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Abstract: Euler's Equations of Motion play a role in deciding the approximated solution to that same 

interval valued problem. The interval valued Euler equations are added and extracted. Euler's 
Equations are used to determine the shortest path a particle may follow from one location to another 

location within single-variable functions. When discussing the motion of the particle and its direction, 

the relationship between the points on the surface and the coordinates of the particle may be 

investigated. 
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1. Introduction: 

The calculus of variations itself and extensions was used to find the optimum model that 

provides the maximum the economic model's benefit while also satisfying the system's constraints. 
Optimal control, transport phenomenon, optics, elasticity, vibrations, solid body statics and dynamics, 

and navigation are really only a few of engineering as well as physics problems that call for the use of 

an optimum mechanism rather than an optimal point. 

This essay would include a concise overview of other more critical topics in the field. In the 
case with multiple functions and independent variables with or without limits, Euler's equation and 

Euler's interval equations are all included. It starts with a derivation for Euler's Equation eventually 

going on to Euler's motion equations with interval values. The purpose of this paper is to help readers 
understand some steps involved in determining the optimal feature variation problem. 

The optimum values of a function was determined to be an ideal function throughout the 

calculus of variations. A functional is really a function that is constructed on the complete paths of 

one or even more functions, rather than a collection of independent variables. The integral is a 
function that occurs throughout the integrand including its integral also in calculus of variations, as 

well as the function which appears in the integrand of both the integral should be selected to minimize 

or maximize the value of its integral. 
 

2. Preliminaries: Interval arithmetic [1-8],[21] 

Let, ],[
~

21 kkk  , ],[
~
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(I). Addition  

    ],[
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(II). Subtraction 
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(III). Multiplication 
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(IV). Division 
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3. Euler Lagrange’s Equations 

Euler's equation of motion for a continuous flow along the stream line is essentially a 
relationship between the rate, friction, and density of a flowing fluid. Euler's motion equation is 

founded on Newton's second law about motion. 

Think a stream movement from location to location, and we've looked at one particular 
cylindrical segment of the flow. 

Let  )(  ),(  xyxy  be the curve joining the interval    BBAA ,,,  which works the given 

function  I  is an extreme       dxyyyyxxfI

x

x

 
2

1

,,,,,  . 

Consider a group of curves that are next to each other.     ])(,)([,, xxyyYY   (1) 

Where   is a parameter  

])(,)([ xx   is arbitrary differential function  

At the end interval ],[],[ BBandAA ,  

So that at ],[ AA ,  0,0])(,)([ 11 xx 
 
and at ],[ BB  ,  0,0])(,)([ 22 xx   

When 0 , Neighboring curve become )](),([],[ xyxyyy  , this is at the extreme. 

The family of comparison feature is a group of neighboring curves. If the interval valued function 

      dxyyyyxxfI
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Here replacing ],[],[ YYyy  , So  we get  
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Which is a function of  (say )(I ) is a maximum or minimum for 0  

      dxyyyyxxfI
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For 0 ( The neighboring curves becomes the extremum and extremum for 0 ) 

The necessary Conditions for this 0)( 

I   
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Differentiating I under the integral sign by Lebinitz rule, we have 
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On differentiating (1) with respect to ],[ xx  
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Again differentiating with respect to   
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Integrating the second term on the right by parts , we get  
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 Which is an interval valued Euler’s Equation of Motion  

 

4. Numerical Examples 

Prove that the shortest distance between two points in a plane is a straight line. 

Proof: 

The shortest path between two points isn't necessarily the straight line. That smallest distance 

between two clusters is determined by the object's or surface's geometry. A line is the shortest 
distance for flat surfaces, but great-circle distances reflect the real shortest distance for circular 

surfaces, such as Earth. 

Let ],[ AA and ],[ BB  be the given points and s~ is the interval arc length of a curve 

connected them.  

Then xdyysds
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We take integration  xd
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Again Integration  
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

xdmxdyy ~~],[  

Cxxmyy  ],[],[  

Cxmy  and Cxmy  are the straight line  

 The constant m and C are determinant from the fact that the straight line passing through 

],[ AA  to ],[ BB
. 

 

Conclusion: 

The suggested interval valued Euler's Equations problems produce neat and precise 

interval system graphs. The Euler equations of motion, and also interval valued Euler equations of 
integrals that depend upon functions for just a single variable, are determined, and the shortest path 

among two points in a plane is shown to be a straight line. This method is easy to study and 

comprehend, and it is effective in solving real-world problems. Euler's Equations can be written with 
interval values have high accuracy at a low computing expense. When the outcomes are compared to 

all those obtained using equivalent or analogous methods, we see that the interval results achieved 

have a strong degree of compatibility.   
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