Vol.12 No.9 (2021),917-921 ______ Research Article

$\ensuremath{\text{Pre}\;}\ensuremath{\tilde{I}}$ Generalized Connected Soft Set in a Soft Topological Space with Respect to an Ideal

K. Gnanamalar Sweetly^a, and Dr. J. Subhashini^b

Research Scholar, St. John's College, Palayamkottai, Tirunelveli. Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli – 627 012, Tamilnadu, India. ^bAssistant Professor of Mathematics, St. John's College, Palayamkottai, Tirunelveli.

Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli – 627 012, Tamilnadu, India.

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021

Abstract: Molodstov introduced the concept of soft set as a completely new Mathematical tool with adequate parameterization for dealing with uncertainties. In a soft topological space with the soft ideal \tilde{I} is defined as i) $F_E \in \tilde{I}$ and $G_E \in \tilde{I} \Rightarrow F_E \cup G_E \in \tilde{I}$, ii) $F_E \in \tilde{I}$ and $G_E \subseteq F_E \Rightarrow$

 $G_E \in \tilde{I}$ and it is denoted by (X, τ, E, \tilde{I}) . We have already defined Pre \tilde{I} generalized closed soft set as a soft set and it satisfies $(P\tilde{I}SCl(F_E))\backslash G_E \in \tilde{I}$ whenever $F_E \cong G_E$ and G_E is pre \tilde{I} open soft set and also studied its local properties. In this paper, we introduce the concept of pre \tilde{I}_g connected soft set

in the soft topological spaces with respect to an soft ideal. .

2010 Mathematics Subject Classification: Primary 54A40, Secondary 03E72.

Keywords: pre \tilde{I}_g open soft set, pre \tilde{I}_g separated soft set, pre \tilde{I}_g connected soft set

1. Introduction

In topology, connectedness is used to refer to various properties meaning in some sense, "all one piece". When a mathematical object has such a property, we say, it is connected; otherwise it is disconnected. Connectivity occupies very important place in topology.

In 2003 Shi- Zhong Bai [11] introduced P-connectedness. In 2011 R. Santhi and D. Jayanthi [8] introduced semi-pre connectedness in intuitionistic fuzzy topological spaces. In 2012 E.Peyhan, B.Samadi and A.Tayebi [7] introduced soft connectedness in soft topological spaces. In the same year, J.Mahanta and P.K.Das [5] introduced soft semi connectedness in soft topological spaces. In 2013 Deniz Tokat and Ismail Osmanoglu [2] introduced soft connectedness on multi soft topology. In 2014 B. Shanthi Gowri and Gnanambal Illango [10] used connected sets in Medical Image segmentation. In 2020 Benchali, Patil and Dodamani [1] investigated the properties of soft β connected spaces in soft topological spaces.

In this paper, we have introduced the concept of pre \tilde{I}_g separated soft set, pre \tilde{I}_g connected soft set and discussed their properties in the soft topological spaces with respect to an soft ideal.

2. Preliminaries:

In this section, we present the basic definitions and results of soft set theory, soft topological space via soft ideal which will be needed in the sequel.

Definition 2.1 [6] Let X be an initial universe and E be a set of parameters. Let P(X) denote the power set of X and A be a non-empty subset of E. A pair (F, A) denoted by F_A is called a soft set over X, where F is a mapping given by $F: A \to P(X)$. In other words, the soft set over X, is a parameterized family of subsets of the universe X. For $e \in A, F(e)$ may be considered as the set of *e*-approximate elements of the soft set F_A and if $e \notin A$, then $F(e) = \phi$

i.e. $F_A = \{(e, F(e)) : e \in A \subseteq E, F : A \rightarrow P(X)\}.$

Definition 2.2 [9] Let τ be a collection of soft sets over a universe X with a fixed set of parameters E, then $\tau \subseteq SS(X)_E$ is called a soft topology on X if i. $\tilde{X}, \tilde{\phi} \in \tau$, ii. the union of any number of soft sets in τ belongs to τ , iii. the intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ, E) is called a soft topological space over X.

Definition 2.3 [3] Let \tilde{I} be a non-null collection of soft sets over a universe X with a fixed set of parameters E, then $\tilde{I} \subseteq SS(X)_E$ is called a soft ideal on X with a fixed set E if $F_E \in \tilde{I}$ and $G_E \in \tilde{I} \Rightarrow F_E \cup G_E \in \tilde{I}$,

 $F_E \in \tilde{I}$ and $G_E \cong F_E \Rightarrow G_E \in \tilde{I}$,

Definition 2.4 [3] Let (X, τ, E) be a soft topological space and \tilde{I} be a soft ideal over X with the same set of parameters E. Then $(F_E)^*(\tilde{I}, \tau) = \widetilde{U} \{ x_e \in \tilde{X} : O_{x_e} \cap F_E \notin \tilde{I} \forall O_{x_e} \in \tau \}$ is called the soft local function of F_E with respect to \tilde{I} and τ , where O_{x_e} is a τ -open soft set containing x_e .

Research Article

Theorem 2.5 [4] Let (X, τ, E) be a soft topological space and \tilde{I} be a soft ideal over X with the same set of parameters E. Then the soft closure operator

 $cl^*: SS(X)_E \to SS(X)_E$ defined by $cl^*(F_E) = (F_E) \widetilde{\cup} (F_E)^*$ satisfies Kuratowski's axioms.

Definition 2.6 [4] Let (X, τ, E, \tilde{I}) be a soft topological space with soft ideal and $F_E \in SS(X)_E$. Then F_E is called \tilde{I} -open soft if $F_E \subseteq int ((F_E)^*(\tilde{I}, \tau))$.

We denote the set of all \tilde{I} -open soft sets by $\tilde{I}OS(X)$.

Definition 2.7 [4] Let (X, τ, E, \tilde{I}) be a soft topological space with soft ideal and $F_E \in SS(X)_E$. A soft set F_E is said to be pre \tilde{I} -open soft sets over X if $F_E \cong int(cl^*(F_E))$. We denote the set of all pre \tilde{I} -open soft sets by $P\tilde{I}OS(X)$. The complement of pre \tilde{I} -open soft set is pre \tilde{I} closed soft sets.

Definition 2.8 [4] Let (X, τ, E, \tilde{I}) be a soft topological space over X and $F_E \in SS(X)_E$. Then the Pre \tilde{I} soft closure of F_E denoted by $P\tilde{I}Scl(F_E)$ is defined as the soft intersection of all Pre \tilde{I} closed supersets of soft set F_E . That is $P\tilde{I}Scl(Q_E) = \widetilde{\cap}\{Q_E : Q_E \text{ is Pre } \tilde{I} \text{ closed soft set and } Q_E \cong F_E\}$.

3. Pre \tilde{I} Generalized Connected Soft Set in a Soft Topological Space with Respect to an Ideal

In this section, we introduce the concept of pre \tilde{I}_g separated soft set, pre \tilde{I}_g connected soft sets in a soft topological space with respect to an soft ideal. Also, we discuss some of the main results based on the above with illustrations.

Definition 3.1 Let (X, τ, E, \tilde{I}) be a soft ideal topological space over X. A soft set F_E is said to be pre \tilde{I} generalized closed soft set with respect to a soft ideal \tilde{I} in a soft topological space (X, τ, E, \tilde{I}) if $(P\tilde{I}Scl(F_E)) \setminus G_E \in \tilde{I}$ whenever $F_E \subseteq G_E$ and G_E is pre \tilde{I} open soft set. The set of all $pre \tilde{I}$ generalized closed soft sets over X is denoted by $P\tilde{I}_qCS(X)$.

Definition 3.2

Let (X, τ, E, \tilde{I}) be a soft topological space with respect to an ideal \tilde{I} . Two non empty soft disjoint soft subsets P_{E_1} and P_{E_2} of $SS(X)_E$ are called pre \tilde{I}_g separated soft sets over X if $P\tilde{I}_gScl(P_{E_1}) \cap P_{E_2} = P_{E_1} \cap P\tilde{I}_gScl(P_{E_2}) = \emptyset$.

Definition 3.3

A pre \tilde{I}_g soft separation of a soft topological space (X, τ, E, \tilde{I}) with respect to an ideal \tilde{I} is a pair of pre \tilde{I}_g separated soft sets P_{E_1} and P_{E_2} whose soft union is \tilde{X} .

Example 3.3.1 Let $X = \{x, y\}$, $E = \{e_1, e_2\}$, where $\tilde{X} = \{(e_1, \{x, y\}), (e_2, \{x, y\})\}$. Then the soft subsets over X are $\tilde{X}, \tilde{\emptyset}, F_{E_1} = \{(e_1, \{x\})\}, F_{E_2} = \{(e_1, \{y\})\}, F_{E_3} = \{(e_1, \{x, y\})\}, F_{E_4} = \{(e_2, \{x\})\}, F_{E_5} = \{(e_2, \{y\})\}, F_{E_6} = \{(e_2, \{x, y\})\}, F_{E_7} = \{(e_1, \{x\}), (e_2, \{x\})\}, F_{E_8} = \{(e_1, \{x\}), (e_2, \{x\})\}, F_{E_9} = \{(e_1, \{x\}), (e_2, \{x\})\}, F_{E_{10}} = \{(e_1, \{y\}), (e_2, \{x\})\}, F_{E_{11}} = \{(e_1, \{y\}), (e_2, \{y\})\}, F_{E_{12}} = \{(e_1, \{y\}), (e_2, \{x\})\}, F_{E_{13}} = \{(e_1, \{x, y\}), (e_2, \{x\})\}, F_{E_{14}} = \{(e_1, \{x, y\}), (e_2, \{y\})\}$. So $|SS(X)_E| = 2^4 = 16$.

Consider the soft topological space $(X, \tau_1, E, \tilde{I})$ with respect to an ideal \tilde{I} where $\tau_1 = \{\tilde{X}, \emptyset, F_{E_7}\}, \tau_1' = \{\emptyset, \tilde{X}, F_{E_{11}}\}, \tilde{I} = \{\tilde{\phi}, F_{E_1}, F_{E_2}, F_{E_3}\}$, where F_{E_1} , F_{E_2} and F_{E_3} are soft sets defined by $F_{E_1} = \{(e_1, \{x\})\}, F_{E_2} = \{(e_1, \{y\})\}, F_{E_3} = \{(e_1, \{x, y\})\}$.

And $P\tilde{I}_{g}OS(X) = \{F_{E_{1}}, F_{E_{2}}, F_{E_{3}}, F_{E_{4}}, F_{E_{5}}, F_{E_{6}}, F_{E_{7}}, F_{E_{9}}, F_{E_{10}}, F_{E_{12}}, F_{E_{13}}, F_{E_{14}}, \emptyset, \tilde{X}\}.$

 $P\tilde{I}_{g}CS(X) = \{F_{E_{1}}, F_{E_{2}}, F_{E_{3}}, F_{E_{4}}, F_{E_{5}}, F_{E_{6}}, F_{E_{8}}, F_{E_{9}}, F_{E_{11}}, F_{E_{12}}, \emptyset, \tilde{X}\}.$

Take $\tilde{X} = F_{E_3} \cup F_{E_6}$, then $P\tilde{I}_gScl(F_{E_3}) = \{(e_2, \{x, y\})\} = F_{E_6}, P\tilde{I}_gScl(F_{E_6}) = \{(e_1, \{x, y\})\} = F_{E_3}$. We have $P\tilde{I}_gScl(F_{E_3}) \cap F_{E_6} = F_{E_3} \cap P\tilde{I}_gScl(F_{E_6}) = \emptyset$. Therefore F_{E_3} and F_{E_6} are pre \tilde{I}_g separated soft sets. Hence F_{E_3} and F_{E_6} is a pre \tilde{I}_g soft separation of \tilde{X} .

Definition 3.4

Let $(\tilde{X}, \tilde{\tau}, E)$ be a soft topological space (X, τ, E, \tilde{I}) with respect to an ideal \tilde{I} . A pre \tilde{I}_g connected soft set over X is a soft set $F_E \in SS(X)_E$ which does not have a pre \tilde{I}_g soft separation in the soft relative topology induced on the soft subset F_E .

Example 3.4.1

Let X={x, y}, E={ e_1, e_2 }, where $\tilde{X} = \{ (e_1, \{x, y\}), (e_2, \{x, y\}) \}$. Consider the soft

subsets over X that are given in Example 3.3.1. Define $\tau_2 = \{\tilde{X}, \emptyset, F_{E_1}, F_{E_3}\}, \tau_2' = \{\emptyset, \tilde{X}, F_{E_6}, F_{E_{12}}\}, \tilde{I} = \{\tilde{\phi}, F_{E_1}, F_{E_2}, F_{E_3}\}, P\tilde{I}_g OS(X) = \{F_{E_1}, F_{E_2}, F_{E_3}, F_{E_4}, F_{E_5}, F_{E_{12}}, F_{E_{13}}, F_{E_{14}}, \emptyset, \tilde{X}\}.$

$$P\tilde{I}_{g}CS(X) = \{F_{E_{4}}, F_{E_{5}}, F_{E_{6}}, F_{E_{9}}, F_{E_{12}}, F_{E_{13}}, F_{E_{14}}, \emptyset, \tilde{X}\}.$$

Then $(X, \tau_2, E, \tilde{I})$ is a soft topological space with respect to an ideal \tilde{I} . Consider the soft subset $F_{E_3} = \{(e_1, \{x, y\})\}$. Then the soft relative topology induced on the soft set F_{E_3} is $\tau_2(F_{E_3}) = \{\emptyset, F_{E_1}, F_{E_3}\}$. The collection of all pre \tilde{I}_q soft open sets are $P\tilde{I}_q OS(F_{E_3}) = \{\emptyset, F_{E_1}, F_{E_3}\}$. Therefore the soft set F_{E_3} does not have a pre

 \tilde{I}_g soft separation in the soft relative topology induced on the soft subset F_{E_3} . Hence F_{E_3} is a pre \tilde{I}_g connected soft subset of a soft topological space $(X, \tau_2, E, \tilde{I})$.

Remark 3.5

In a soft topological space with respect to an ideal \tilde{I} soft empty set is pre \tilde{I}_g connected soft set. There does not exist a pre \tilde{I}_g soft separation in the soft empty set. Hence it is not a pre \tilde{I}_g connected soft set.

- (i) In a soft topological space with respect to an ideal \tilde{I} soft singleton set is a pre \tilde{I}_g connected soft set. There does not exist a pre \tilde{I}_g soft separation in the soft singleton. Hence it is not a pre \tilde{I}_g connected soft set.
- (ii) In the soft indiscrete topological space with respect to an ideal \tilde{I} all soft subsets are pre \tilde{I}_g connected soft sets.

Proposition 3.6

Every pre \tilde{I}_g connected soft set is a soft connected set.

Proof

Let F_E be a pre \tilde{I}_g connected soft set in the soft topological space (X, τ, E, \tilde{I}) with respect to an ideal \tilde{I} . Since F_E is a pre \tilde{I}_g connected soft set, there does not exist a pre \tilde{I}_g soft separation of F_E . Since every open soft set is a pre \tilde{I}_g open soft set, there does not exist a soft separation of F_E . Hence, F_E is a soft connected set in the soft topological space (X, τ, E, \tilde{I}) .

Note 3.6.1

A soft connected set need not be a pre \tilde{I}_g connected soft set.

Example 3.6.2

Consider the soft set \widetilde{X} and its soft subsets given in Example 3.3.1. Let $(\widetilde{X}, \widetilde{\tau}_1, E)$ be the soft topological space where $\tau_1 = \{\widetilde{X}, \emptyset, F_{E_7}\}, \tau_1' = \{\emptyset, \widetilde{X}, F_{E_{11}}\},$

 $\tilde{I} = \{\tilde{\phi}, F_{E_1}, F_{E_2}, F_{E_3}\}$, where F_{E_1} , F_{E_2} and F_{E_3} are soft sets defined by $F_{E_1} = \{(e_1, \{x\})\}, F_{E_2} = \{(e_1, \{y\})\}, F_{E_3} = \{(e_1, \{x, y\})\}$.

 $P\tilde{I}_{g}OS(X) =$

$$\{F_{E_1}, F_{E_2}, F_{E_3}, F_{E_6}, F_{E_7}, F_{E_9}, F_{E_{10}}, F_{E_{12}}, F_{E_{13}}, F_{E_{14}}, \emptyset, \tilde{X}\}.$$

 $P\tilde{I}_{g}CS(X) = \{F_{E_{1}}, F_{E_{2}}, F_{E_{3}}, F_{E_{4}}, F_{E_{5}}, F_{E_{6}}, F_{E_{8}}, F_{E_{9}}, F_{E_{11}}, F_{E_{12}}, \emptyset, \bar{X}\}.$

It is clear that the soft set \tilde{X} is soft connected, Now we show that it is not pre \tilde{I}_g connected soft.

Here $\tilde{X} = F_{E_3} \cup F_{E_6}$, then $P\tilde{I}_gScl(F_{E_3}) = \{(e_2, \{x, y\})\} = F_{E_6}, P\tilde{I}_gScl(F_{E_6}) = \{(e_1, \{x, y\})\} = F_{E_3}$. We have

 $P\tilde{I}_gScl(F_{E_3}) \cap F_{E_6} = F_{E_3} \cap P\tilde{I}_gScl(F_{E_6}) = \emptyset$. Therefore F_{E_3} and F_{E_6} are pre \tilde{I}_g separated soft sets. Hence F_{E_3} and F_{E_6} is a pre \tilde{I}_g soft separation of \tilde{X} .

Hence \tilde{X} can be expressed as a soft union of two pre \tilde{I}_g separated soft sets F_{E_3} and F_{E_6} . Hence \tilde{X} is not pre \tilde{I}_g connected soft set.

Theorem 3.7

Let (X, τ, E, \tilde{I}) be a soft topological space with respect to an ideal \tilde{I} and F_E be a pre \tilde{I}_g connected soft set. Let P_{E_1} and P_{E_2} are pre \tilde{I}_g soft separated sets. If $F_E \cong P_{E_1} \oplus P_{E_2}$. Then either $F_E \cong P_{E_1}$ or $F_E \cong P_{E_2}$. **Proof**

Let (X, τ, E, \tilde{I}) be a soft topological space with respect to an ideal \tilde{I} and $F_E \in SS(X)_E$ be a pre \tilde{I}_g connected soft set. Let P_{E_1} and P_{E_2} are pre \tilde{I}_g soft separated sets such that $F_E \subseteq P_{E_1} \cup P_{E_2}$.

We have to prove either $F_E \cong P_{E_1}$ or $F_E \cong P_{E_2}$. Suppose not. Then $F_E \not\subseteq P_{E_1}$ and $F_E \not\subseteq P_{E_2}$. Then, $G_E = P_{E_1} \cap F_E \neq \emptyset$ and $H_E = P_{E_2} \cap F_E \neq \emptyset$ and $F_E = G_E \cup H_E$. Since $G_E \cong P_{E_1}$ implies that $P\tilde{I}_gScl(G_E) \cong P\tilde{I}_gScl(P_{E_1})$. Since P_{E_1}, P_{E_2} are pre \tilde{I}_g soft separation sets, we have $P\tilde{I}_gScl(P_{E_1}) \cap P_{E_2} = \emptyset$. Therefore, $P\tilde{I}_gScl(P_{E_1}) \cap P_{E_2} = P\tilde{I}_gScl(G_E) \cap P_{E_2} = P\tilde{I}_gScl(G_E) \cap H_E = \emptyset$. Again $H_E \cong P_{E_2}$, implies $P\tilde{I}_gScl(H_E) \cong P\tilde{I}_gScl(P_{E_2})$.

Since P_{E_1} , P_{E_2} are pre \tilde{I}_g soft separation sets, we have $P_{E_1} \cap P\tilde{I}_gScl(P_{E_2}) = \emptyset$.

Therefore, $P_{E_1} \cap P\tilde{I}_gScl(P_{E_2}) = P_{E_1} \cap P\tilde{I}_gScl(H_E) = G_E \cap P\tilde{I}_gScl(H_E) = \emptyset$.

But $F_E = G_E \widetilde{\cup} H_E$. Therefore, there exists a pre \widetilde{I}_g soft separation of F_E . Hence, F_E is not a pre \widetilde{I}_g connected soft set. This is a contradiction. Therefore, either $F_E \cong P_{E_1}$ or $F_E \cong P_{E_2}$.

Theorem 3.8

Research Article

If F_E is pre \tilde{I}_g connected soft set, then $P\tilde{I}_gScl(F_E)$ is pre \tilde{I}_g connected soft set. **Proof** Let F_E be a pre \tilde{I}_g connected soft set in a soft topological space (X, τ, E, \tilde{I}) . We have to prove $P\tilde{I}_gScl(F_E)$ is a pre \tilde{I}_g connected soft set. Suppose not. Then there exist a pre \tilde{I}_g soft separation of $P\tilde{I}_gScl(F_E)$. Therefore there exist a pair of pre \tilde{I}_g soft separated sets P_{E_1} and P_{E_2} such that $P\tilde{I}_gScl(F_E) = P_{E_1} \tilde{\cup} P_{E_2}$. But $F_E \cong P\tilde{I}_gScl(F_E) = P_{E_1} \tilde{\cup} P_{E_2}$. Since F_E is pre \tilde{I}_g connected soft set, then by Theorem 3.7 either $F_E \cong P_{E_1}$ or $F_E \cong P_{E_2}$. If $F_E \cong P\tilde{I}_gScl(F_E) \cong P\tilde{I}_gScl(F_E) \cong P\tilde{I}_gScl(P_{E_1})$. Since P_{E_1} and P_{E_2} are pre \tilde{I}_g soft separated sets , $P\tilde{I}_gScl(P_{E_1}) \cap P_{E_2} = \emptyset$. Hence, $P\tilde{I}_gScl(F_E) \cap P_{E_2} = \emptyset$. Since $P_{E_2} \cong P\tilde{I}_gScl(F_E)$, then $P_{E_2} = \emptyset$. This is a contradiction.

Similarly if $F_E \cong P_{E_2}$, we can prove $P_{E_1} = \emptyset$ which is a contradiction. Therefore, there does not exist a pre \tilde{I}_g soft separation of $P\tilde{I}_aScl(F_E)$. Hence $P\tilde{I}_aScl(F_E)$ is a pre \tilde{I}_a connected soft set.

Theorem 3.9

If F_E is pre \tilde{I}_g connected soft set and $F_E \cong G_E \cong P\tilde{I}_gScl(F_E)$, then G_E is pre \tilde{I}_g connected soft set. **Proof** Let $F \cong SS(Y)$ be a pre \tilde{I} connected soft set such that $F \cong G \oplus \widetilde{C}(F_E)$

Let $F_E \in SS(X)_E$ be a pre \tilde{I}_g connected soft set such that $F_E \cong G_E \cong p(\overline{F_E})$.

We have to prove G_E is pre \tilde{I}_g connected soft set.

Suppose G_E is not a pre \tilde{I}_g connected soft set. Then there exists a pair of pre \tilde{I}_g soft separated sets P_{E_1} and P_{E_2} such that $G_E = P_{E_1} \widetilde{\cup} P_{E_2}$.

Since $F_{\rm E} \cong G_{\rm E}$, $F_{\rm E} \cong P_{E_1} \cup P_{E_2}$. We claim that either $F_E \cong P_{E_1}$ or $F_E \cong P_{E_2}$. For, $F_E \cap P_{E_1} \neq \emptyset$ and $F_E \cap P_{E_2} \neq \emptyset$. Then $F_E = (F_E \cap P_{E_1}) \cup (F_E \cap P_{E_2}).$ But $F_E \cap P_{E_1}$ and $F_E \cap P_{E_2}$ are pre \tilde{I}_g soft separated sets. This is a contradiction to the pre \tilde{I}_{g} soft connectivity of F_{E} . Hence our claim. Suppose $F_E \cong P_{E_1}$, then $P\tilde{I}_aScl(F_E) \cong P\tilde{I}_aScl(P_{E_1})$ Since P_{E_1} and P_{E_2} are pre \tilde{I}_g soft separated sets, $P\tilde{I}_gScl(P_{E_1}) \cap P_{E_2} = \emptyset$. Therefore, $P\tilde{I}_gScl(F_E) \cap P_{E_2} = \emptyset$ But $P_{E_2} \cong G_E$. Then by hypothesis $P_{E_2} \cong G_E \cong P\tilde{I}_gScl(F_E)$. Therefore, $P\tilde{I}_gScl(F_E) \cap P_{E_2} = P_{E_2}$. Thus, we have $P\tilde{I}_gScl(F_E) \cap P_{E_2} = \emptyset$ and $P\tilde{I}_gScl(F_E) \cap P_{E_2} = P_{E_2}$. Hence $P_{E_2} = \emptyset$, which is a contradiction. Similarly if $F_E \cong P_{E_2}$, then we can prove $P_{E_1} = \emptyset$. This is a contradiction. Therefore, there does not exist a pre \tilde{I}_g soft separation of G_E . Hence, G_E is a pre \tilde{I}_a connected soft set.

Theorem 3.10

The soft union F_E of any family $\{F_{El}: i \in I\}$ of pre \tilde{I}_g connected soft sets having a non–empty soft intersection is pre \tilde{I}_g connected soft set.

Proof

Let F_E be a soft union of any family of pre \tilde{I}_g connected soft sets having a non-empty soft intersection. Suppose that $F_E = P_{E_1} \cup P_{E_2}$, where P_{E_1} and P_{E_2} form a pre \tilde{I}_g soft separation of F_E . By hypothesis, we may choose a soft point $x_e \in \tilde{\cap}_{i \in I} F_{E_i}$. Then $x_e \in F_{E_i}$ for all $i \in I$. If $x_e \in F_E$, then either $x_e \in P_{E_1}$ or $x_e \in P_{E_2}$ but not both. Since, P_{E_1} and P_{E_2} are soft disjoint, we must have $F_{E_i} \subseteq P_{E_1}$, since F_{E_i} is pre \tilde{I}_g connected soft and it is true for all $i \in I$, and so $F_E \subseteq P_{E_1}$. From this we obtain that $P_{E_2} = \emptyset$, which is a contradiction. Thus, there does not exist a pre \tilde{I}_g soft separation of F_E . Therefore, F_E is pre \tilde{I}_g connected soft set.

4. Conclusion:

In this paper, we introduced pre \tilde{I}_g soft separation and pre \tilde{I}_g connected soft set. We compared with connected soft set in soft topological space with respect to an soft ideal. Also we derived "Let (X, τ, E, \tilde{I}) be a soft topological space with respect to an ideal \tilde{I} and F_E be a pre \tilde{I}_g connected soft set. Let P_{E_1} and P_{E_2} are pre \tilde{I}_g soft separated sets. If $F_E \subseteq P_{E_1} \cup P_{E_2}$. Then either $F_E \subseteq P_{E_1}$ or $F_E \subseteq P_{E_2}$ ", "If F_E is pre \tilde{I}_g connected soft set,

then $P\tilde{I}_gScl(F_E)$ is pre \tilde{I}_g connected soft set" and "If F_E is pre \tilde{I}_g connected soft set and $F_E \cong G_E \cong P\tilde{I}_gScl(F_E)$, then G_E is pre \tilde{I}_g connected soft set."

References:

- 1. Benchali.S.S, Patil.P.G, Dodamani.A.S, Some properties of soft β connected spaces in soft topological spaces, *International Journal of Pure and Mathematical Sciences*, 18:13-21.
- 2. Deniz Tokat, Ismail Osmanoglu, Connectedness on Soft Multi Topological Spaces, *Journal of new Results in Science*, 2 (2013), 8-18.
- 3. Kandil.A, Tantway.O.A.E, El-Sheikh.S.A and Abd El Latif, Soft ideal theory, Soft local function and generated soft topological spaces, *Appl. Math. Inf. Sci.* 8(4) (2014) 1593 1603.
- 4. Kandil.A, Tantway.O.A.E, El-Sheikh.S.A and Abd El Latif, γ Operation and decompositions of some forms of soft contiuity of soft topological spaces via soft ideals, 9 (3), (2015), 385 402.
- 5. Mahanta.J, P.K,Das, On Soft Topological Space via Semiopen and Semi closed Sets, <u>http://arxiv.org/abs/1203.4133v1</u>, (2012), 1-9.
- 6. Molodstov, D.A, Soft set theory, First results, Computers and Applications, 37(1999)19-31.
- Peyghan.E, Samadi.B, Tayebi.A, On Soft Connectedness, <u>http://arxiv.org/abs/1202.1668v1</u>, (2012), 1-10.
- 8. Santhi.R, Jayanthi.D, Generalized Semi-Pre Connectedness in Intuitionistic Fuzzy Topological Spaces, *Annals of Fuzzy Mathematics and Informatics*, Vol. 3(2) (2012), 243-253.
- 9. Shabir.M and Naz.M, On soft topological spaces, Comput.Math.App.61(2011)18-1799.
- 10. Shanthi Gowri.B, Gnanambal Ilango, Segmentation of Medical Images Using Topological Concepts Based Region Growing Method, *IOSR Journal of Mathematics*, Vol. 10 (4)(IV) (2014), 1-7.
- 11. Shi-Zhong Bai, P-connectedness in L-Topological Spaces, Soochow Journal of Mathematics, Vol. 29 (1) (2003), 35-42.