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1. Introduction  

Tanaka and Asai [20] were the pioneers in the field of fuzzy linear programming problems. Dubois, D., and 

Prade, H. [4] provided some fuzzy numbers. In the treatment of fuzzy arithmetic operations by numbers, Hsieh 

and Chen [10] are familiar with the concept of fuzzy function. Mahdavi-Amiri and Nasseri [13] identified the 

fuzzy linear programming problems of duality in the fuzzy, suitable solution for the Fuzzy variable linear 

programming problem. The principle, the inverse barrier approach, was discussed by Carroll [3] and followed by 

Fiacco[6] and McCormick[12]. 

  The other discussion of algorithms for fuzzy constrained optimization is the fuzzy Inverse Barrier process 

with rank. In this way, the fuzzy linear programming problem is solved using a new approach to the fuzzy inverse 

barrier function. The fuzzy inverse barrier approach is a method for approximating fuzzy restricted issues by 

using a term in the fuzzy objective function that reflects the high cost of violating the fuzzy constraints. The 

continuous fuzzy inverse barrier function opinion value expands to infinity as the boundary of the viable region 

of the fuzzy optimization problem is increased using point methodologies. A positive decreasing parameter ξ or 

η that defines the fuzzy inverse barrier is associated with this method; thus, the degree to which the fuzzy 

unconstrained problem addresses the restricted problems of the original fuzzy. We easily demonstrate the fuzzy 

logarithmic barrier method in the case of fuzzy inverse rank R = 0 to the simple one. A non-empty of the FIBM's 

fuzzy primal and fuzzy dual is restricted. Methods of the Fuzzy inverse barrier are sometimes called fuzzy interior 

methods. 

2. Preliminaries 

2.1.”Fuzzy Linear Programming Problem (FLPP) 

Consider the following FLPP 

Maximum (or Minimum) �̃� = 𝑓𝑞𝑙   

Constraints of the form                                                                   

𝑀𝑞�̃�(≤ , =, ≥)𝑁𝑠, s=1,2,…m ,  

and the nonnegative conditions of the fuzzy variables �̃�≥ (0,0,0) where 𝑓𝑇 =(𝑓1,...,𝑓n) is an j-dimensional 

constant vector, 𝑀 ∈ 𝑅𝑖×𝑗, �̃� =(𝑞�̃�) , l=1,2,..,n and  𝑁�̃�are nonnegative fuzzy variable vectors such that �̃�l and𝑁𝑠  ∈
ℱ(𝑅) for all 1 ≤  𝑙 ≤  𝑛, 1 ≤  𝑠 ≤  𝑚, is denoted by an FLPP. 

2.2. Feasible solution: If �̃� ∈ ℱ(𝑅)𝑛is a feasible solution, it must satisfy all of the constraints of the problem. 

2.3. Optimal Solution: If we get 𝑓�̃�∗ ≥ 𝑓�̃� for all feasible solutions �̃�, then we have an optimal solution �̃�*. 

2.4. Fuzzy basic feasible solution: 

Let 𝑀𝑞�̃� = 𝑁𝑠 and 𝑞�̃� ≥ 0̃, 𝑀 = [𝑚]𝑠×𝑙 𝑟𝑎𝑛𝑘(𝑀) = 𝑠 𝑁 ≠ 0, 𝑟𝑎𝑛𝑘 (𝑁) = 𝑙. Let 𝑦𝑙 be the solution to Ny= ml. 

The basic solution �̃�𝐿 = (�̃�𝐿1
, �̃�𝐿2

, … , �̃�𝐿𝑚
)

𝑇
= 𝐿−1𝑁𝑠, �̃�𝑁 = 0  is a solution of  𝑀𝑞�̃� = 𝑁𝑠, �̃� is thus partitioned 

into (�̃�𝐿
𝑇�̃�𝑁

𝑇)𝑇, a fuzzy basic solution corresponding to the basis 𝑁𝑠. If �̃�𝐿 ≥ 0̃, then the fuzzy basic solution is 

feasible, and �̃� = 𝑓𝑞𝑙  is the corresponding fuzzy objective value, where𝑓𝐿 = (𝑓𝐿1
, … , 𝑓𝐿𝑚

). define 𝑉𝑙 = 𝑓𝐿𝑦𝑙 =

𝑓𝐿𝐿−1𝑚𝑙  in response to each fuzzy non-basic variable �̃�𝑙 , 1 ≤ 𝑙 ≤ 𝑛, 𝑙 ≠ 𝐿𝑖 , and s=1,…,m. when �̃�𝐿 > 0̃, �̃� is 

referred to as a non-degenerate fuzzy basic feasible solution. 

3. Fuzzy Inverse barrier method (FIBM) 

Assume that the primal Fuzzy linear programming problem (PFLPP)  

Minimize  �̃� = (𝑓1̃, 𝑓2̃, 𝑓3̃)𝑝1 + (𝑓1̃, 𝑓2̃, 𝑓3̃)
𝑡
𝑝2 

 Subject to 𝑀11𝑝1 + 𝑀12𝑝2 ≥ (𝑛1̃, 𝑛2̃, 𝑛3̃), 
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                𝑀21𝑝1 + 𝑀22𝑝2 ≥ (𝑛1̃, 𝑛2̃, 𝑛3̃)𝑡 . 

Where  𝑀𝑙 ∈ 𝑅𝑚×𝑛, 𝑓, 𝑓𝑡, 𝑝𝑖 ∈ 𝑅𝑛 , 𝑁, 𝑁𝑡 ∈ 𝑅𝑚 , 𝑓 = (𝑓1̃, 𝑓2̃, 𝑓3̃), 

𝑁�̃� = (𝑛1̃, 𝑛2̃, 𝑛3̃), 𝑖 = 1,2                   (1) 

Assume that M has the maximum m rank without loss of generality. Assume that a minimum of one possible 

solution appears to the primary fuzzy linear programming problem. 

We specify the fuzzy inverse barrier method”𝐼(𝑝, ξ)for any scalar, 𝜉 > 0 for the problem. 

Define 𝐼(𝑝, 𝜉): 𝑅𝑛 → 𝑅 by the fuzzy inverse barrier function (FIBF) 

 

𝐼(𝑝1, 𝑝2, 𝜉) = (𝑓1̃, 𝑓2̃, 𝑓3̃)𝑝1 + (𝑓1̃, 𝑓2̃, 𝑓3̃)
𝑡
𝑝2 +

1

𝜉
.

1

ℜ
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1      (2) 

The fuzzy inverse barrier function (2) of the problem is convex. 𝐼(𝑝, 𝜉)is, therefore, a global minimum and 𝜉 

is a positive decreasing value of the parameter. 

Define  �̃�: 𝑅𝑛 → (−∞, ∞) by 

𝐼(𝑝1, 𝑝2) = {   
𝑀𝑙𝑝 − 𝑁�̃� ≤ 0, 𝑖𝑓 𝑀𝑙𝑝 − 𝑁�̃� = 0,

𝑀𝑙𝑝 − 𝑁�̃� > 0, 𝑖𝑓 𝑀𝑙𝑝 − 𝑁�̃� ≠ 0  for all 𝑙
 

Convert the fuzzy inverse of the rank barrier equation into the two weak fuzzy inequalities. 

The fuzzy measure of the problem of fuzzy linear programming is the metric for feasible solutions to a fuzzy 

interior; we have 

𝜗(𝑝, 𝜉) = min
�̃�,𝑠

‖(℘̇)
−ℜ

2⁄ (
 (℘̇)ℜ+1𝑠(𝑝,𝜉)  

𝜉
) − 𝐼‖ , 𝑀𝑇�̃� + 𝑠 = 𝑁                                   (3)                                     

The fuzzy function is the first order and the second-order derivatives of the FIBM: 

∇𝐼(𝑝, 𝜉) =  (𝑓1̃, 𝑓2̃, 𝑓3̃) + (𝑓1̃, 𝑓2̃, 𝑓3̃)
𝑡

−
1

𝜉
(℘̇)−ℜ−1,                                              (4) 

∇2𝐼(𝑝, 𝜉) = (ℜ + 1)(℘̇)−ℜ−2                (5) 

The interior of its boundary region was characterized by a fuzzy inverse barrier function, so that  

(i) The fuzzy inverse barrier method is a fuzzy continuous function. 

(ii) 𝐼(𝑝1, 𝑝2) ≥ 0. 
(iii) 𝐼(𝑝) → ∞ as 𝑝1̃, 𝑝2̃.  It reaches the set's boundary. The method of the Fuzzy inverse barrier is also 

called the method of the fuzzy interior. 

3.1: Fuzzy Inverse Barrier Lemma 

Let {𝜉𝑠} is a fuzzy increasing sequence, 𝐼(𝑝𝑠)is the function of the fuzzy inverse barrier and  𝑓(𝑝) is the 

function of the fuzzy objective, then we get, 

 (i).A fuzzy inverse barrier function with including parameter 𝐼(𝑝𝑠, 𝜉𝑠) included is smaller than are equal to 

𝐼(𝑝𝑠+1, 𝜉𝑠+1) 

(ii).𝐼(𝑝𝑠) will include a fuzzy inverse barrier function objective function. It is more than are equal to 𝐼(𝑝𝑠+1). 

(iii). The fuzzy inverse barrier technique is an increasing sequence of the fuzzy objective function 𝑓(𝑝𝑠) ≥

𝑓(𝑝𝑠+1). 

Proof: 

(i). 𝐼(𝑝𝑠, 𝜉𝑠) = (𝑓1̃, 𝑓2̃, 𝑓3̃)(𝑝𝑠) +
1

ℜ

1

𝜉𝑠
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1 ≥ (𝑓1̃, 𝑓2̃, 𝑓3̃)(𝑝𝑠) +

1

ℜ

1

𝜉𝑠+1
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1 ≥

(𝑓1̃, 𝑓2̃, 𝑓3̃)(𝑝𝑠+1) +
1

ℜ

1

𝜉𝑠+1
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1 ≥ 𝐼(𝑝𝑠+1, 𝜉𝑠+1). 

𝐼(𝑝𝑠, 𝜉𝑠) ≤ 𝐼(𝑝𝑠+1, 𝜉𝑠+1). 

(ii). (𝑓1̃, 𝑓2̃, 𝑓3̃)(𝑝𝑠) +
1

ℜ

1

𝜉𝑠
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1 ≥ (𝑓1̃, 𝑓2̃, 𝑓3̃)(𝑝𝑠+1) +

1

ℜ

1

𝜉𝑠
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1                                  (6)                                                                           

(𝑓1̃, 𝑓2̃, 𝑓3̃)(𝑝𝑠+1) +
1

ℜ

1

𝜉𝑠+1
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1 ≥ (𝑓1̃, 𝑓2̃, 𝑓3̃)(𝑝𝑠) +

1

ℜ

1

𝜉𝑠+1
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1                               (7)                                                                             

The fuzzy inverse barrier function that we get from fuzzy inequalities (6)&(7), 

(𝑓1̃, 𝑓2̃, 𝑓3̃)(𝑝𝑠) +
1

ℜ
.

1

𝜉𝑠
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1 + (𝑓1̃, 𝑓2̃, 𝑓3̃)(𝑝𝑠+1) +

1

𝜉𝑠+1
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1 ≥ (𝑓1̃, 𝑓2̃, 𝑓3̃)(𝑝𝑠+1) +

1

ℜ

1

𝜉𝑠
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1 +�̃�(𝑝𝑠) +

1

ℜ

1

𝜉𝑠+1
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1    

Then (
1

𝜉𝑠 −
1

𝜉𝑠+1)
1

ℜ
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1 ≥ (

1

𝜉𝑠 −
1

𝜉𝑠+1)
1

ℜ
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1  

𝐼(𝑝𝑠) ≥ 𝐼(𝑝𝑠+1). 

(iii). from the proof of (i)  (𝑓1̃, 𝑓2̃, 𝑓3̃)(𝑝𝑠) +
1

ℜ

1

𝜉𝑠+1
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1 ≥ (𝑓1̃, 𝑓2̃, 𝑓3̃)(𝑝𝑠+1) +

1

𝜉𝑠+1

1

ℜ
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1 . 

𝐼(𝑝𝑠) ≤ 𝐼(𝑝𝑠+1). Then𝑓(𝑝𝑠) ≥ 𝑓(𝑝𝑠+1). 

Lemma (iv): If  𝜗(𝑝1, 𝑝2, 𝜉) ≤ 1, then fuzzy dual of the FIBF with rank is Dual fuzzy feasible solutions.  

Lemma (v): If 𝜗(𝑝1,𝑝2, 𝜉) ≤ 2
3⁄ , 𝑡ℎ𝑒𝑛 �̌�  is a strictly fuzzy feasible solution.  
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Lemma (vi): If  𝜗(𝑝1,𝑝2, 𝜉) ≤ 1 then  𝐼(𝑝𝑘, 𝜉𝑘) = ‖(℘̇)−ℜ/2𝐼‖
2

≤ 𝑝 [
1

�́�(1−𝜗(𝑝1,𝑝2,𝜉)
]

ℜ

ℜ+1
. 

Lemma (vii): If 𝜗(𝑝1, 𝑝2, 𝜉) ≤ 1 then ‖�̃�𝑇𝑝 − 𝑀𝑇�̃�(𝑝, 𝜉)‖
2

≤  𝜉(𝐼(𝑝𝑘 , 𝜉𝑘) + 𝜗(𝑝1, �̃�2, 𝜉)√𝐼(𝑝𝑘, 𝜉𝑘). 

3.2: Fuzzy Inverse Barrier convergence theorem  

Theorem:3.2.1 

The fuzzy linear programming problem is defined as an increasing sequence of positive fuzzy Inverse barrier 

parameters {𝜉𝑠}such that 𝜉𝑠 ≥ 1, 𝜉𝑠 → ∞, 𝑠 → ∞. 

Suppose 𝑓(𝑝), 𝑀𝑙𝑝 − 𝑁𝑙& 𝐼(𝑝)is a continuous fuzzy function and there is an optimal solution 𝑝∗ of  �̃�. Then 

every 𝑝 limit point of {𝑝𝑠} 

Proof: 

Let us assume that 𝑝  is any boundary point of  {𝑝𝑠}  

𝐼 (𝑝𝑆, 𝜉𝑆) = 𝑓(𝑝𝑆) +
1

ℜ

1

𝜉𝑘
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
ℜ=1 ≥ 𝑓(𝑝∗)              (8)                                           

From the continuity of 𝑓(𝑝), we get, 

 lim
𝑆→∞

𝑓(𝑝𝑆) = 𝑓(𝑝), lim
𝑠→∞

1

(𝑀𝑙𝑝𝑆−𝑁�̃�)
ℜ ≤ 0. 

From the fuzzy Inverse barrier we get,  

lim
𝑠→∞

𝐼(𝑝𝑠, 𝜉𝑠) = 𝑓(𝑝∗) 

𝑝 is feasible. 

Theorem: 3.2.2 

Let us consider𝜗(𝑝1𝑝2, 𝜉) ≤
1

2
, 𝜉 = (1 − �́�)𝜉, 𝑤ℎ𝑒𝑟𝑒 �́� = 1/10√𝐼(𝑝, 𝜉), the fuzzy strictly feasible �̌� then 

𝜗(�̌�1�̌�2, 𝜉) ≤
1

2
. 

Proof: 

From the definition of the fuzzy measure, 𝜗(𝑝1𝑝2, 𝜉) = ‖
(℘̇)

(ℜ
2⁄ )+1

𝑠(𝑝,𝜉)

�́�
− (℘̇)−(ℜ

2⁄ )
𝐼‖ 

≤
1

1 − �́�
(𝜗(𝑝1𝑝2, 𝜉) + �́�√𝐼(𝑝, 𝜉)) =

12

18
 

Fuzzy quadratic convergence properties to be applied we get, 

𝜗(𝑝1𝑝2, 𝜉) ≤
1

2
. 

 

3.3. Fuzzy Inverse Barrier Function Algorithm: 

1. Construct a stand-form for the fuzzy linear programming problems. 

 �̃� = 𝑓(𝑝). Subject to (𝑀𝑙𝑝
𝑘 − 𝑁𝑙) ≤ 0. 

2. Convert fuzzy linear programming issue to the included rank's fuzzy inverse barrier approach. 

 𝐼(𝑝, 𝜂) = 𝑓(𝑝) +
1

𝜉

1

ℜ
∑

1

(𝑀𝑙𝑝 − 𝑁𝑙)
ℜ

𝑚

𝑙=1

 

3. Given a problem with fuzzy inequality constraints to Minimize fuzzy inverse barrier function 𝑀𝑖𝑛𝐼(𝑝, 𝜉) =

𝑓(𝑝) +
1

𝜉

1

ℜ
∑

1

(𝑀𝑙𝑝−𝑁�̃�)ℜ
𝑚
𝑙=1  as 𝜉 → ∞, the approximation becomes closer to the indicator function. 

4. By adding the first-order necessary condition for optimality, we can find the optimum value of the given 

fuzzy linear programming problem, using the limit 𝜉 → ∞. 

5. Calculate 𝐼(𝑝1,
𝑠 𝑝2,

𝑠 𝜉𝑘) = min
𝑝≥0

𝐼(̃𝑝1,
𝑠 𝑝2,

𝑠 𝜉𝑠),  then minimize  �̃�1,
𝑠  𝑝2,

𝑠 & 𝜉 = 10, 𝑠 = 1,2, … 𝑠 = 𝐼  then stop. 

otherwise, start by making a move to step 5. 

In a fuzzy inverse barrier approach with problem ranking, the Dual Fuzzy linear programming problem should 

be applied to the same idea. 

4. Numerical Example 

Problem:1 

Consider the problem of primal fuzzy linear programming  

𝑀𝑖𝑛 �̃� = (3.8,4,4.3)𝑝1̃ + (2.8,3,3.3)𝑝2̃ 

2𝑝1̃ + 3𝑝2̃ ≥ (5.8,6,6.3), 
4𝑝1̃ + 𝑝2̃ ≥ (3.8,4,4.3).    

Solution:   

The given problem indicates that the corresponding FIBM graph is as follows: 
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We obtain the fuzzy optimal value of the given primal and dual fuzzy linear programming problem calculation 

table (i) and (ii) using the FIBF algorithm as follows: 

Table: (i) 

 

 

 

 

 

 

 

 

 

 

 

 Table: (ii) 

 

 

 

 

 

 

The fuzzy inverse barrier functions have the best solution to the given problem's primal-dual. 

(p_1 ) ̃=(0.25,0.6,0.8),(p_2 ) =̃(1.6,1.6,1.8), 

Min V ̃=(5.5,7.2,9.4) 

 (q_1 ) ̃=(0.69,0.8,0.94), 

(q_2 ) ̃=(0.48,0.6,0.73), 

 Max V ̃=(5.8,7.2,9.1) 

5. Conclusion: 

  The FIBF, including rank for solving the primal-dual partial fuzzy linear programming problem using the 

proposed algorithm to achieve an improved optimal solution, is included in this paper. The optimal solution graph 

should also be attached to the fuzzy inverse barrier process graph. The table for the problems discussed above 

indicates that the computational method for the primary-dual FIBF algorithm that we built when the fuzzy Inverse 

Barrier parameter ξ is the optimal solution provides an increased convergence rate 

References: 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5

FIBM

�̃�

�̃�

�̃�

2𝑝1 + 3𝑝2 ≥ 5.8,6,6.3

4𝑝1 + 𝑝2 ≥ (3.8,4,4.3)
�̃�

N

o. 
𝜉𝑘 𝑝1̃ 𝑝2̃ 

1 1

0 

(0.187,0.50

5,0.705) 

(1.613,1.63

2,1.863) 

2 1

02 

(0.230,0.57

0,0.770) 

(1.604,1.61

0,1.820) 

3 1

03 

(0.244,0.59

1,0.791) 

(1.601,1.60

3,1.806) 

4 1

04 

(0.248,0.59

7,0.797) 

(1.600,1.60

1,1.802) 

5 1

05 

(0.249,0.59

9,0.799) 

(1.600,1.60

0,1.801) 

6 1

06 

(0.250,0.60

0,0.800) 

(1.600,1.60

0,1.800) 

No. 𝜉𝑘 𝑞1̃ 𝑞2̃ 

1 10 (0.950,1.059,1.222) (0.625,0.774,0.936) 

2 102 (0.772,0.882,1.029) (0.526,0.655,0.795) 

3 103 (0.716,0.826,0.968) (0.494,0.617,0.751) 

4 104 (0.698,0.808,0.949) (0.485,0.605,0.737) 

5 105 (0.693,0.803,0.943) (0.481,0.602,0.732 

6 106 (0.691,0.801,0.941) (0.480,0.601,0.731) 

7 107 (0.690,0.800,0.940) (0.480,0.600,0.730) 
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