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Euler’s Equations of Motion by using interval function
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Abstract

Euler's Equations of Motion play a role in deciding the approximated solution to that same interval valued problem. The
interval valued Euler equations are added and extracted. Euler's Equations are used to determine the shortest path a
particle may follow from one location to another location within single-variable functions. When discussing the motion
of the particle and its direction, the relationship between the points on the surface and the coordinates of the particle may
be investigated.
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1. Introduction:

The calculus of variations itself and extensions was used to find the optimum model that provides the maximum the
economic model's benefit while also satisfying the system's constraints. Optimal control, transport phenomenon, optics,
elasticity, vibrations, solid body statics and dynamics, and navigation are really only a few of engineering as well as
physics problems that call for the use of an optimum mechanism rather than an optimal point.

This essay would include a concise overview of other more critical topics in the field. In the case with multiple functions
and independent variables with or without limits, Euler's equation and Euler's interval equations are all included. It starts
with a derivation for Euler's Equation eventually going on to Euler's motion equations with interval values. The purpose
of this paper is to help readers understand some steps involved in determining the optimal feature variation problem.

The optimum values of a function was determined to be an ideal function throughout the calculus of variations. A
functional is really a function that is constructed on the complete paths of one or even more functions, rather than a
collection of independent variables. The integral is a function that occurs throughout the integrand including its integral
also in calculus of variations, as well as the function which appears in the integrand of both the integral should be
selected to minimize or maximize the value of its integral.

2. Preliminaries: Interval arithmetic [1-8],[21]
Let, K =[k,,k,]. I =[l,,1,]

(1). Addition
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K+1 =[k, +1,k, +1,]

(). Subtraction

|Z—|~ =[k; =1, k; —1]
(11). Multiplication
K. =[min(k L, ki1, K1, K, 1), max(k,1,, K1, Kl K,1,)]

(1V). Division

M:[p,q],[l,l] If 0¢[r,s]
[ris] r s

(V). 4k =[1ky, 1k,]foru >0
1k, , ik, forz < 0

(VD). Inverse

[k, k,1™" =[, 2], for0 ¢ [k, k,]
K 'k

vin. [k, K, 1" =[k," k,"],ifk, >0
= [k,", k,"]ifk, <0

=[0, max{k,", k,"}], otherwise

3. Euler Lagrange’s Equations

Euler's equation of motion for a continuous flow along the stream line is essentially a relationship between the
rate, friction, and density of a flowing fluid. Euler's motion equation is founded on Newton's second law about motion.

Think a stream movement from location to location, and we've looked at one particular cylindrical segment of the
flow.

Let & (x),_y (X)] be the curve joining the interval [A, K] , [B, E] which works the given function | isan

extreme | = Xf f ([)_(, >_<l b/ 9] &’ 7] )dx

Xy
Consider a group of curves that are next to each other. B,VJ = b/, §/J+ e[n(x),n(x)]
Where ¢ is a parameter

[17(x),7(X)] is arbitrary differential function
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At the end interval [A, A] and [B, B],
sothat at[A, Al [7(x,),7(x,)] =[0,0] and at[B, B] . [17(x,), n(x,)]=[0,0]

When & =0, Neighboring curve become [X, ﬁ =[y(x), y(x)], this is at the extreme.

The family of comparison feature is a group of neighboring curves. If the interval valued function

| = j Ly vl v ])ax

X

Here replacing [X 9] =Y, ?] , S0 we get

Which is a function of & (say 1(¢&)) is a maximum or minimum for &£ =0

16 =j f(ix [y, vy, v )ax

For & =0 ( The neighboring curves becomes the extremum and extremum for 7 =0)

!

The necessary Conditions for this | (e)=0

Differentiating I under the integral sign by Lebinitz rule, we have

r,(g):dI:]E of a[>_<,>'<]+ of 8[;/,y]+ of ﬁ[z,y]dx
de

_ _ — 3)
o O X 0e  dly.y] Os gy y] O¢

But & being independent of [X, X]

oxxl
o

(i.€) 0

— — X
de aly.y] oe ay .,y oe

On differentiating (1) with respect to [X, )_(]

dly yl [, - o
ax ] LOY (+ el (0, 77 (]
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Again differentiating with respect to &
oLy’ y1

~ =[17'(x), 7' ()]

Differentiating (1) with respectto &

oLy, vl
o

=[7(3), 7(x)]

Now (3) becomes

-y dl o
1'(e) P ][77(X) (0] + a[y, y][77 (), 77" (] | dx----~(4)

Integrating the second term on the right by parts , we get

[7'(%), 7' (x)]dx

I'(z) = j —[n(x) n(x)]dx+j
aly.yl xla[y y']

I (8)—| (8)+| (&) -

Where Tl (e)= j%[@,ﬁ]dx

I,(e) = j [7'(%). 7" (x)1dx

xlﬁ[y v

Now, we take |,

)= xja[y y1

[7' (), 7' (x)1dx

1,(e) = a'f_ [@,m]] _fd[xd X][ a’f_ [7(x), ﬂ(x)]}dx

oy .yl aly ,y']

(8 =| | — 100 70T || — 20— 10O ||~ [ 2= | — T, 7000 [
(aly .y oy .y X xT) ary’, v

[17(%,), 70)1 = 17(%,), 1(x,)] = [0, 0]
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~ T od of
()=~ [, 701 fox
“ Id[x x| aly .y =
Using in (5)
P =Ty(0) - |0 | [0, 7001 o

o dIx, x] 8[y v

I'(s)= jm[n(x) 1(X)]dx— j [dX] a[af ][n(x) 1(X)] [dx
¥y y.y

a'f R
T'(e) = | 10,7001 x
x{ Ay vl d[x Aay vl

For Extremum value r'(g) =0

af -
0- T || 709,700 dx
x{ Ayl d[x day |

[77(x),7(X)] is an arbitrary function

o  d o |_
oy vl dix x1| |y

Which is an interval valued Euler’s Equation of Motion

4. Numerical Examples
Prove that the shortest distance between two points in a plane is a straight line.
Proof:

The shortest path between two points isn't necessarily the straight line. That smallest distance between two
clusters is determined by the object's or surface's geometry. A line is the shortest distance for flat surfaces, but great-
circle distances reflect the real shortest distance for circular surfaces, such as Earth.

Let [A, Z] and [B, E] be the given points and S is the interval arc length of a curve connected them.

Then §=Td§=xf,/1+[l’?]2 d x
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Now S will be minimum if it satisfies interval valued Euler’s Equation

CAI L Y
ay.yl dix x1faly ,y1
Here f = Il+[x’?]2 , this is independent of [2,9]
(i.e) L_:
aly,yl
Using in (1)
d _ a!f_ _0
dix, x1| afy’, y
Differentiating f~:,/l+[l'7]2 with respect to [X,y]
of [y .y

Ay .yl 1+Iy'yT

df o |_d| Iyl
dx| ofy ,y1) O\ 14Dy YT’

. ed| Iyl
We take integration | —| —— | d X

x| ity vy
Iy .y
N TR
[y, y1=C\1+[y'yT

[_y',Y'] =Constant (Say m)

=constant

Again Integration
[y’ .y1dx=[mdx

[y.yl=m[x, x]+C
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y=m X+ Cand ;/:m X + C are the straight line

The constant m and C are determinant from the fact that the straight line passing through [A, Z\] to [B, E]

Conclusion:

The suggested interval valued Euler's Equations problems produce neat and precise interval system
graphs. The Euler equations of motion, and also interval valued Euler equations of integrals that depend upon functions
for just a single variable, are determined, and the shortest path among two points in a plane is shown to be a straight line.
This method is easy to study and comprehend, and it is effective in solving real-world problems. Euler's Equations can be
written with interval values have high accuracy at a low computing expense. When the outcomes are compared to all
those obtained using equivalent or analogous methods, we see that the interval results achieved have a strong degree of
compatibility.
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