Generalised k- Jacobsthal $\mathbf{2}^{\wedge}$ m Ions (For Fixed m) Quarternions, Sedenions
 G.Srividhya ${ }^{\text {a }}$, and E.Kavitha rani ${ }^{\text {b }}$
 Assistant Professor, PG \& Research Department of Mathematics,
 Government Arts College.Trichirappalli-22.
 ${ }^{\mathbf{b}}$ Guest lecturer. PG \& Research Department of Mathematics, Government Arts College. Trichirappalli-22.

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021

Abstract: In this paper we deliberate about Generalised k- Jacobsthal Quaternions, Octonions, and Sedenions. We discuss Binet formula, Generating function, Catalan Identity, Cassini Identity, D'Ocagne's Identity of them. From that we extent the same results for k- Jacobsthal, Generalised k- Jacobsthal.

1. Introduction

Basic Definitions

Generalized \boldsymbol{k}-Jacobsthal Number

Let k be any positive real number. $f(k), g(k)$ are scalar valued polynomials for $f^{2}(k)+8 g(k)>0$, for $n \in N$ generalized k-Jacobsthal sequence $J_{k, n}$ is defined as

$$
\begin{equation*}
J_{k, n}=f(k) J_{k, n-1}+2 g(k) J_{k, n-2}, J_{k, 0}=a, J_{k, b}=b, n \geq 2 \tag{1}
\end{equation*}
$$

Binet form of Generalised \boldsymbol{k}-Jacobsthal Number

$$
\begin{equation*}
J_{k, n}=\frac{X \alpha^{n}-Y \beta^{n}}{\alpha-\beta} \tag{2}
\end{equation*}
$$

Where $X=b-\alpha \beta, Y=b-a \alpha$

$$
\alpha=\frac{f(k)+\sqrt{f^{2}(k)+8 g(k)}}{2}, \beta=\frac{f(k)-\sqrt{f^{2}(k)+8 g(k)}}{2}
$$

Here α, β are the root of the characteristic equation $x^{2}-f(k) x-2 g(k)=0$.
The Cayley-Dickson algebra are sequence A_{0}, A_{1}, \ldots of non-associative R-algebra with involution. Let us defining A_{0} be R. Given A_{m-1} is defined additively to be $A_{m-1} * A_{m-1}$ conjugation in A_{m} is defined by

$$
(\overline{a, b})=(\bar{a},-b)
$$

Multiplication is defined by $(a, b) .(c, d)=(a c-\bar{d} b, d a+b \bar{c})$
Addition is defined by component wise as

$$
(a, b)+(c, d)=(a+c, b+d)
$$

A_{m} has dimension $N=2^{m}$ as an R-vector space. If $\|x\|=\sqrt{\operatorname{Re}(x \bar{x})}$ for $x \in A_{m}$ then

$$
x \bar{x}=\bar{x} x=\|x\|^{2}
$$

for specific $m, 2^{m}$ is tabulated below

m	2	3	4	\ldots
2^{m}	Quarternions	Octonions	Sedenions	\ldots

for a fixed m. Suppose $B_{N}=e_{i} \in A_{m}, i=0,1,2, \ldots N-1$ is the basis for A_{m} where $N=2^{m}$ is the dimension of A_{m}, e_{0} is the identity (or unit) and $e_{1}, e_{2}, \ldots, e_{N-1}$ are called imaginaries. Then 2^{m} ions $s \in A_{m}$ taken as

$$
s=\sum_{i=0}^{N-1} a_{i} e_{i}=a_{0}+\sum_{i=1}^{N-1} a_{i} e_{i}
$$

where $a_{0}, a_{1}, \ldots, a_{N-1}$ are real numbers. Here a_{0} is called the real part of s and $\sum_{i=1}^{N-1} a_{i} e_{i}$ is called imaginary part.

Generalised \boldsymbol{k}-Jacobsthal $\mathbf{2}^{\boldsymbol{m}}$ ions
Generalised k-Jacobsthal 2^{m} ions sequence $\left\{\widehat{G} J_{k, n}\right\}_{n \geq 0}$ is defined by

$$
\begin{equation*}
\widehat{G} J_{k, n}=\sum_{s=0}^{N-1} J_{k, n+s} e_{s} \tag{3}
\end{equation*}
$$

Let us define Generalised k-Jacobsthal 2^{m} ions such as Quaternions, Octonions, and Sedenions as follows
(a) Put $N=4$ in (3) we get Generalised k-Jacobsthal Quarternions $\widehat{G} Q_{k, n}$

$$
\begin{aligned}
& \hat{G} Q_{k, n}=J_{k, n}+J_{k, n+1} e_{1}+J_{k, n+2} e_{2}+J_{k, n+3} e_{3} \\
& =\sum_{s=0}^{3} J_{k, n+s} e_{s}
\end{aligned}
$$

(b) By substituting $N=8$ in (3) we get Generalised k-Jacobsthal Octonions $\widehat{G} Q_{k, n}$

$$
\widehat{G} Q_{k, n}=\sum_{s=0}^{7} J_{k, n+s} e_{s}
$$

(c) By substituting $N=16$ in (3) we get Generalised k-Jacobsthal Octonions $\widehat{G} S_{k, n}$

$$
\widehat{G} S_{n}=\sum_{s=0}^{15} J_{k, n+s} e_{s}
$$

Where $J_{k, n}$ is $n^{\text {th }}$ generalized k-Jacobsthal number.
From the equation (1),(2) we have the following recurrence relation

$$
\begin{equation*}
\widehat{G} J_{k, n}=f(k) \widehat{G} J_{k, n-1}+2 g(k) \widehat{G} J_{k, n-2}, \widehat{G} J_{k, 0}=a, \widehat{G} J_{k, 1}=b \quad n \geq 2 \tag{4}
\end{equation*}
$$

For specific values of $a, b, f(k), g(k)$ we present some specific sequences

S.No	$(a, b, f(k), g(k))$	Name of the sequences
1	$(0,1,1,1)$	Jacobsthal
2	$(0,1, k, 1)$	k-Jacobsthal
3	$(0,1, k,-1)$	Derived k-Jacobsthal

Let $2^{m}=N$, we fix the following Notations

$$
\bar{\alpha}=\sum_{s=0}^{N-1} \alpha^{s} e_{s} \quad \bar{\beta}=\sum_{s=0}^{N-1} \beta^{s} e_{s}
$$

Theorem 1

Binet form of Generalized \boldsymbol{k}-Jacobsthal $\mathbf{2}^{\boldsymbol{m}}$ ions

$$
\begin{equation*}
\hat{G} J_{k, n}=\frac{X \bar{\alpha} \alpha^{n}-Y \bar{\beta} \beta^{n}}{\alpha-\beta} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \bar{\alpha}=\sum_{s=0}^{N-1} \alpha^{s} e_{s}, \quad \bar{\beta}=\sum_{s=0}^{N-1} \beta^{s} e_{s} \\
& X=b-a \beta, \quad Y=b-a \alpha \\
& \alpha=\frac{f(k)+\sqrt{f^{2}(k)+8 g(k)}}{2}, \quad \beta=\frac{f(k)-\sqrt{f^{2}(k)+8 g(k)}}{2}
\end{aligned}
$$

Proof:

Using (2), (3)
$\widehat{G} J_{k, n}=\sum_{s=0}^{N-1} J_{k, n+s} e_{s}$
$=\left(\frac{X \alpha^{n}-Y \beta^{n}}{\alpha-\beta}\right) e_{0}+\left(\frac{X \alpha^{n+1}-Y \beta^{n+1}}{\alpha-\beta}\right) e_{1}+\left(\frac{X \alpha^{n+2}-Y \beta^{n+2}}{\alpha-\beta}\right) e_{2}+\cdots+\left(\frac{X \alpha^{n+N-1}-Y \beta^{n+N-1}}{\alpha-\beta}\right) e_{N-1}$
Doing simplification we get

$$
\widehat{G} J_{k, n}=\frac{X \bar{\alpha} \alpha^{n}-Y \bar{\beta} \beta^{n}}{\alpha-\beta}
$$

Proposition 1.1

Binet form for Generalised \boldsymbol{k}-Jacobsthal Quaternions
From (5)

$$
\begin{equation*}
\widehat{G} Q_{k, n}=\frac{X \bar{\alpha} \alpha^{n}-Y \bar{\beta} \beta^{n}}{\alpha-\beta} \tag{6}
\end{equation*}
$$

Where

$$
\begin{aligned}
& \bar{\alpha}=\sum_{s=0}^{3} \alpha^{s} e_{s}, \quad \bar{\beta}=\sum_{s=0}^{3} \beta^{s} e_{s} \\
& X=b-a \beta, \quad Y=b-a \alpha \\
& \alpha=\frac{f(k)+\sqrt{f^{2}(k)+8 g(k)}}{2}, \quad \beta=\frac{f(k)-\sqrt{f^{2}(k)+8 g(k)}}{2}
\end{aligned}
$$

Corollary 1.1. 1

Binet form for \boldsymbol{k}-Jacobsthal Quarternions

Let from (6), $f(k)=k, g(k)=1, a=0, b=1$ then $X=1, Y=1$

$$
\hat{Q}_{k, n}=\frac{\bar{\alpha} \alpha^{n}-\bar{\beta} \beta^{n}}{\alpha-\beta}
$$

where

$$
\begin{array}{ll}
\bar{\alpha}=\sum_{s=0}^{3} \alpha^{s} e_{s}, & \bar{\beta}=\sum_{s=0}^{3} \beta^{s} e_{s} \\
\alpha=\frac{k+\sqrt{k^{2}+8}}{2}, & \beta=\frac{k-\sqrt{k^{2}+8}}{2}
\end{array}
$$

Corollary 1.1.2
Binet form for Derived \boldsymbol{k}-Jacobsthal Quarternions
Let from (6), $f(k)=k, g(k)=-1, a=0, b=1$ then $X=1, Y=1$

$$
\widehat{D} Q_{k, n}=\frac{\bar{\alpha} \alpha^{n}-\bar{\beta} \beta^{n}}{\alpha-\beta}
$$

where

$$
\begin{array}{ll}
\bar{\alpha}=\sum_{s=0}^{3} \alpha^{s} e_{s}, & \bar{\beta}=\sum_{s=0}^{3} \beta^{s} e_{s} \\
\alpha=\frac{k+\sqrt{k^{2}-8}}{2}, & \beta=\frac{k-\sqrt{k^{2}-8}}{2}
\end{array}
$$

Proposition 1.2

Binet form for Generalised \boldsymbol{k}-Jacobsthal Octonions
From (5)

$$
\begin{equation*}
\hat{G} O_{k, n}=\frac{X \bar{\alpha} \alpha^{n}-Y \bar{\beta} \beta^{n}}{\alpha-\beta} \tag{7}
\end{equation*}
$$

where

$$
\bar{\alpha}=\sum_{s=0}^{7} \alpha^{s} e_{s}, \quad \bar{\beta}=\sum_{s=0}^{7} \beta^{s} e_{s}
$$

The values of X, Y, α, β are same as in Proposition 1.1

Corollary 1.2.1

Binet form for \boldsymbol{k}-Jacobsthal Octonions
Let from (7), $f(k)=k, g(k)=1, a=0, b=1$ then $X=1, Y=1$

$$
\widehat{O}_{k, n}=\frac{\bar{\alpha} \alpha^{n}-\bar{\beta} \beta^{n}}{\alpha-\beta}
$$

where

$$
\begin{array}{ll}
\bar{\alpha}=\sum_{s=0}^{7} \alpha^{s} e_{s}, & \bar{\beta}=\sum_{s=0}^{7} \beta^{s} e_{s} \\
\alpha=\frac{k+\sqrt{k^{2}+8}}{2}, & \beta=\frac{k-\sqrt{k^{2}+8}}{2}
\end{array}
$$

Corollary 1.2.2

Binet form for Derived \boldsymbol{k}-Jacobsthal Octonions

Let from (7), $f(k)=k, g(k)=-1, a=0, b=1$ then $X=1, Y=1$

$$
\widehat{D} O_{k, n}=\frac{\bar{\alpha} \alpha^{n}-\bar{\beta} \beta^{n}}{\alpha-\beta}
$$

where

$$
\begin{array}{ll}
\bar{\alpha}=\sum_{s=0}^{7} \alpha^{s} e_{s}, & \bar{\beta}=\sum_{s=0}^{7} \beta^{s} e_{s} \\
\alpha=\frac{k+\sqrt{k^{2}-8}}{2}, & \beta=\frac{k-\sqrt{k^{2}-8}}{2}
\end{array}
$$

Proposition 1.3

Binet form for Generalised \boldsymbol{k}-Jacobsthal Sedenions
From (5)
Let $N=16$

$$
\begin{equation*}
\widehat{G} S_{k, n}=\frac{X \bar{\alpha} \alpha^{n}-Y \bar{\beta} \beta^{n}}{\alpha-\beta} \tag{8}
\end{equation*}
$$

where

$$
\bar{\alpha}=\sum_{s=0}^{15} \alpha^{s} e_{s}, \quad \bar{\beta}=\sum_{s=0}^{15} \beta^{s} e_{s}
$$

Corollary 1.3.1
Binet form for \boldsymbol{k}-Jacobsthal Sedenions
Let from (8), $f(k)=k, g(k)=1, a=0, b=1$ then $X=1, Y=1$

$$
\hat{S}_{k, n}=\frac{\bar{\alpha} \alpha^{n}-\bar{\beta} \beta^{n}}{\alpha-\beta}
$$

where

$$
\begin{array}{ll}
\bar{\alpha}=\sum_{s=0}^{15} \alpha^{s} e_{s}, & \bar{\beta}=\sum_{s=0}^{15} \beta^{s} e_{s} \\
\alpha=\frac{k+\sqrt{k^{2}+8}}{2}, & \beta=\frac{k-\sqrt{k^{2}+8}}{2}
\end{array}
$$

Corollary 1.3.2

Binet form for Derived \boldsymbol{k}-Jacobsthal Sedenions

Let from (8), $f(k)=k, g(k)=-1, a=0, b=1$ then $X=1, Y=1$

$$
\widehat{D} S_{k, n}=\frac{\bar{\alpha} \alpha^{n}-\bar{\beta} \beta^{n}}{\alpha-\beta}
$$

where

$$
\begin{array}{ll}
\bar{\alpha}=\sum_{s=0}^{15} \alpha^{s} e_{s}, & \bar{\beta}=\sum_{s=0}^{15} \beta^{s} e_{s} \\
\alpha=\frac{k+\sqrt{k^{2}-8}}{2}, & \beta=\frac{k-\sqrt{k^{2}-8}}{2}
\end{array}
$$

Theorem 2

Generating function for Generalized \boldsymbol{k} - Jacobsthal $\mathbf{2}^{\boldsymbol{m}}$ ions

$$
G(t)=\frac{\widehat{G} J_{k, 0}+\left(\hat{G} J_{k, 1}-f(k) \hat{G} J_{k, 0}\right) t}{1-f(k) t-2 g(k) t^{2}}
$$

Proof
Let $G(t)=\sum_{n=0}^{\infty} \hat{G} J_{k, n} t^{n}$ be the generating function of $k-$ Jacobsthal 2^{m} ions, then
$\left.\left(1-f(k) t-2 g(k) t^{2}\right)=\widehat{(G} J_{k, 0}+\widehat{G} J_{k, 1} t\right)-f(t) \widehat{G} J_{k, 0} t+\sum_{n=0}^{\infty}\left(\widehat{G} J_{k, n}-f(t) \widehat{G} J_{k, n-1}-2 g(t) \widehat{G} J_{k, n-2}\right) t^{n}$
Doing simple calculation we get

$$
G(t)=\frac{\widehat{G} J_{k, 0}+\left(\widehat{G} J_{k, 1}-f(k) \widehat{G} J_{k, 0}\right) t}{1-f(k) t-2 g(k) t^{2}}
$$

Examples

1. Generating function for $k-$ Jacobsthal Quaternions

$$
\begin{gathered}
f(k)=k, g(k)=1, \widehat{G} J_{k, 0}=0, \widehat{G} J_{k, 1}=1 \\
G(t)=\frac{t}{1-k t-2 t^{2}}
\end{gathered}
$$

2. Generating function for Derived k-Jacobsthal Quaternions

$$
\begin{aligned}
f(k)=k, g(k) & =-1, \widehat{G} J_{k, 0}=0, \widehat{G} J_{k, 1}=1 \\
G(t) & =\frac{t}{1-k t+2 t^{2}}
\end{aligned}
$$

Theorem 3

Catalan's identity for Generalized \boldsymbol{k} - Jacobsthal $\mathbf{2}^{\boldsymbol{m}}$ ions
For any positive integer $p, q, p>q$

$$
\begin{equation*}
\hat{G} J_{k, p-q} \cdot \hat{G} J_{k, p+q}-\hat{G} J_{k, p}^{2}=\frac{X Y(\alpha \beta)^{p}-\left(\beta^{-q}-\alpha^{-q}\right)\left(\beta^{q} \bar{\alpha} \bar{\beta}-\alpha^{q} \bar{\beta} \alpha\right)}{(\alpha-\beta)^{2}} \tag{9}
\end{equation*}
$$

Where $X, Y, \alpha, \beta, \bar{\alpha}, \bar{\beta}$ are same in equation (5)
Proof
Using Binet form

$$
\widehat{G} J_{k, p-q} . \widehat{G} J_{k, p+q}-\widehat{G} J_{k, p}^{2}=\frac{X \bar{\alpha} \alpha^{p-q}-Y \bar{\beta} \beta^{p-q}}{\alpha-\beta} \frac{X \bar{\alpha} \alpha^{p+q}-Y \bar{\beta} \beta^{p+q}}{\alpha-\beta}-\left(\frac{X \bar{\alpha} \alpha^{p}-Y \bar{\beta} \beta^{p}}{\alpha-\beta}\right)^{2}
$$

Doing simple mathematical simplification we get the result.

Proposition 3.1

Catalan Identity for Generalized \boldsymbol{k} - Jacobsthal Quaternions:
Same result of Theorem 3.where

$$
\bar{\alpha}=\sum_{s=0}^{3} \alpha^{s} e_{s}, \quad \bar{\beta}=\sum_{s=0}^{3} \beta^{s} e_{s}
$$

Corollary 3.1.1
Catalan Identity for \boldsymbol{k} - Jacobsthal Quarternions:
For any positive integer p, q such that $p>q$

$$
\begin{equation*}
\widehat{G} J_{k, p-q} \cdot \widehat{G} J_{k, p+q}-\widehat{G} J_{k, p}^{2}=-\bar{\alpha} \bar{\beta}(-2)^{p-q} \widehat{G} J_{k, p}^{2} \tag{10}
\end{equation*}
$$

Proof:
Let $\quad f(k)=k, g(k)=1, \widehat{G} J_{k, 0}=a=0, \widehat{G} J_{k, 1}=b=1 \quad$ then $\quad X=1, Y=1 \quad, \quad \bar{\alpha}=\sum_{s=0}^{3} \alpha^{s} e_{s}, \bar{\beta}=$ $\sum_{s=0}^{3} \beta^{s} e_{s}, \alpha=\frac{k+\sqrt{k^{2}+8}}{2}, \quad \beta=\frac{k-\sqrt{k^{2}+8}}{2}$ using all above values in equation (10) we get the result

Corollary 3.1.2

Catalan Identity for Derived \boldsymbol{k}-Jacobsthal Quarternions:
$f(k)=k, g(k)=-1, \widehat{G} J_{k, 0}=a=0, \widehat{G} J_{k, 1}=b=1$, then $X=1, Y=1$,
$\alpha=\frac{k+\sqrt{k^{2}-8}}{2}, \beta=\frac{k-\sqrt{k^{2}-8}}{2}, \bar{\alpha}=\sum_{s=1}^{3} \alpha^{s} e_{s}, \bar{\beta}=\sum_{s=1}^{3} \beta^{s} e_{s}$
using all above values in equation (10) we get

$$
\hat{G} J_{k, p-q} \widehat{G} J_{k, p+q}-\widehat{G} J_{k, p}^{2}=-(\bar{\alpha} \bar{\beta}) 2^{p-q} \widehat{G} J_{k, q}^{2}
$$

Proposition 3.2

Catalan Identity for Generalised \boldsymbol{k}-Jacobsthal Octonions: Same result of
Theorem 3. Where $\bar{\alpha}=\sum_{s=1}^{7} \alpha^{s} e_{s}, \bar{\beta}=\sum_{s=1}^{7} \beta^{s} e_{s}$
Note
For \boldsymbol{k}-Jacobsthal Octonions, Derived \boldsymbol{k}-Jacobsthal Octonions: Same result of corollary 3.1.1, corollary 3.1.2 where $\bar{\alpha}=\sum_{s=1}^{7} \alpha^{s} e_{s}, \bar{\beta}=\sum_{s=1}^{7} \beta^{s} e_{s}$

Proposition 3.3
Catalan Identity for Generalised \boldsymbol{k}-Jacobsthal Sedenions: Some result of
Theorem 3. Where $\bar{\alpha}=\sum_{s=0}^{15} \alpha^{s} e_{s}, \bar{\beta}=\sum_{s=0}^{15} \beta^{s} e_{s}$
Note
For \boldsymbol{k}-Jacobsthal Sedenions, Derived \boldsymbol{k}-Jacobsthal Sedenions: Same result of
corollary 3.1.1, corollary 3.1.2 where $\bar{\alpha}=\sum_{s=0}^{15} \alpha^{s} e_{s}, \bar{\beta}=\sum_{s=0}^{15} \beta^{s} e_{s}$
Theorem 4
Cassini Identity Taking $q=1$ in Catalan's Identity we get Cassini Identity of
Generalised k-Jacobsthal 2^{m}-ions.

$$
\begin{equation*}
\widehat{G} J_{k, p-1} \widehat{G} J_{k, p+1}-\widehat{G} J_{k, p}^{2}=\frac{X Y(\alpha \beta)^{p-1}(\beta \bar{\alpha} \bar{\beta}-\alpha \bar{\beta} \bar{\alpha})}{\alpha-\beta} \tag{11}
\end{equation*}
$$

Where $X, Y, \alpha, \beta, \bar{\alpha}, \bar{\beta}$ are same in equation (5).

Note

Cassini identity for Generalised k-Jacobsthal Quarterions, Octonions, Sedenions having same result of Theorem 4, where the values of $\bar{\alpha}, \bar{\beta}$ are to be choosen corresponding

$$
\begin{aligned}
& \bar{\alpha}=\sum_{s=1}^{3} \alpha^{s} e_{s}, \bar{\beta}=\sum_{s=1}^{3} \beta^{s} e_{s} \\
& \bar{\alpha}=\sum_{s=1}^{7} \alpha^{s} e_{s}, \bar{\beta}=\sum_{s=1}^{7} \beta^{s} e_{s} \\
& \bar{\alpha}=\sum_{s=1}^{15} \alpha^{s} e_{s}, \bar{\beta}=\sum_{s=1}^{15} \beta^{s} e_{s}
\end{aligned}
$$

Theorem 5
D'ocagne's Identity for Generalised \boldsymbol{k}-Jacobsthal $\mathbf{2}^{\boldsymbol{m}}$ ions
For any integer p, q

$$
\begin{equation*}
\widehat{G} J_{k, p} \widehat{G} J_{k, q+1}-\hat{G} J_{k, p+1} \widehat{G} J_{k, q}=\frac{X Y\left(\alpha^{q} \beta^{p}-\alpha^{p} \beta^{q}\right)(\beta \bar{\alpha} \bar{\beta}-\alpha \bar{\beta} \bar{\alpha})}{(\alpha-\beta)^{2}} \tag{12}
\end{equation*}
$$

Proof
Using Binet formula and simple mathematical simplification we can prove this result.
Proposition 5.1
D'ocagene's Identity for Generalised \boldsymbol{k}-Jacobsthal Quarternions: Some result of Theorem 5. where

$$
\bar{\alpha}=\sum_{s=1}^{3} \alpha^{s} e_{s}, \bar{\beta}=\sum_{s=1}^{3} \beta^{s} e_{s}
$$

Corollary 5.1.1

D'ocagene's Identity for \boldsymbol{k}-Jacobsthal Quarternions: If $p>q$ then

$$
\hat{G} J_{k, p} \hat{G} J_{k, q+1}-\widehat{G} J_{k, p+1} \hat{G} J_{k, q}=(\bar{\alpha} \bar{\beta})(-2)^{q} \widehat{G} J_{k, p-q}^{2}
$$

Proof

Let us to be $f(k)=k, g(k)=1, \widehat{G} J_{k, 0}=a=0, \widehat{G} J_{k, 1}=b=1$, then

$$
\begin{aligned}
& X=1, Y=1, \bar{\alpha}=\sum_{s=1}^{3} \alpha^{s} e_{s}, \bar{\beta}=\sum_{s=1}^{3} \beta^{s} e_{s} \\
& \alpha=\frac{k+\sqrt{k^{2}+8}}{2}, \beta=\frac{k-\sqrt{k^{2}+8}}{2}
\end{aligned}
$$

Using all above in Theorem 5 we get the result.

Corollary 5.1.2

D'ocagene's Identity for Derived \boldsymbol{k}-Jacobsthal Quarternions: If $p>q$ then

$$
\hat{G} J_{k, p} \widehat{G} J_{k, q+1}-\hat{G} J_{k, p+1} \widehat{G} J_{k, q}=(\bar{\alpha} \bar{\beta}) 2^{q} \widehat{G} J_{k, p-q}^{2}
$$

Proof
Taking all the values as in corollary 5.1.1 except $g(k)=-1$,
$\alpha=\frac{k+\sqrt{k^{2}-8}}{2}, \beta=\frac{k-\sqrt{k^{2}-8}}{2}$ using all above in Theorem 5 we get the result.

Note

D'ocagene's Identity for Generalized k-Jacobsthal Octonions, Sedenions can be derived in the same way as in Proposition 5.1.

Conclusion

In this paper we discussed Generalized k-Jacobsthal Quartertions, Octonions, Sedenions. We explain Binet form, Generating function, Catalan Identity, D'ocagene's Identity of Generalized k-Jacobsthal 2^{m} ions. From that deduce the same result for k-Jacobsthal. In future we may also produce an extension of the above result for Generalised k-Jacobsthal Lucas, k Pell Lucas.

References

1. "A not on generalized k-horadam sequence" Yasin Yazlik, Necati Taskara, Elsevier, October 2011.
2. "Horadam 2^{k}-ions Melih Gocen and Yuksel soykan Preprints(www.Preprints.org)
3. "Generalized k-Jacobsthal sequence" S. Uygan and A. Tumbas. Asian Journal of Mathematics and Physics Vol2. Issue 2, 2018 45-50.
