.
In case 1 we solved above Example 1, and now we will take another example
Example 2 : find a solution of below DF by Frobenius series :

$$
2 x(1-x) y^{\prime \prime}+(1-x) y^{\prime}+3 y=0
$$

Solution :

Since $\frac{(1-x) x}{2 x(1-x)}=\frac{1}{2}, \frac{3 x^{2}}{2 x(1-x)}=0$
Then $x=0$ is regular singular point and

$$
y(x)=\sum_{l=0}^{\infty} a_{l} x^{k+l}
$$

Implies that

$$
y^{\prime}=\sum_{l=0}^{\infty} a_{l}(k+l) x^{k+l-1}
$$

and

$$
y^{\prime \prime}=\sum_{l=0}^{\infty} a_{l}(k+l)(k+l-1) x^{k+l-2}
$$

By substitute in DF we get

$$
2 x(1-x) \sum_{l=0}^{\infty} a_{l}(k+l)(k+l-1) x^{k+l-2}+(1-x) \sum_{l=0}^{\infty} a_{l}(k+l) x^{k+l-1}+3 \sum_{l=0}^{\infty} a_{l} x^{k+l}=0
$$

And then we get

$$
2 a_{l}(k+l)(k+l-1)+a_{l}(k+l)-2 a_{l-1}(k+l-1)(k+l-2)-a_{l-1}(k+l-1)+3 a_{l-1}=0
$$

Implies that
$a_{l}(k+l)(2 k+2 l-1)-a_{l-1}((k+l-1)(2 k+2 l-5)+3)=0$
If we put $l=0$, and $a_{-1}=0$ we get

$$
a_{0}(k)(2 k-2+1)=0
$$

Then

$$
a_{0} k(2 k-1)=0
$$

Since $a_{0} \neq 0$ then $k(2 k-1)=0$ this is indicial equation and either $k=0$ or $k=\frac{1}{2}$. And by Eq. b , we get

$$
a_{l}=\frac{(k+l-1)(2 k+2 l-5)+3}{(k+l)(2 k+2 l-1)} a_{l-1}, n \geq 1
$$

If $k=0$ we get

$$
a_{l}=\frac{(l-1)(2 l-5)+3}{(l)(2 l-1)} a_{l-1}
$$

And the we get

$$
\begin{gathered}
a_{1}=3 a_{0} \\
a_{2}=\frac{1}{3} a_{1}=a_{0} \\
a_{3}=\frac{1}{3} a_{2}=\frac{1}{3} a_{0}, \ldots
\end{gathered}
$$

And if $k=\frac{1}{2}$ we get

$$
a_{l}=\frac{\left(l-\frac{1}{2}\right)(2 l-4)+3}{\left(\frac{1}{2}+l\right)(2 l)} a_{l-1}
$$

We get

$$
\begin{gathered}
a_{1}=\frac{2}{3} a_{0} \\
a_{2}=\frac{3}{10} a_{1}=\frac{1}{5} a_{0} \\
a_{3}=\frac{8}{21} a_{2}=\frac{8}{105} a_{0}, \ldots
\end{gathered}
$$

Let that $a_{0}=1$ we get

$$
y=A_{1}\left[1+3 x+x^{2}+\frac{1}{3} x^{3}+\cdots\right]+A_{2}\left[1+\frac{2}{3} x+\frac{1}{5} x^{2}+\frac{8}{105} x^{3}+\cdots\right]
$$

In case 2 , if the two roots are equal then the first solution is $y_{1}=f(x k)$ and then $y_{2}=\frac{\partial y_{1}(x, k)}{\partial k}$ at the regular singular point.

We take a below example on case 2 :
Example 3 : find a solution of below DF by Frobenius series :

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+(1-2 x) y=0
$$

Solution :

Since $\frac{(3 x) x}{x^{2}}=3, \frac{(1-2 x) x^{2}}{x^{2}}=1$
Then $x=0$ is regular singular point and

$$
y(x)=\sum_{l=0}^{\infty} a_{l} x^{k+l}
$$

Implies that

$$
y^{\prime}=\sum_{l=0}^{\infty} a_{l}(k+l) x^{k+l-1}
$$

and

$$
y^{\prime \prime}=\sum_{l=0}^{\infty} a_{l}(k+l)(k+l-1) x^{k+l-2}
$$

By substitute in DF we get

$$
x^{2} \sum_{l=0}^{\infty} a_{l}(k+l)(k+l-1) x^{k+l-2}+3 x \sum_{l=0}^{\infty} a_{l}(k+l) x^{k+l-1}+(1-2 x) \sum_{l=0}^{\infty} a_{l} x^{k+l}=0
$$

And then we get
$a_{l}(k+l)(k+l-1)+3 a_{l}(k+l)+a_{l}-2 a_{l-1}=0$
If we put $l=0, a_{l-1}=0$ we get

$$
a_{0}((k)(k+2)+1)=0
$$

Then

$$
a_{0}(k+1)^{2}=0
$$

Since $a_{0} \neq 0$ then $(k+1)^{2}=0$ this is indicial equation and either $k=-1$ or $k=-1$. And by Eq. c , we get

$$
a_{l}=\frac{2}{(l+k+1)^{2}} a_{l-1}, n \geq 1
$$

We can find a_{l} by independent of k, as follows :

$$
\begin{gathered}
a_{1}=\frac{2}{(k+2)^{2}} a_{0} \\
a_{2}=\frac{2}{(k+3)^{2}} a_{1}=\frac{2}{(k+3)^{2}} \frac{2}{(k+2)^{2}} a_{0}=\frac{2^{2}}{((k+2)(k+3))^{2}} a_{0} \\
a_{3}=\frac{2}{(k+4)^{2}} a_{2}=\frac{2^{3}}{((k+2)(k+3)(k+4))^{2}} a_{0}, \ldots
\end{gathered}
$$

And then we get

$$
a_{l}=\frac{2^{k}}{((k+2)(k+3)(k+4) \ldots(k+l+1))^{2}}
$$

And then we have

$$
y_{1}(x, k)=x^{k}\left[1+\frac{2}{(k+2)^{2}} x+\frac{2^{2}}{((k+2)(k+3))^{2}} x^{2}+\cdots\right]
$$

Implies that

$$
y_{1}(x,-1)=x^{-1}\left[1+2 x+x^{2}+\frac{2}{9} x^{3}+\cdots\right]
$$

Now let that $y_{2}=\frac{\partial y_{1}}{\partial k}$ at $k=-1$, we get :

$$
\begin{aligned}
& y_{2}(x, k)=\frac{\partial y_{1}(x, k)}{\partial k} \\
& =\ln \ln x x^{k}\left[1+\frac{2}{(k+2)^{2}} x+\frac{2^{2}}{((k+2)(k+3))^{2}} x^{2}+\cdots\right] \\
& +x^{k}\left[-\frac{4}{(k+2)^{3}} x-4\left(\frac{2^{2}}{(k+2)^{2}(k+3)}+\frac{2^{2}}{(k+2)^{2}(k+3)^{3}}\right) x^{2}+\cdots\right] \\
& y_{2}(x,-1)=x^{-1} \ln \ln x\left[1+2 x+x^{2}+\frac{2}{9} x^{3}+\cdots\right]+x^{-1}\left[-4 x-4\left(\frac{2}{8}+\frac{4}{8}\right) x^{2}+\cdots\right]
\end{aligned}
$$

Then the general solution is
$y=A_{1} x^{-1}\left[1+2 x+x^{2}+\frac{2}{9} x^{3}+\cdots\right]+A_{2}\left(x^{-1} \ln \ln x\left[1+2 x+x^{2}+\frac{2}{9} x^{3}+\cdots\right]+x^{-1}\left[-4 x-3 x^{2}+\cdots\right]\right)$
In case 3 , assume that $y_{1}=y\left(x, k, a_{0}\right)$, at k equal to minimum value of two roots . and $y_{2}=\frac{\partial y\left(x, k, a_{0}\right)}{\partial k}$, at k equal to minimum value of two roots. and we suppose that $a_{l}=b_{l}$ (minimum value of two roots).

Now we take a below example on case 3 :
Example 4 : find a solution of below DF by Frobenius series :

$$
x y^{\prime \prime}-3 y^{\prime}+x y=0
$$

Solution :

Since $\frac{-3 x}{x}=-3, \frac{x^{3}}{x}=0$
Then $x=0$ is regular singular point and

$$
y(x)=\sum_{l=0}^{\infty} a_{l} x^{k+l}
$$

Implies that

$$
y^{\prime}=\sum_{l=0}^{\infty} a_{l}(k+l) x^{k+l-1}
$$

and

$$
y^{\prime \prime}=\sum_{l=0}^{\infty} a_{l}(k+l)(k+l-1) x^{k+l-2}
$$

By substitute in DF we get

$$
x \sum_{l=0}^{\infty} a_{l}(k+l)(k+l-1) x^{k+l-2}-3 \sum_{l=0}^{\infty} a_{l}(k+l) x^{k+l-1}+x \sum_{l=0}^{\infty} a_{l} x^{k+l}=0
$$

And then we get
$a_{l}(k+l)(k+l-1)-3 a_{l}(k+l)+a_{l-2}=0$
If we put $l=0, a_{l-2}$ we get

$$
a_{0}(k)(k-4)=0
$$

Since $a_{0} \neq 0$ then $(k)(k-4)$ this is indicial equation and either $k=0$ or $k=4$. And by Eq. d, we get

$$
a_{l}=\frac{-1}{(k+l)(k+l-4)} a_{l-2}, n \geq 2
$$

It is clear that $a_{1}=0$ and all $a_{2 l+1}=0$. Now we have

$$
\begin{gathered}
a_{2}=\frac{-1}{(k+2)(k-2)} a_{0} \\
a_{4}=\frac{-1}{(k+4) k} a_{2}=\frac{(-1)^{2}}{(k-2) k(k+2)(k+4)} a_{0} \\
a_{6}=\frac{-1}{(k+6)(k+2)} a_{2}=\frac{(-1)^{3}}{(k-2) k(k+2)^{2}(k+4)(k+6)} a_{0}
\end{gathered}
$$

Then

$$
\begin{gathered}
y\left(x, k, a_{0}\right)=a_{0} x^{k}\left[1-\frac{1}{(k+2)(k-2)} x^{2}+\frac{1}{(k-2) k(k+2)(k+4)} x^{4}\right. \\
\left.-\frac{1}{(k-2) k(k+2)^{2}(k+4)(k+6)} x^{6}+\cdots\right]
\end{gathered}
$$

Since if $k=0$ we cannot find a coefficient of above series the we consider that
$a_{0}=b_{0}(k-0)$, we get

$$
\begin{gathered}
y\left(x, k, b_{0}\right)=b_{0} x^{k}\left[k-\frac{k}{(k+2)(k-2)} x^{2}+\frac{1}{(k-2)(k+2)(k+4)} x^{4}-\frac{1}{(k-2)(k+2)^{2}(k+4)(k+6)} x^{6}\right. \\
+\cdots]
\end{gathered}
$$

Implies that

$$
y_{1}=y\left(x, 0, b_{0}\right)=b_{0}\left[-\frac{1}{16} x^{4}+\frac{1}{192} x^{6}-\cdots\right]
$$

And

$$
\frac{\partial y\left(x, k, b_{0}\right)}{\partial k}=y\left(x, k, b_{0}\right) \ln \ln x
$$

$$
\begin{aligned}
& +b_{0} x^{k}\left[1-\left(\frac{1}{(k+2)(k-2)}-\frac{k}{(k+2)^{2}(k-2)} \frac{k}{(k+2)(k-2)^{2}}\right) x^{2}\right. \\
& \left.\quad-\left(\frac{1}{(k-2)^{2}(k+2)(k+4)}+\frac{1}{(k-2)(k+2)^{2}(k+4)}+\frac{1}{(k-2)(k+2)(k+4)}\right) x^{4}+\cdots\right]
\end{aligned}
$$

Then we have

$$
y_{2}=\frac{\partial y\left(x, 0, b_{0}\right)}{\partial k}=y_{1} \ln \ln x+b_{0}\left[1+\frac{1}{4} x^{2}+\frac{1}{64} x^{4}+\cdots\right]
$$

Hence the general solution is

$$
y=A_{1}\left[-\frac{1}{16} x^{4}+\frac{1}{192} x^{6}-\cdots\right]+A_{2}\left(\left[-\frac{1}{16} x^{4}+\frac{1}{192} x^{6}-\cdots\right] \ln \ln x+\left[1+\frac{1}{4} x^{2}+\frac{1}{64} x^{4}+\cdots\right]\right)
$$

References

A. W. Adkins and M. G. Davidson (2010) , "Ordinary Differential Equations", Springer, New York .
B. P. Haarsa and S. Pothat (2014), "The Frobenius Method on a Second Order Homogenous Linear ODEs", Advance studies in Theorretical Physics , 8, 1145-1148.
C. A. H. Syofra, R. Permatasari and A. Nazara (2016) , "The Frobenius Method for Solving Ordinary Differential bEquations with Coefficient Variable. IJSR , 5, 2233-2235.
D. A. Torabi (2020) , "Frobenius Method for solving Second-Order Ordinary Differntial Equations", Journal of Applied Mathematics and Physics , 8, 1269-1277.

