(2)

Generalised k- Jacobsthal 2^m Ions (For Fixed m) Quarternions, Sedenions G.Srividhya^a, and E.Kavitha rani^b

Assistant Professor, PG & Research Department of Mathematics. Government Arts College.Trichirappalli-22. ^bGuest lecturer. PG & Research Department of Mathematics, Government Arts College. Trichirappalli-22.

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021

Abstract: In this paper we deliberate about Generalised k- Jacobsthal Quaternions, Octonions, and Sedenions. We discuss Binet formula, Generating function, Catalan Identity, Cassini Identity, D'Ocagne's Identity of them. From that we extent the same results for k- Jacobsthal, Generalised k- Jacobsthal.

1. Introduction

Basic Definitions

Generalized k-Jacobsthal Number

 $f^{2}(k) + 8g(k) > 0$ Let k be any positive real number. f(k), g(k) are scalar valued polynomials for for $n \in N$ generalized k-Jacobsthal sequence $J_{k,n}$ is defined as

 $J_{k,n} = f(k)J_{k,n-1} + 2g(k)J_{k,n-2}, J_{k,0} = a, J_{k,b} = b, n \ge 2$ (1)Binet form of Generalised k-Jacobsthal Number

$$J_{k,n} = \frac{X\alpha^n - Y\beta^n}{\alpha - \beta}$$

 $J_{k,n} = \frac{\alpha - \beta}{\alpha - \beta}$ Where $X = b - \alpha\beta$, $Y = b - \alpha\alpha$ where $x = b^{-\alpha} \alpha \beta$, $y = b^{-\alpha} \alpha \alpha^{-\alpha}$ $\alpha = \frac{f(k) + \sqrt{f^2(k) + 8g(k)}}{2}, \beta = \frac{f(k) - \sqrt{f^2(k) + 8g(k)}}{2}$ Here α, β are the root of the characteristic equation $x^2 - f(k)x - 2g(k) = 0$.

The Cayley-Dickson algebra are sequence A_0, A_1, \dots of non-associative R-algebra with involution. Let us defining A_0 be R. Given A_{m-1} is defined additively to be $A_{m-1} * A_{m-1}$ conjugation in A_m is defined by

$$\overline{a,b}) = (\overline{a},-b)$$

Multiplication is defined by (a, b). (c, d) = (ac - db, da + bc)Addition is defined by component wise as

$$(a,b) + (c,d) = (a + c, b + d)$$

 A_m has dimension $N = 2^m$ as an *R*-vector space. If $||x|| = \sqrt{Re(x\bar{x})}$ for $x \in A_m$ then

$$x\bar{x} = \bar{x}x = \|x\|^2$$

for specific $m, 2^m$ is tabulated below

т	2	3	4	
2^{m}	Quarternions	Octonions	Sedenions	

for a fixed *m*. Suppose $B_N = e_i \in A_m$, i = 0, 1, 2, ..., N - 1 is the basis for A_m where $N = 2^m$ is the dimension of A_m , e_0 is the identity (or unit) and $e_1, e_2, ..., e_{N-1}$ are called imaginaries. Then 2^m ions $s \in A_m$ taken as

$$s = \sum_{i=0}^{N-1} a_i e_i = a_0 + \sum_{i=1}^{N-1} a_i e_i$$

where a_0, a_1, \dots, a_{N-1} are real numbers. Here a_0 is called the real part of s and $\sum_{i=1}^{N-1} a_i e_i$ is called imaginary part.

Generalised k-Jacobsthal 2^m ions

Generalised k-Jacobsthal 2^m ions sequence $\{\widehat{G}J_{k,n}\}_{n\geq 0}$ is defined by

$$\hat{G}J_{k,n} = \sum_{s=0}^{N-1} J_{k,n+s} e_s$$
(3)

Let us define Generalised k-Jacobsthal 2^m ions such as Quaternions, Octonions, and Sedenions as follows (a) Put N = 4 in (3) we get Generalised k-Jacobsthal Quarternions $\hat{G}Q_{k,n}$

$$\hat{G}Q_{k,n} = J_{k,n} + J_{k,n+1}e_1 + J_{k,n+2}e_2 + J_{k,n+3}e_3$$
$$= \sum_{s=0}^{3} J_{k,n+s}e_s$$

(b) By substituting N = 8 in (3) we get Generalised k-Jacobsthal Octonions $\hat{G}Q_{k,n}$

Research Article

$$\widehat{G}Q_{k,n} = \sum_{s=0}^{7} J_{k,n+s} e_s$$

(c) By substituting N = 16 in (3) we get Generalised k-Jacobsthal Octonions $\hat{G}S_{k,n}$

$$\widehat{G}S_n = \sum_{s=0}^{15} J_{k,n+s} e_s$$

Where $J_{k,n}$ is n^{th} generalized k-Jacobsthal number.

From the equation (1),(2) we have the following recurrence relation

 $\bar{\alpha}$

$$\hat{G}J_{k,n} = f(k)\hat{G}J_{k,n-1} + 2g(k)\hat{G}J_{k,n-2}, \hat{G}J_{k,0} = a, \hat{G}J_{k,1} = b \quad n \ge 2$$
(4)
For specific values of $a, b, f(k), g(k)$ we present some specific sequences

	S.No	(a, b, f(k), g(k))	Name of the sequences		
	1	(0,1,1,1)	Jacobsthal		
	2	(0,1,k,1)	k-Jacobsthal		
	3	(0,1,k,-1)	Derived k-Jacobsthal		

Let $2^m = N$, we fix the following Notations

$$=\sum_{s=0}^{N-1}\alpha^s e_s \qquad \qquad \bar{\beta}=\sum_{s=0}^{N-1}\beta^s e_s$$

Theorem 1

Binet form of Generalized k-Jacobsthal 2^m ions

$$\hat{G}J_{k,n} = \frac{X\bar{\alpha}\alpha^n - Y\bar{\beta}\beta^n}{\alpha - \beta}$$
(5)

where

$$\bar{\alpha} = \sum_{s=0}^{N-1} \alpha^{s} e_{s}, \qquad \bar{\beta} = \sum_{s=0}^{N-1} \beta^{s} e_{s}$$

$$X = b - a\beta, \qquad Y = b - a\alpha$$

$$\alpha = \frac{f(k) + \sqrt{f^{2}(k) + 8g(k)}}{2}, \qquad \beta = \frac{f(k) - \sqrt{f^{2}(k) + 8g(k)}}{2}$$

Proof:

Using (2), (3)

$$\hat{G}J_{k,n} = \sum_{s=0}^{N-1} J_{k,n+s} e_s$$

$$= \left(\frac{X\alpha^n - Y\beta^n}{\alpha - \beta}\right) e_0 + \left(\frac{X\alpha^{n+1} - Y\beta^{n+1}}{\alpha - \beta}\right) e_1 + \left(\frac{X\alpha^{n+2} - Y\beta^{n+2}}{\alpha - \beta}\right) e_2 + \dots + \left(\frac{X\alpha^{n+N-1} - Y\beta^{n+N-1}}{\alpha - \beta}\right) e_{N-1}$$
Doing simplification we get
$$\hat{A} = \frac{X\bar{\alpha}\alpha^n - Y\bar{\beta}\beta^n}{\bar{\alpha}\beta}$$

$$\widehat{G}J_{k,n} = \frac{X\overline{\alpha}\alpha^n - Y\beta\beta^n}{\alpha - \beta}$$

Proposition 1.1

Binet form for Generalised *k***-Jacobsthal Quaternions** From (5)

$$\hat{G}Q_{k,n} = \frac{X\bar{\alpha}\alpha^n - Y\bar{\beta}\beta^n}{\alpha - \beta}$$
(6)

Where

$$\bar{\alpha} = \sum_{s=0}^{3} \alpha^{s} e_{s}, \qquad \bar{\beta} = \sum_{s=0}^{3} \beta^{s} e_{s}$$

$$X = b - a\beta, \qquad Y = b - a\alpha$$

$$\alpha = \frac{f(k) + \sqrt{f^{2}(k) + 8g(k)}}{2}, \qquad \beta = \frac{f(k) - \sqrt{f^{2}(k) + 8g(k)}}{2}$$

Corollary 1.1.1

Binet form for k-Jacobsthal Quarternions

Let from (6),
$$f(k) = k$$
, $g(k) = 1$, $a = 0$, $b = 1$ then $X = 1$, $Y = 1$
$$\hat{Q}_{k,n} = \frac{\bar{\alpha}\alpha^n - \bar{\beta}\beta^n}{\alpha - \beta}$$

where

Vol.12 No.9 (2021),963-968 Research Article

$$\bar{\alpha} = \sum_{s=0}^{3} \alpha^{s} e_{s}, \qquad \bar{\beta} = \sum_{s=0}^{3} \beta^{s} e_{s}$$
$$\alpha = \frac{k + \sqrt{k^{2} + 8}}{2}, \qquad \beta = \frac{k - \sqrt{k^{2} + 8}}{2}$$

Corollary 1.1.2

Binet form for Derived k-Jacobsthal Quarternions

Let from (6), f(k) = k, g(k) = -1, a = 0, b = 1 then X = 1, Y = 1 $\widehat{\alpha}\alpha^n - \overline{\beta}\beta^n$

$$\widehat{D}Q_{k,n} = \frac{\alpha \alpha - \beta \beta}{\alpha - \beta}$$

where

$$\bar{\alpha} = \sum_{s=0}^{3} \alpha^{s} e_{s}, \qquad \bar{\beta} = \sum_{s=0}^{3} \beta^{s} e_{s}$$
$$\alpha = \frac{k + \sqrt{k^{2} - 8}}{2}, \qquad \beta = \frac{k - \sqrt{k^{2} - 8}}{2}$$

Proposition 1.2

Binet form for Generalised *k***-Jacobsthal Octonions** From (5)

$$\widehat{G}O_{k,n} = \frac{X\overline{\alpha}\alpha^n - Y\beta\beta^n}{\alpha - \beta}$$
(7)

where

$$\bar{\alpha} = \sum_{s=0}^{7} \alpha^{s} e_{s}, \qquad \bar{\beta} = \sum_{s=0}^{7} \beta^{s} e_{s}$$

The values of X, Y, α , β are same as in Proposition 1.1

Corollary 1.2.1

Binet form for k-Jacobsthal Octonions

Let from (7), f(k) = k, g(k) = 1, a = 0, b = 1 then X = 1, Y = 1 $\hat{O}_{k,n} = \frac{\bar{\alpha}\alpha^n - \bar{\beta}\beta^n}{\alpha - \beta}$

where

$$\bar{\alpha} = \sum_{s=0}^{7} \alpha^{s} e_{s}, \qquad \bar{\beta} = \sum_{s=0}^{7} \beta^{s} e_{s}$$
$$\alpha = \frac{k + \sqrt{k^{2} + 8}}{2}, \qquad \beta = \frac{k - \sqrt{k^{2} + 8}}{2}$$

Corollary 1.2.2 Binet form for Derived *k*-Jacobsthal Octonions

Let from (7), f(k) = k, g(k) = -1, a = 0, b = 1 then X = 1, Y = 1 $\widehat{D}Q_{n} = \frac{\overline{\alpha}\alpha^n - \overline{\beta}\beta^n}{\overline{\beta}\alpha^n}$

$$\widehat{D}O_{k,n} = \frac{\alpha \alpha^n - \beta \beta^n}{\alpha - \beta}$$

where

$$\bar{\alpha} = \sum_{s=0}^{7} \alpha^{s} e_{s}, \qquad \bar{\beta} = \sum_{s=0}^{7} \beta^{s} e_{s}$$
$$\alpha = \frac{k + \sqrt{k^{2} - 8}}{2}, \qquad \beta = \frac{k - \sqrt{k^{2} - 8}}{2}$$

Proposition 1.3

Binet form for Generalised *k***-Jacobsthal Sedenions** From (5)

Let N = 16

$$\hat{G}S_{k,n} = \frac{X\bar{\alpha}\alpha^n - Y\bar{\beta}\beta^n}{\alpha - \beta}$$
(8)

where

$$\bar{\alpha} = \sum_{s=0}^{15} \alpha^s e_s, \qquad \bar{\beta} = \sum_{s=0}^{15} \beta^s e_s$$

The values of *X*, *Y*, α , β are same as in Proposition 1.1

Vol.12 No.9 (2021),963-968 Research Article

Corollary 1.3.1

Binet form for *k*-Jacobsthal Sedenions

Let from (8), f(k) = k, g(k) = 1, a = 0, b = 1 then X = 1, Y = 1 $\hat{S}_{k,n} = \frac{\bar{\alpha}\alpha^n - \bar{\beta}\beta^n}{\alpha - \beta}$

where

$$\bar{\alpha} = \sum_{s=0}^{15} \alpha^{s} e_{s}, \qquad \bar{\beta} = \sum_{s=0}^{15} \beta^{s} e_{s}$$
$$\alpha = \frac{k + \sqrt{k^{2} + 8}}{2}, \qquad \beta = \frac{k - \sqrt{k^{2} + 8}}{2}$$

Corollary 1.3.2

Binet form for Derived *k***-Jacobsthal Sedenions** Let from (8), f(k) = k, g(k) = -1, a = 0, b = 1 then X = 1, Y = 1 $\widehat{D}S_{k,n} = \frac{\overline{\alpha}\alpha^n - \overline{\beta}\beta^n}{\alpha - \beta}$

$$\bar{\alpha} = \sum_{s=0}^{15} \alpha^{s} e_{s}, \qquad \bar{\beta} = \sum_{s=0}^{15} \beta^{s} e_{s}$$
$$\alpha = \frac{k + \sqrt{k^{2} - 8}}{2}, \quad \beta = \frac{k - \sqrt{k^{2} - 8}}{2}$$

Theorem 2

Generating function for Generalized k – Jacobsthal 2^m ions

$$G(t) = \frac{\hat{G}J_{k,0} + (\hat{G}J_{k,1} - f(k)\hat{G}J_{k,0})t}{1 - f(k)t - 2g(k)t^2}$$

Proof

Let $G(t) = \sum_{n=0}^{\infty} \hat{G}J_{k,n}t^n$ be the generating function of k – Jacobsthal 2^m ions, then $(1 - f(k)t - 2g(k)t^2) = (\hat{G}J_{k,0} + \hat{G}J_{k,1}t) - f(t)\hat{G}J_{k,0}t + \sum_{n=0}^{\infty} (\hat{G}J_{k,n} - f(t)\hat{G}J_{k,n-1} - 2g(t)\hat{G}J_{k,n-2})t^n$ Doing simple calculation we get

$$G(t) = \frac{\hat{G}J_{k,0} + (\hat{G}J_{k,1} - f(k)\hat{G}J_{k,0})t}{1 - f(k)t - 2g(k)t^2}$$

 $f(k) = k, g(k) = 1, \hat{G}J_{k,0} = 0, \hat{G}J_{k,1} = 1$

Examples

1. Generating function for k – Jacobsthal Quaternions

$$G(t) = \frac{t}{1 - kt - 2t^2}$$

2. Generating function for Derived k – Jacobsthal Quaternions
$$f(k) = k, g(k) = -1, \hat{G}J_{k,0} = 0, \hat{G}J_{k,1} = 1$$
$$G(t) = \frac{t}{1 - kt + 2t^2}$$

Theorem 3

Catalan's identity for Generalized k – Jacobsthal 2^m ions For any positive integer p, q, p > q

$$\hat{G}J_{k,p-q}\cdot\hat{G}J_{k,p+q}-\hat{G}J_{k,p}^2=\frac{XY(\alpha\beta)^p-(\beta^{-q}-\alpha^{-q})\big(\beta^q\bar{\alpha}\bar{\beta}-\alpha^q\bar{\beta}\alpha\big)}{(\alpha-\beta)^2}$$
(9)

Where $X, Y, \alpha, \beta, \overline{\alpha, \beta}$ are same in equation (5) **Proof**

Using Binet form

$$\hat{G}J_{k,p-q}.\,\hat{G}J_{k,p+q} - \hat{G}J_{k,p}^2 = \frac{X\bar{\alpha}\alpha^{p-q} - Y\bar{\beta}\beta^{p-q}}{\alpha - \beta}\frac{X\bar{\alpha}\alpha^{p+q} - Y\bar{\beta}\beta^{p+q}}{\alpha - \beta} - \left(\frac{X\bar{\alpha}\alpha^p - Y\bar{\beta}\beta^p}{\alpha - \beta}\right)^2$$

Doing simple mathematical simplification we get the result.

Proposition 3.1

Catalan Identity for Generalized *k* – Jacobsthal Quaternions:

Same result of Theorem 3.where

$$\bar{\alpha} = \sum_{s=0}^{3} \alpha^{s} e_{s}, \quad \bar{\beta} = \sum_{s=0}^{3} \beta^{s} e_{s}$$

Research Article

Corollary 3.1.1

Catalan Identity for *k* – Jacobsthal Quarternions:

For any positive integer p, q such that p > q

$$\hat{G}J_{k,p-q} \cdot \hat{G}J_{k,p+q} - \hat{G}J_{k,p}^2 = -\bar{\alpha}\bar{\beta}(-2)^{p-q}\hat{G}J_{k,p}^2$$
(10)

Proof:

Let $f(k) = k, g(k) = 1, \hat{G}J_{k,0} = a = 0, \hat{G}J_{k,1} = b = 1$ then X = 1, Y = 1, $\bar{\alpha} = \sum_{s=0}^{3} \alpha^{s} e_{s}, \bar{\beta} = \sum_{s=0}^{3} \alpha^{s} e_{s}$ $\sum_{s=0}^{3} \beta^{s} e_{s}$, $\alpha = \frac{k + \sqrt{k^{2} + 8}}{2}$, $\beta = \frac{k - \sqrt{k^{2} + 8}}{2}$ using all above values in equation (10) we get the result

Corollary 3.1.2 Catalan Identity for Derived k-Jacobsthal Quarternions: $f(k) = k, g(k) = -1, \hat{G}J_{k,0} = a = 0, \hat{G}J_{k,1} = b = 1$, then X = 1, Y = 1,

$$\alpha = \frac{k + \sqrt{k^2 - 8}}{2}, \beta = \frac{k - \sqrt{k^2 - 8}}{2}, \bar{\alpha} = \sum_{s=1}^{3} \alpha^s e_s, \bar{\beta} = \sum_{s=1}^{3} \beta^s e_s$$

using all above values in equation (10) we get

$$\hat{G}J_{k,p-q}\hat{G}J_{k,p+q} - \hat{G}J_{k,p}^2 = -(\bar{\alpha}\ \bar{\beta}\)2^{p-q}\hat{G}J_{k,q}^2$$

Proposition 3.2

Catalan Identity for Generalised k-Jacobsthal Octonions: Same result of Theorem 3. Where $\bar{\alpha} = \sum_{s=1}^{7} \alpha^{s} e_{s}, \bar{\beta} = \sum_{s=1}^{7} \beta^{s} e_{s}$ Note

For k-Jacobsthal Octonions, Derived k-Jacobsthal Octonions: Same result of corollary 3.1.1, corollary 3.1.2 where $\bar{\alpha} = \sum_{s=1}^{7} \alpha^s e_s$, $\bar{\beta} = \sum_{s=1}^{7} \beta^s e_s$

Proposition 3.3

Catalan Identity for Generalised k-Jacobsthal Sedenions: Some result of Theorem 3. Where $\bar{\alpha} = \sum_{s=0}^{15} \alpha^s e_s, \bar{\beta} = \sum_{s=0}^{15} \beta^s e_s$

Note

For k-Jacobsthal Sedenions, Derived k-Jacobsthal Sedenions: Same result of corollary 3.1.1, corollary 3.1.2 where $\bar{\alpha} = \sum_{s=0}^{15} \alpha^s e_s, \bar{\beta} = \sum_{s=0}^{15} \beta^s e_s$ Theorem 4

Cassini Identity Taking q = 1 in Catalan's Identity we get Cassini Identity of Generalised k-Jacobsthal 2^m –ions.

$$\hat{G}J_{k,p-1}\hat{G}J_{k,p+1} - \hat{G}J_{k,p}^2 = \frac{XY(\alpha\beta)^{p-1}(\beta\bar{\alpha}\bar{\beta} - \alpha\bar{\beta}\bar{\alpha})}{\alpha - \beta}$$
(11)

Where *X*, *Y*, α , β , $\overline{\alpha}$, $\overline{\beta}$ are same in equation (5). Note

Cassini identity for Generalised k-Jacobsthal Quarterions, Octonions, Sedenions having same result of Theorem 4, where the values of $\bar{\alpha}$, $\bar{\beta}$ are to be choosen corresponding

$$\bar{\alpha} = \sum_{\substack{s=1\\7}}^{3} \alpha^{s} e_{s}, \bar{\beta} = \sum_{\substack{s=1\\7}}^{3} \beta^{s} e_{s}$$
$$\bar{\alpha} = \sum_{\substack{s=1\\15}}^{7} \alpha^{s} e_{s}, \bar{\beta} = \sum_{\substack{s=1\\15}}^{7} \beta^{s} e_{s}$$
$$\bar{\alpha} = \sum_{\substack{s=1\\s=1}}^{15} \alpha^{s} e_{s}, \bar{\beta} = \sum_{\substack{s=1\\s=1}}^{15} \beta^{s} e_{s}$$

Theorem 5

D'ocagne's Identity for Generalised k-Jacobsthal 2^m ions For any integer *p*, *q*

$$\hat{G}J_{k,p}\hat{G}J_{k,q+1} - \hat{G}J_{k,p+1}\hat{G}J_{k,q} = \frac{XY(\alpha^q\beta^p - \alpha^p\beta^q)(\beta\bar{\alpha}\bar{\beta} - \alpha\bar{\beta}\bar{\alpha})}{(\alpha - \beta)^2}$$
(12)

Proof

Using Binet formula and simple mathematical simplification we can prove this result.

Proposition 5.1

D'ocagene's Identity for Generalised k-Jacobsthal Quarternions: Some result of Theorem 5. where

$$\bar{\alpha} = \sum_{s=1}^{3} \alpha^{s} e_{s}, \bar{\beta} = \sum_{s=1}^{3} \beta^{s} e_{s}$$

Corollary 5.1.1

D'ocagene's Identity for
$$k$$
-Jacobsthal Quarternions: If $p > q$ then

 $\hat{G}J_{k,p}\hat{G}J_{k,q+1} - \hat{G}J_{k,p+1}\hat{G}J_{k,q} = (\bar{\alpha}\bar{\beta})(-2)^q\hat{G}J_{k,p-q}^2$

Proof

Let us to be
$$f(k) = k$$
, $g(k) = 1$, $\hat{G}J_{k,0} = a = 0$, $\hat{G}J_{k,1} = b = 1$, then
 $X = 1, Y = 1, \bar{\alpha} = \sum_{s=1}^{3} \alpha^{s} e_{s}, \bar{\beta} = \sum_{s=1}^{3} \beta^{s} e_{s}$
 $\alpha = \frac{k + \sqrt{k^{2} + 8}}{2}, \beta = \frac{k - \sqrt{k^{2} + 8}}{2}$

Using all above in Theorem 5 we get the result. **Corollary 5.1.2**

D'ocagene's Identity for Derived k**-Jacobsthal Quarternions:** If p > q then $\hat{G}J_{k,p}\hat{G}J_{k,q+1} - \hat{G}J_{k,p+1}\hat{G}J_{k,q} = (\bar{\alpha}\bar{\beta})2^q\hat{G}J_{k,p-q}^2$

Proof

Taking all the values as in corollary 5.1.1 except g(k) = -1,

 $\alpha = \frac{k + \sqrt{k^2 - 8}}{2}$, $\beta = \frac{k - \sqrt{k^2 - 8}}{2}$ using all above in Theorem 5 we get the result.

Note

D'ocagene's Identity for Generalized k-Jacobsthal Octonions, Sedenions can be derived in the same way as in Proposition 5.1.

Conclusion

In this paper we discussed Generalized k-Jacobsthal Quartertions, Octonions, Sedenions. We explain Binet form, Generating function, Catalan Identity, D'ocagene's Identity of Generalized k-Jacobsthal 2^m ions. From that deduce the same result for k-Jacobsthal. In future we may also produce an extension of the above result for Generalised k-Jacobsthal Lucas, k Pell Lucas.

References

- "A not on generalized k-horadam sequence" Yasin Yazlik, Necati Taskara, Elsevier, 1. October 2011.
- "Horadam 2^k-ions Melih Gocen and Yuksel soykan Preprints(<u>www.Preprints.org</u>) 2.
- 3. "Generalized k-Jacobsthal sequence" S. Uygan and A. Tumbas. Asian Journal of Mathematics and Physics Vol2. Issue 2, 2018 45-50.