
Turkish Journal of Computer and Mathematics Education Vol.12 No.3 (2021), 1785-1792

 Research Article

1785

Security Exploitation for Online Meeting Applications: Proof of Concept

Rozahi Istambul1, Madihah Mohd Saudi 2, Ucu Nugraha3, Muhammad Yusof 4

1Widyatama University
2CyberSecurity and Systems (CSS) Research Unit, Faculty of Science and Technology (FST), Universiti Sains
3Islam Malaysia (USIM), 71800 Nilai, Negeri Sembilan, Malaysia
4Institut Latihan Perindustrian Kuala Langat,42700 Banting, Selangor, Malaysia
1madihah@usim.edu.my

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 20 April 2021

Abstract: With the increase in the demand for online meetings and online learning, there are many security issues and

challenges related to it. For example in the year 2020, more than 500,000 Zoom accounts credentials were discovered in the

Dark Web due to security exploitation and the default setting used by users. Hence this paper presents a proof of concept for

online meeting possible security exploitation by using our developed model called Mobotder for mobile phone. This model is

built to detect security exploitation specifically based on geolocation (GPS), permissions, Application Programming Interface

(API) calls, and system calls. This model was developed in a controlled lab environment, by applying hybrid analysis and by

using open source tools and datasets from Drebin and Google Play Store for training and evaluation. In terms of practicality

and as proof of concept (POC), this paper presents the findings for twenty (20) online meeting applications that are currently

used worldwide. We discussed in detail how the GPS privacy exploitation occurred and for future work, this model could be

used as guidance to defend against malware on a mobile phone.

Keywords: online meeting exploitation, geolocation (GPS), malware, mobile security, security exploitation.

1. Introduction

There are many different techniques were used to exploit software and applications by the attackers. Nowadays,

with the increase of online meeting and online learning demand by the users, the attackers are shifting their targets

to these users [1]. Those who used unpatched or defaults setting for online applications are exposed to data breaches

and security exploitations [2]. For example in 2020, more than 500,000 Zoom accounts credentials were discovered

in the Dark Web due to security exploitation and the default setting used by users [3]. Furthermore, during February

2021, there were 2,323,326,953 breached records in the United Kingdom due to ransomware attacks against the

cloud service provider Accellion[4]. There were 118 incidents reported and 43 were ransomware attacks. Malware

and ransomware attacks are among the most commonly used by attackers to launch their security exploitations.

Ransomware is software designed with malicious intention where it will block the victim’s access to a computer

system until a certain amount of money is paid. Usually, the attacker will use malware to trigger the ransomware

for a different type of mobile device used. At the moment, with a new norm of COVID-19 pandemic, many users

are working from home and heavily depending on their computer or any mobile devices to be connected online.

Hence, based on the existing security challenges, this paper presents a new model called Mobotder to detect

possible security exploitation for online meeting applications on a mobile phone. This model can detect and predict

any cyberattacks by using permission, API, and system call on a mobile phone. To prove the efficiency of this

model, twenty (20) online meeting mobile apps across the world were evaluated to check their level of possible

data security exploitation.

This paper is organized as follows: Section 2 explains the related works and methods used, Section 3 discusses

the experimental results, Section 4 presents the findings on 20 online meeting apps, and finally Section 5 with

conclusions and future work.

2. Methods

Prior to the developments of the Mobotder model, relevant existing works related to mobile malware

exploitation were studied for further improvement. Different existing works were carried out for mobile malware

detection such as from [5-10]. Notably, the existing works were lack of discussion on feature selection before the

formation of the mobile detection model. The feature selection is significant to produce a more accurate detection

model before the formation of data mining and classification by using machine learning algorithms [11]. Therefore,

this paper presents selected features with mobile malware characteristics to improve the accuracy of the detection.

Furthermore, based on our analysis, GPS is one of the surveillance features in a mobile phone that is commonly

used by attackers for exploitation, apart from the camera, Bluetooth, Wi-Fi and audio [12,13].

2.1 Data collection

There were two types of datasets used to build Mobotder model, where the botnet dataset from Drebin

comprising 5560 malware from 179 different botnet families [14]. We used 2694 botnet samples from 44 different

mailto:madihah@usim.edu.my

Turkish Journal of Computer and Mathematics Education Vol.12 No.3 (2021), 1785-1792

 Research Article

1786

botnet families from the Drebin dataset. This paper used the percentage split method for the validation purpose,

where both datasets were split into 70% for training and 30% for testing for more comprehensive classification

and to avoid overfitting. Percentage split is suitable to be implemented in real mobile devices [15]. The Drebin

dataset was chosen due to it being easily obtainable from the Internet and used in most mobile malware research

works such as by [16-20]. As for proof of concept for this paper, we used 20 anonymous datasets from Google

Apps Store that were widely used for online meetings, discussions, or online learning.

2.2 Lab Architecture

Figure 1 demonstrates the lab architecture of this paper which was conducted in a controlled lab environment

by using open source tools. Table 1 summarizes the software used for this paper.

Figure 1. Experiment Lab Architecture.

Table 1. Software Installed for Experiment Lab

Software Function

VMware Workstation

Genymotion Emulator

For virtual workstation in allowing multiple operating

systems to run on a single computer.

It was used as a smartphone android emulator.

VirusTotal (online)

ApkTool

TinyXML

Smali/baksmali

Android SDK

Java (Weka)

Notepad++

It was used as a scan tool.

It was used for reverse engineering.

It was used to parse Java code.

It was used for assembler/disassembler dex format

file.

It was used for android application development.

It was used for data testing and simulation.

It was used as a text editor to view source code.

2.3 Data Extraction and Analysis

The feature selection process is illustrated in Figure 2. For the development of the Mobotder model, there are

three important elements used which are the permission, API, and system call as summarized in Table 2. This

paper used hybrid analysis which consists of static and dynamic analyses. While Figure 3 depicted the

summarization of the whole research processes involved to build the Mobotder model.

Figure2. Feature Selection Process.

Turkish Journal of Computer and Mathematics Education Vol.12 No.3 (2021), 1785-1792

 Research Article

1787

Table 2. Description of Permission, API Call and System Call

Feature Description

Permission

API

System call

Permission is derived from AndroidManifest.xml. It protects the privacy of

Android users and any android applications require permission consent from the user

before installing any application.

Application Program Interface (API) call is derived from classes.dex file after the

reverse engineering process. It is a set of routines, protocols, and tools used to develop

an application.

Application in a mobile phone uses system call to perform specific tasks such as

read, write and open since it cannot directly interact with the Android operating

system. It is referring to the fundamental interface between an application and the

Linux kernel, where this kernel system call to run the services for any application.

Figure3. Whole Experiment Processes Involved.

3. Findings

 In this section, the experiment results are discussed in detail. During the Mobotder model development, there

were selected API, permission and system calls that have been tested and verified. Based on the experiments and

analysis conducted, it showed that combining selected permissions and API calls produced better accuracy result

compared with the benchmark works. Later these selected features were being classified by using a Random Forest

classifier. Then the accuracy result was being compared with the existing works by [21-24] and as summarized in

Table 3. All the compared works used permission and API calls for feature selection. Based on Table 3, Mobotder

has outperformed other existing benchmark works with an accuracy rate of 99.1%.

 Table 3. Comparison with Existing Works.

Feature
Work by

[21]

Work by

[22]

Work by

[23]

Work by

[24]

Mobotder

Number of

Samples

(Malware/Benign)

Number of

Features

(Permission/API

calls)

ML Classifier

Accuracy

Rate(%)

 1929/150

63/1414

Random

Forest

93.9

250/250

12/8

PSO-ANFIS

89

5560/5560

Permission,

API calls,

hardware

components,

intents

Random

Forest

97.24

1931/1150

Permission,

API calls,

intents,

metadata,

system calls,

network

Random

Forest

97.48

2694/1000

30/38

Random

Forest

99.1

*ML=Machine Learning

Turkish Journal of Computer and Mathematics Education Vol.12 No.3 (2021), 1785-1792

 Research Article

1788

In terms of the practicality of the Mobotder model, this model has been transformed into a mobile app to make

the scan job easier. For this evaluation, 20 online meeting applications that are mostly and widely used worldwide

were being tested with the Mobotder model. The related API calls and permissions involved as depicted in Table

4. The detailed description for each API and permission is displayed in Table 5 and Table 6.

 Table 4. Online Meeting Apps Experiment Results.

Feature Risk Description

Applicatio

n1

Applicatio

n2

Applicatio

n3

Applicatio

n4

Applicatio

n5

Applicatio

n6

Applicatio

n7

Applicatio

n8

Applicatio

n9

Applicatio

n10

Applicatio

n11

Applicatio

n12

Applicatio

n13

Applicatio

n14

Applicatio

n15

Applicatio

n16

Applicatio

n17

Applicatio

n18

Applicatio

n19

Applicatio

n20

High

Medium

Medium

High

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Medium

Low

Medium

Medium

Medium

Medium

Low

Medium

Medium

A3+ A4+ A5+ A6+ A7+ A9+A10 + A12+ A14+ A28+ A29+ A32+ A34

P1+ P2+ P4+ P5+ P6+ P7+ P10+ P12+ P16+ P17+ P20+ P25+ A3+ A4+

A5+ A6+ A7+ A9+ A10+ A12+ A28+ A29+ A30 +A31+ A32+ A34+ A35+

A36

P1+ P2+ P4+ P5+ P6+ P9+ P10+ P12+ P16+ P17+ P18+ P20+ P25+ P30+

A3+ A4+ A5+ A6+ A7+ A9+ A10+ A11+ A12+ A14+ A15+ A18+ A21+

A22+ A24+ A25+ A26+ A28+ A29+ A32+ A34+ A36+ A38

P4+P5+P6+P11+P12+P14+P16+P17+P18+P19+P20+P21+P22+P24+P30+

A1+A3+A4+A5+A6+A7+A8+A9+A10+A12+A14+A15+A18+A10+A20+A24

+A28+A29+A30+A32+A34+A36+A38

P1+P2+P4+P5+P6+P11+P12+P16+P17+P18+P25+P26

P4+ P6+ P12+ P16 +P17+ P25 + A1+ A3+ A4 + A5 + A6+ A7 + A9 +

A10+ A12 + A13 +A 28 + A29 + A32 + A34 + A36

P1 +P2 +P4+ P5+ P6+ P7 +P10+ P12 +P16 + P17 + P18 + P20 +P25 + A1

+A3 + A4 + A5+ A6 +A7 +A9 +A10 + A12 + A13 + A14 + A15+ A28 + A29

+ A30 + A31 + A32 + A34 + A36

P4 +P5+P6 + P10 + P12 + A1 + A3 +A4 + A5 + A6 + A7 + A9 + A10 +

A12 +A14 + A15 + A24 +A28 + A29 + A31 + A32 + A34 + A36

P4+P5+P6+P12+ P18+ P20+ P25

P1 +P2 +P4 + P5+ P6 + P7+ P12 + P18 + P25 + 1 + A3 + A4 + A5 +A6

+A7 + A9 +A10 + A12 + A14 +A28 + A29 + A30 + A32 + A34 + A35 + A36

P1+P2 +P4+ P5+P9 +P10 +P11 + P12 + P14 + P16 + P17 + P18 + P20 +

P25 + A1 + A3 + A5 + A6 + A7 + A9 + A11 + A12 +A14 + A15 + A28 +A29

+ A30 + A31 +A34 + A35 + A36

P4+P5 +P6 +P7 + P12 + P17 + P20 + A1 + A3 + A4 + A5 + A6 + A7 + A9

+ A10 + A12 + A14 + A15 + A28 +A29 + A32 + A34

P6+P12 +P17

P1 +P4 +P5 +P9 +P12 + P16 + P17 + P18 + P25 + A3 + A4 + A5 +A6 +

A7 +A9 +A10 + A12 + A14 +A15 + A17 + A22 + A28 + A29 + A30 + A31 +

A32 + A34

P4 + P5 + P6 + P9 + P12 + P16 + P18 + A1 + A3 + A4 + A5 + A6 + A7

+A9 +A10 +A11 + A12 + A14 + A15 + A19 + A24 + A28 +A29 + A30 + A31

+ A34 + A35 + A36

P4 + P5 + P6 + P7 + P12 + P 16 + P17 + P18 +P20 + P25

P2 + P4 + P6 + P 12 + P14 + P16 + P18 + P20 + A1 + A3 + A4 + A5+ A6

+ A7 +A9 + A10 +A12 + A28 + A29 + A32 + A34 + A36

P4 +P5 + P6 +P12 +P25

P12 +P18+ A3 +A4 + A5 +A6 + A7 + A9+ A10 + A11 + A12 + A13 + A15

+ A28 + A29 +A32 +A34

P1 +P2 +P4 +P5 + P6 +P9 + P11+P12 +P16 +P17 +P18 + P20+ P25 +A1

+A3 +A4 + A5 +A6 +A7 +A9+ A10+ A11 +A12 +A14 + A15+A28+ A29

+A31 +A32+ A34+ A36

Table 5. Description of Related Permissions for Mobotder Model

Feature Description

P1: Access_Coarse_Location

Access_Fine_Location

P2: Access_Fine_Location

P3 :Access_Location_Extra_Commands

P4: Access_Wifi_State

Allows an app to access approximate location.

Allows an app to access precise location.

Allows an app to access extra location provider commands

Allows an app to access information about Wi-Fi networks.

Allows an app to connect to paired bluetooth devices.

Turkish Journal of Computer and Mathematics Education Vol.12 No.3 (2021), 1785-1792

 Research Article

1789

P5: Bluetooth

P6: Bluetooth_Admin

P7: Change_Wifi_Multicast_State

P8: Change_Wifi_State

P9: Install_Packages

P10: Install_Shortcut

P11: Internet

P12: Kill_Background_Processes

P13: NFC

P14: Read_Call_Log

P15: Read_Contacts

P16: Read_External_Storage

P17: Read_Phone_State

P18: Read_SMS

P19: Receive_Boot_Completed

P20: Receive_MMS

P21: Receive_SMS

P22: Restart_Packages

P23: Send_SMS

P24: System_Alert_Window

P25: Uninstall_Shortcut

P26: Update_Device_Stats

P27: Write_Apn_Settings

P28: Write_Call_Log

P29: Write_Contacts

P30: Write_SMS

Allows an app to discover and pair bluetooth devices.

Allows an app to enter Wi-Fi Multicast mode.

Allows an app to change Wi-Fi connectivity state.

Allows an app to install packages.

Allows an app to install a shortcut in Launcher.

Allows an app to open network sockets.

Allows an app to kill the background process

Allows an app to perform I/O operations over NFC

Allows an app to read the user's call log.

Allows an app to read the user's contact data.

Allows an app to only read the external storage

Allows read-only access to phone state, including the

phone number of the device, current cellular network

information, the status of any ongoing calls, and a list of any

phone accounts registered on the device.

Allows an app to read SMS messages.

Allows an app to receive the

Intent.ACTION_BOOT_COMPLETED that is broadcast after

the system finishes booting.

Allows an app to monitor incoming MMS messages.

Allows an app to receive SMS messages.

Allows an app to close processes of other applications.

Allows an app to send SMS messages.

Allows an app to create windows using the

type WindowManager.LayoutParams.TYPE_APPLICATION_

OVERLAY, shown on top of all other applications.

Allows an app to uninstall shortcut.

Allows an app to update device statistics

Allows an app to write the APN settings.

Allows an app write to user's call log

Allows an app to write the user's contact data.

Allows an app to send SMS

Table 6. Description of Related API Calls for Mobotder Model

Feature Description

A1: getAccounts

A2: restartPackage

A3: notify

A4: query

A5: sendBroadcast

A6: startActivity

A7: startService

A8: getBestProvider

A9: getLastKnownLocation

A10: isProviderEnabled

A11: requestLocationUpdates

A12: getActiveNetworkInfo

A13: getAllNetworkInfo

A14: getNetworkInfo

A15: getConnectionInfo

A16: getWifiState

Allows an app to lists all accounts visible to the caller

regardless of type.

Allows an app to kill other applications’ services

Allows an app to tell the user that something has happened

in the background.

Allows an app to query the content provider

Allows an app to broadcast the given intent to all interested

BroadcastReceivers.

Allows an app to launch a new activity.

Allows an app to request that a given application service be

started.

Allows an app to returns the name of the provider that best

meets the given criteria.

Returns a Location indicating the data from the last known

location fix obtained from the given provider.

Returns the current enabled/disabled status of the given

provider.

Register for location updates using the named provider, and

a pending intent.

Returns details about the currently active default data

network.

Returns connection status information about all network

types supported by the device.

Returns connection status information about a particular

network type.

Turkish Journal of Computer and Mathematics Education Vol.12 No.3 (2021), 1785-1792

 Research Article

1790

A17: setWifiEnabled

A18: sendTextMessage

A19: sendMultipartTextMessage

A20: sendTextMessage

A21: getCellLocation

A22: getDeviceId

A23: getDeviceSoftwareVersion

A24: getLine1Number

A25: getSimSerialNumber

A26: getSubscriberId

A27: CryptoCipher

A28: getPackageInfo

A29: getSystemService

A30: HttpPost

A31: exec

A32: java/net/HttpURLConnection;-

>connect

A33: getContent

A34: openConnection

A35: java/net/URLConnection;->connect

A36: getInputStream

A37: execute

A38: sendSMS

Return dynamic information about the current Wi-Fi

connection, if any is active.

Gets the Wi-Fi-enabled state.

Enable or disable Wi-Fi.

Send a text-based SMS.

Send a multi-part text-based SMS.

Send a text-based SMS

Allows an app to return the current location of the device.

Allows an app to return the unique device ID, for example,

IMEI for GSM.

Allows an app to return the software version number for

the device.

Allows an app to return the phone number string for line 1.

Allows an app to return the serial number of the SIM.

Allows an app to return the unique subscriber ID.

Allows an app to use cryptographic operations

Allows an app to retrieve overall information about an app

package that is installed on the system.

Allows an app to access application-specific resources and

classes.

Allows an app to request that a specific web server receive

and store data submitted within a request form

Allows an app to execute the specified command and

arguments in a separate process.

Allows an app to returns a HttpURLConnection instance

that represents a connection

Allows an app to gets the contents of this URL.

Allows an app to returns a URLConnection instance that

represents a connection to the remote object referred to by the

URL.

Allows an app to returns a URLConnection instance that

represents a connection

Allows an app to return an input stream for reading from

the URL connection.

Allows an app to executes the specified command for

Apache client webserver.

Allows an app to send SMS.

4. Discussion

Based on the results displayed in Table 4, 10% of the online meetings were exposed to possible high-risk

security exploitation by the attackers, followed by 10% with low risk and 80% with medium risk. To avoid these

security applications, all mobile phone users must always check and understand the permission they grant for any

new mobile app installation into their mobile phone. It is highly recommended to allow only related permission or

API for the dedicated mobile app. It is also advisable for users to install a mobile app from the genuine mobile app

store to avoid being the victim of malware exploitation. By using the developed Mobotder model, any possible

security exploitations could be identified by the users. The Mobotder will trigger an alert to the user once it

identifies any potential harm from the mobile app installed. Users and developers must be aware that API and

permission concerning online meeting apps could be exploited by malware.

5. Conclusions

 In this paper, based on the Mobotder model that has been developed, it is proven that possible security

exploitation via permission and API could be detected for the online meeting apps. It is the right solution in

detecting any new mobile apps with potential security exploitation. Based on the evaluation conducted, 10% of

the tested mobile apps were high risk and have the potential to be exploited by the attackers. Hence, user awareness

and solution such as Mobotder are main ingredients in mitigating security exploitation. In the future, Mobotder

could be used as a basic guideline and solution to scan any other mobile app category in identifying any potential

security exploitation.

Turkish Journal of Computer and Mathematics Education Vol.12 No.3 (2021), 1785-1792

 Research Article

1791

Acknowledgment

The authors would like to express their gratitude to Widyatama University, Indonesia and Universiti Sains

Islam Malaysia (USIM) (USIM grant no: P1-17-16120-UNI-CVD-FST) for the funding, support, and facilities

provided.

References

1. Laplante, P. (2020). Contactless U: Higher education in the postcoronavirus world. IEEE Annals of the

History of Computing, 53(07), 76-79.

2. Humayun, M., Niazi, M., Jhanjhi, N. Z., Alshayeb, M., & Mahmood, S. (2020). Cyber security threats

and vulnerabilities: a systematic mapping study. Arabian Journal for Science and Engineering, 45(4),

3171-3189.

3. Wagenseil, P. (2020). Zoom security issues: Here's everything that's gone wrong (so far). Tom’s Guide,

11.

4. Irwin,L. (2021). List of data breaches and cyber attacks in February 2021 – 2.3 billion records breached,

IT Governance UK Blog, Available online: https://www.itgovernance.co.uk/blog/list-of-data-breaches-

and-cyber-attacks-in-february-2021-2-3-billion-records-breached [accessed: 28th March 2021]

5. Alqatawna, J. F., Ala’M, A. Z., Hassonah, M. A., & Faris, H. (2021). Android botnet detection using

machine learning models based on a comprehensive static analysis approach. Journal of Information

Security and Applications, 58, 102735.

6. Yerima, S. Y., & Alzaylaee, M. K. (2020, June). Mobile botnet detection: A deep learning approach using

convolutional neural networks. In 2020 International Conference on Cyber Situational Awareness, Data

Analytics and Assessment (CyberSA) (pp. 1-8). IEEE.

7. Takahashi, T., & Ban, T. (2019). Android Application Analysis Using Machine Learning Techniques. In

L. F. Sikos (Ed.), AI in Cybersecurity. Intelligent Systems Reference Library (pp. 181–205). Springer,

Cham. https://doi.org/10.1007/978-3-319-98842-9.

8. Alshahrani, H., Mansourt, H., Thorn, S., Alshehri, A., Alzahrani, A., & Fu, H. (2018). Defender: Android

Application Threat Detection Using Static and Dynamic Analysis. In Proceeding of 2018 IEEE

International Conference on Consumer Electronics, ICCE 2018 (Vol. January, pp. 1–6).

https://doi.org/10.1109/ICCE.2018.8326293

9. Sun, M., Li, X., Lui, J. C. S., Ma, R. T. B., & Liang, Z. (2017). Monet: A User-Oriented Behavior-Based

Malware Variants Detection System for Android. IEEE Transactions on Information Forensics and

Security, 12(5), 1103–1112. https://doi.org/10.1109/TIFS.2016.2646641

10. Prakash, G., Darbandi, M., Gafar, N., Jabarullah, N. H., & Jalali, M. R. (2019). A New Design of 2-Bit

Universal Shift Register Using Rotated Majority Gate Based on Quantum-Dot Cellular Automata

Technology. International Journal of Theoretical Physics, 58(9), 3006-3024.

11. Bhattacharya, A., & Goswami, R. T. (2017). Comparative Analysis of Different Feature Ranking

Techniques in Data Mining-Based Android Malware Detection. In J. K. Mandal, S. C. Satapathy, M. K.

Sanyal, & V. Bhateja (Eds.), Proceedings of the First International Conference on Intelligent Computing

and Communication (Vol. 515, pp. 39–49). Springer, Singapore. https://doi.org/10.1007/978-981-10-

3153-3

12. Pieterse, H., & Olivier, M. (2013). Design of a hybrid command and control mobile botnet. Journal of

Information Warfare, 12(1), 70–82. Retrieved from

https://researchspace.csir.co.za/dspace/bitstream/handle/10204/7385/Pieterse2_2013.pdf

13. Saudi, M. M., Amran, L., & Ridzuan, F. (2020). Go-Detect Application Inspired by Apoptosis to Detect

SMS Exploitation by Malwares. In RITA 2018 (pp. 101-116). Springer, Singapore.

14. Arp, D., Spreitzenbarth, M., Malte, H., Gascon, H., & Rieck, K. (2014). Drebin: Effective and Explainable

Detection of Android Malware in Your Pocket. In Proceeding of the Symposium on Network and

Distributed System Security (NDSS) (pp. 23–26). https://doi.org/10.14722/ndss.2014.23247

15. Allibhai, E. (2018). Hold-out vs. Cross-validation in Machine Learning. Available online:

https://medium.com/@eijaz/holdout-vs-cross-validation-in-machine-learning-7637112d3f8f [accessed:

28th March 2021]

16. Zhang, H., Luo, S., Zhang, Y., & Pan, L. (2019). An Efficient Android Malware Detection System Based

on Method-Level Behavioral Semantic Analysis. IEEE Access, 7, 69246–69256.

https://doi.org/10.1109/ACCESS.2019.2919796

17. Shi-Qi et al. (2019)Shi-Qi, L., Bo, N., Ping, J., Sheng-Wei, T., Long, Y., & Rui-Jin, W. (2019). Deep

Learning in Drebin: Android Malware Image Texture Median Filter Analysis and Detection. KSII

Transactions on Internet and Information Systems, 13(7), 3654–3670.

https://doi.org/10.3837/tiis.2019.07.018

Turkish Journal of Computer and Mathematics Education Vol.12 No.3 (2021), 1785-1792

 Research Article

1792

18. Onwuzurike, L., Mariconti, E., Andriotis, P., De Cristofaro, E., Ross, G., & Stringhini, G. (2019).

Mamadroid: Detecting Android Malware by Building Markov Chains of Behavioral Models. ACM

Transactions on Privacy and Security, 22(2). https://doi.org/10.1145/3313391

19. Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G., & Furnell, S. (2017). AndroDialysis: Analysis

of Android Intent Effectiveness in Malware Detection. Computers and Security, 65, 121–134.

https://doi.org/10.1016/j.cose.2016.11.007

20. Karbab, E. M. B., Debbabi, M., Derhab, A., & Mouheb, D. (2018). MalDozer: Automatic framework for

android malware detection using deep learning. In Proceedings of the 5th Annual DFRWS 2018 Europe

(Vol. 24, pp. S48–S59). Elsevier. https://doi.org/10.1016/j.diin.2018.01.007

21. Tansettanakorn, C., Thongprasit, S., Thamkongka, S., & Visoottiviseth, V. (2016). ABIS: A prototype of

Android Botnet Identification System. Proceedings of the 2016 5th ICT International Student Project

Conference, ICT-ISPC 2016, 1–5. https://doi.org/10.1109/ICT-ISPC.2016.7519221

22. Altaher, A., & Mohammed, O. (2017). Intelligent Hybrid Approach for Android Malware Detection based

on Permissions and API Calls. International Journal of Advanced Computer Science and Applications,

8(6).

23. Rana, M. S., Motiur Rahman, S. S. M., & Sung, A. H. (2018). Evaluation of Tree Based Machine Learning

Classifiers for Android Malware Detection. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 11056 LNAI, pp. 377–

385). Springer International Publishing. https://doi.org/10.1007/978-3-319-98446-9_35

24. Qamar, A., Karim, A., & Shamshirband, S. (2019). A Learning Based Framework for Detection of

Android C&C Enabled Applications Using Hybrid Analysis. Preprints.

https://doi.org/10.20944/preprints201906.0060.v1

https://doi.org/10.1016/j.diin.2018.01.007

