
Turkish Journal of Computer and Mathematics Education      Vol.12 No.8 (2021), 1761-1766  

                                                                                                                                        Research Article                                                                                                                                                                                                 

1761 

 

Gaming Mobile Applications: Proof of Concept for Security Exploitation 
 

Mohd Haizam Saudi1, Madihah Mohd Saudi 2, *, Arief Rahmana3 , Muhammad Afif 

Husainiamer 4  
 

1 Widyatama University 
2CyberSecurity and Systems (CSS) Research Unit, Faculty of Science and Technology (FST), Universiti Sains 

Islam Malaysia (USIM), 71800 Nilai, Negeri Sembilan, Malaysia   
3 Widyatama University 
4CyberSecurity and Systems (CSS) Research Unit, Faculty of Science and Technology (FST), Universiti Sains 

Islam Malaysia (USIM), 71800 Nilai, Negeri Sembilan, Malaysia;  afif@raudah.usim.edu.my 
2madihah@usim.edu.my 

 

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published 

online: 20 April 2021 

Abstract: Playing games is fun for game lovers. Many of us especially kids and teenagers spend more time and prefer playing 

online game compared to the traditional way of the game. They could get more cyber friends and it is a more challenging 

experience when playing online games. Yet, many of the gamers lack knowledge in preventing security exploitation when 

playing online mobile game applications(apps). For example, many malwares such as Trojans and worms camouflaged and 

embedded themselves inside the game especially during installation. Hence this paper presents a proof of concept (POC) 

security exploitation for mobile gaming applications by using our developed model called Mobotder. It will detect any possible 

data breach or security exploitation based on geolocation (GPS), permissions, and Application Programming Interface (API) 

calls. The Mobotder was created and hybrid analyzed in a controlled lab environment, by using open source tools and datasets 

from Drebin and Google Play Store for training and evaluation. Furthermore, ten (10) anonymous mobile games were 

downloaded from Google Play Store and evaluated by using the Mobotder model. The result showed that 7 of the games were 

identified as medium risk. The POC and the model developed could be used as guidance to build secure mobile gaming in the 

future. 

Keywords:  gaming exploitation, malware, mobile security, data breach, permission, Application Programming Interface 

(API). 

 

1. Introduction 

 

Currently, there are so many different types of games available on the market. Even education and awareness 

programs are also available in game form[1]. For example, a serious game called Riskoi was invented for 

cybersecurity awareness and education [2]. Furthermore, a paper by [3] also discussing in detail how gamification 

and Alternate Reality Games (ARGs) could be used to teach privacy and security subjects. In terms of game 

security exploitation, there are so many scenarios where the unauthorized game installation was carried out from 

untrusted app stores [4]. The worst part would be where these untrusted app stores hosted cloned games with 

malware embedded in it. Furthermore, many gamers lack knowledge in preventing security exploitation when 

playing online mobile game applications (apps). For example, many malwares such as Trojans and worms 

camouflaged and embedded themselves inside the game especially during installation. As for the game that 

requires online purchases, the security main concern is on the payment gateway security exploitation. While for 

online games, security exploitation inclusive of steal confidential information such as username, password and 

bank account details, online attacks, and malicious attempts to harm other players [5]. Surprisingly, in December 

2020, four security vulnerabilities were identified from Valve, a popular gaming platform on the gaming 

networking sockets of Steam [6]. Hence, based on the security challenges identified, this paper presents proof of 

concept (POC) of possible security exploitation for mobile game apps by using the Mobotder model. This model 

would be able to detect any possible cyberattacks by using permission, API, and system call on a mobile phone. 

To prove the effectiveness of this model, ten (10) mobile game apps were evaluated to check their level of possible 

data security exploitation. 

 

This paper is organized as follows: Section 2 presents the related existing works and methods used, followed 

by experimental results in Section 3, findings in Section 4, and finally Section 5 we conclude this paper together 

with future work.  

 

2. Methods 

 

Relevant existing works by [7-12] were reviewed and analyzed in designing the Mobotder model. Based on 

our analysis, we identified that feature selection is crucial prior designing the mobile detection model. The right 

mailto:madihah@usim.edu.my


Turkish Journal of Computer and Mathematics Education      Vol.12 No.8 (2021), 1761-1766  

                                                                                                                                        Research Article                                                                                                                                                                                                 

1762 

 

selection of feature selection will be affecting the accuracy rate produced [13]. As for the Mobotder model, we 

identified that geolocation(GPS) is one of the most affected surveillance features used in a mobile phone for 

security exploitation together with permissions, APIs and system calls [14,15].  

  

2.1 Data collection  

The dataset comprising 5560 malwares from 179 different botnet families from Drebin [16]. We selected 2694 

botnet samples from 44 different botnet families with datasets were divided into 70% for training and 30% for 

evaluation.  Percentage split is chosen for easy implementation in real mobile devices and to avoid overfitting [17]. 

Many other existing works such as by [18-23] used the Drebin dataset for their experiment. As for POC for this 

paper, we used 10 anonymous mobile game apps from Google Apps Store. 

 

2.2 Lab Architecture 

Figure 1 demonstrates the lab architecture of this paper which was conducted in a controlled lab environment 

by using open source tools.  

 
Figure 1. Experiment Lab Architecture and Software Installed. 

 

2.3 Data Extraction and Analysis 

 

Figure 2 depicted the data extraction and data analysis for this paper. We used permission and GPS as basic 

components for the Mobotder model development. This paper used hybrid analysis which consists of static and 

dynamic analyses. Permission protects the privacy of Android users and it is derived from AndroidManifest.xml. 

Permission consent is required from the user before installing any mobile Android application. 

 
                 Figure2. Mobotder Development Method  

3. Findings 

      

 To evaluate the effectiveness of the Mobotder model, a comparison with the existing works by [24-27] was 

made and summarized in Table 1. Mobotder showed a 99.1% accuracy rate with Random Forest as the classifier 

and has outperformed other existing works.          

Table 1. Comparison with Existing Works. 

Feature 
Work by 

[24] 

Work by 

[25] 

Work by 

[26] 

Work by 

[27] 

Mobotder 

*ML 

Classifier  

 Random 

Forest 

93.9 

PSO-ANFIS 

89 

Random 

Forest 

97.24 

Random 

Forest 

97.48 

Random 

Forest 

99.1 



Turkish Journal of Computer and Mathematics Education      Vol.12 No.8 (2021), 1761-1766  

                                                                                                                                        Research Article                                                                                                                                                                                                 

1763 

 

Accuracy 

Rate(%) 

 

 

         *ML=Machine Learning   

 

Then we have selected ten (10) random mobile game apps from the Google Play Store for further evaluation 

with the Mobotder model. The experiment results as shown in Table 2. The detailed description for each permission 

is displayed in Table 3. Based on Table 2, 30% of the mobile game apps are considered as low risk, while 70% as 

medium risk.  

 

 

Table 2. Mobile Gaming Apps Experiment Results. 

  

Table 3. Description of Related Permissions for Mobotder Model 

Feature  Description 

PER1: Access_Coarse_Location  Allows an app to access approximate location. 

PER2: Access_Fine_Location Allows an app to access precise location. 

PER3: Access_Location_Extra_Commands Allows an app to access extra location provider commands 

PER4: Access_Wifi_State Allows an app to access information about Wi-Fi networks. 

PER5: Bluetooth Allows an app to connect to paired bluetooth devices. 

PER6: Bluetooth_Admin Allows an app to discover and pair bluetooth devices. 

PER7: Change_Wifi_Multicast_State Allows an app to enter Wi-Fi Multicast mode. 

PER8: Change_Wifi_State  Allows an app to change Wi-Fi connectivity state. 

PER9: Install_Packages Allows an app to install packages. 

PER10: Install_Shortcut Allows an app to install a shortcut in Launcher. 

PER11: Internet Allows an app to open network sockets. 

PER12: Kill_Background_Processes Allows an app to kill the background process 

PER13: NFC Allows an app to perform I/O operations over NFC 

PER14: Read_Call_Log Allows an app to read the user's call log. 

PER15: Read_Contacts Allows an app to read the user's contact data. 

PER16: Read_External_Storage Allows an app to only read the external storage 

PER17: Read_Phone_State Allows read-only access to phone state, including the 

phone number of the device, current cellular network 

information, the status of any ongoing calls, and a list of any 

phone accounts registered on the device. 

PER18: Read_SMS Allows an app to read SMS messages. 

Feature Risk Description 

Applicatio

n1 

Low PER8+ PER12 

Applicatio

n2 

Medium PER4+PER5+PER9+PER10+PER12+PER17+PER18 

Applicatio

n3 

Medium PER4+PER5+PER6+PER9+PER10+PER12+PER17+PER18+PER20 

Applicatio

n4 

Medium PER4+PER5+PER6+PER7+PER9+PER10+PER12+PER13+PER17+PER1

8+PER20+PER23+PER25 

Applicatio

n5 

Medium PER4+PER5+PER10+PER12+PER17+PER18 

Applicatio

n6 

Medium PER1+PER4+PER5+PER10+PER12+PER17+PER18 

Applicatio

n7 

Medium PER1+PER2+PER4+PER5+PER6+PER9+PER10+PER12+PER17+PER18 

Applicatio

n8 

Low PER4+PER5+PER12 

Applicatio

n9 

Low PER4+PER5+PER6+PER7+PER9+PER12+PER17 

Applicatio

n10 

Medium PER4+PER5+PER10+PER12+PER17+PER20 



Turkish Journal of Computer and Mathematics Education      Vol.12 No.8 (2021), 1761-1766  

                                                                                                                                        Research Article                                                                                                                                                                                                 

1764 

 

PER19: Receive_Boot_ComRleted Allows an app to receive the 

Intent.ACTION_BOOT_COMPLETED that is broadcast after 

the system finishes booting. 

PER20: Receive_MMS Allows an app to monitor incoming MMS messages. 

PER21: Receive_SMS Allows an app to receive SMS messages. 

PER22: Restart_Packages Allows an app to close processes of other applications. 

PER23: Send_SMS Allows an app to send SMS messages. 

PER24: System_Alert_Window Allows an app to create windows using the type 

WindowManager.LayoutParams.TYPE_APPLICATION_OV

ERLAY, shown on top of all other applications. 

PER25: Uninstall_Shortcut Allows an app to uninstall shortcut. 

R26: Update_Device_Stats Allows an app to update device statistics 

R27: Write_Apn_Settings Allows an app to write the APN settings. 

PER28: Write_Call_Log Allows an app write to user's call log 

PER29: Write_Contacts Allows an app to write the user's contact data. 

PER30: Write_SMS Allows an app to send SMS 

 

4. Discussion 

  

Based on our findings in the earlier section, it showed that 70% of the mobile game apps were exposed to 

possible medium-risk security exploitation by the attackers and followed by 30% with low risk. By using the 

Mobotder model, the gaming developer will be able to use it as guidance in developing a secure gaming mobile 

app. As for users or gamers, they could use Mobotder as a layer of defense to detect possible security exploitation 

in their installed game apps. Nonetheless, users must understand what kind of mobile apps they have installed 

since these permissions might pose financial risks, especially at the payment gateway. Furthermore, it is highly 

recommended for the users not to install mobile game apps from untrusted parties, understand the End User License 

Agreement (EULA) that allowing tracking cookies or spyware, avoid installing crack mobile game apps, and only 

allow related permission for the installed mobile apps. 

 

5. Conclusions 

     

  Based on the findings presented in this paper, the Mobotder model has successfully detected possible security 

exploitation for mobile gaming apps. Yet at users and software game developers site, mitigation mechanism against 

malware exploitation is very significant. This includes monitoring the flaws in the In-App purchasing system, 

unauthorized installation, app security in real-time, securing payment gateway, securing the mobile devices used 

to install the game apps, and secure gaming coding. On top of that, user awareness and solution such as Mobotder 

offers proper mitigation mechanism. For future work, software gaming developers could use this paper as a 

guideline in developing secure mobile gaming apps.  

 

Acknowledgment 

 

The authors would like to express their gratitude to Widyatama University, Indonesia and Universiti Sains 

Islam Malaysia (USIM) (USIM grant no: P1-17-16120-UNI-CVD-FST) for the funding, support, and facilities 

provided.  

 

References 

 

1. Khoury, J., & Nassar, M. (2020, April). A Hybrid Game Theory and Reinforcement Learning Approach 

for Cyber-Physical Systems Security. In NOMS 2020-2020 IEEE/IFIP Network Operations and 

Management Symposium (pp. 1-9). IEEE. 

2. Hart, S., Margheri, A., Paci, F., & Sassone, V. (2020). Riskio: A serious game for cyber security 

awareness and education. Computers & Security, 95, 101827. 

3. Karagiannis, S., Papaioannou, T., Magkos, E., & Tsohou, A. (2020, November). Game-Based 

Information Security/Privacy Education and Awareness: Theory and Practice.  

4. Parizi, R. M., Dehghantanha, A., Choo, K. K. R., Hammoudeh, M., & Epiphaniou, G. (2019). Security 

in online games: Current implementations and challenges. In Handbook of Big Data and IoT Security 

(pp. 367-384). Springer, Cham. 

5. Maguluri, N. S. N. (2017). Multi-Class Classification of Textual Data: Detection and Mitigation of 

Cheating in Massively Multiplayer Online Role Playing Games. (Thesis), Wright State University, 

Browse all Theses and Dissertations. 



Turkish Journal of Computer and Mathematics Education      Vol.12 No.8 (2021), 1761-1766  

                                                                                                                                        Research Article                                                                                                                                                                                                 

1765 

 

6. Sue Poremba, (2021, January). Online Gaming Adds More Risk to WFH.Security Boulevard. Available 

online: https://securityboulevard.com/2021/01/online-gaming-adds-more-risk-to-wfh/[accessed 24th 

March 2021]. 

7. Irwin,L. (2021). List of data breaches and cyber attacks in February 2021 – 2.3 billion records breached, 

IT Governance UK Blog, Available online:  https://www.itgovernance.co.uk/blog/list-of-data-breaches-

and-cyber-attacks-in-february-2021-2-3-billion-records-breached [accessed: 28th March 2021] 

8. Alqatawna, J. F., Ala’M, A. Z., Hassonah, M. A., & Faris, H. (2021). Android botnet detection using 

machine learning models based on a comprehensive static analysis approach. Journal of Information 

Security and Applications, 58, 102735. 

9. Yerima, S. Y., & Alzaylaee, M. K. (2020, June). Mobile botnet detection: A deep learning approach 

using convolutional neural networks. In 2020 International Conference on Cyber Situational Awareness, 

Data Analytics and Assessment (CyberSA) (pp. 1-8). IEEE. 

10. Takahashi, T., & Ban, T. (2019). Android Application Analysis Using Machine Learning Techniques. In 

L. F. Sikos (Ed.), AI in Cybersecurity. Intelligent Systems Reference Library (pp. 181–205). Springer, 

Cham. https://doi.org/10.1007/978-3-319-98842-9.  

11. Alshahrani, H., Mansourt, H., Thorn, S., Alshehri, A., Alzahrani, A., & Fu, H. (2018). Defender: Android 

Application Threat Detection Using Static and Dynamic Analysis. In Proceeding of 2018 IEEE 

International Conference on Consumer Electronics, ICCE 2018 (Vol. January, pp. 1–6). 

https://doi.org/10.1109/ICCE.2018.8326293  

12. Sun, M., Li, X., Lui, J. C. S., Ma, R. T. B., & Liang, Z. (2017). Monet: A User-Oriented Behavior-Based 

Malware Variants Detection System for Android. IEEE Transactions on Information Forensics and 

Security, 12(5), 1103–1112. https://doi.org/10.1109/TIFS.2016.2646641 

13. Yang, F., Zhuang, Y., & Wang, J. (2017). Android Malware Detection Using Hybrid Analysis and 

Machine Learning Technique. In Lecture Notes in Computer Science (including subseries Lecture Notes 

in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10603 LNCS, pp. 565–575). 

https://doi.org/10.1007/978-3-319-68542-7_48 

14. Bhattacharya, A., & Goswami, R. T. (2017). Comparative Analysis of Different Feature Ranking 

Techniques in Data Mining-Based Android Malware Detection. In J. K. Mandal, S. C. Satapathy, M. K. 

Sanyal, & V. Bhateja (Eds.), Proceedings of the First International Conference on Intelligent Computing 

and Communication (Vol. 515, pp. 39–49). Springer, Singapore. https://doi.org/10.1007/978-981-10-

3153-3 

15. Pieterse, H., & Olivier, M. (2013). Design of a hybrid command and control mobile botnet. Journal of 

Information Warfare, 12(1), 70–82. Retrieved from 

https://researchspace.csir.co.za/dspace/bitstream/handle/10204/7385/Pieterse2_2013.pdf 

16. Saudi, M. M., Amran, L., & Ridzuan, F. (2020). Go-Detect Application Inspired by Apoptosis to Detect 

SMS Exploitation by Malwares. In RITA 2018 (pp. 101-116). Springer, Singapore. 

17. Arp, D., Spreitzenbarth, M., Malte, H., Gascon, H., & Rieck, K. (2014). Drebin: Effective and 

Explainable Detection of Android Malware in Your Pocket. In Proceeding of the Symposium on Network 

and Distributed System Security (NDSS) (pp. 23–26). https://doi.org/10.14722/ndss.2014.23247 

18. Allibhai, E. (2018). Hold-out vs. Cross-validation in Machine Learning. Available online: 

https://medium.com/@eijaz/holdout-vs-cross-validation-in-machine-learning-7637112d3f8f [accessed: 

28th March 2021] 

19. Zhang, H., Luo, S., Zhang, Y., & Pan, L. (2019). An Efficient Android Malware Detection System Based 

on Method-Level Behavioral Semantic Analysis. IEEE Access, 7, 69246–69256. 

https://doi.org/10.1109/ACCESS.2019.2919796  

20. Shi-Qi et al. (2019)Shi-Qi, L., Bo, N., Ping, J., Sheng-Wei, T., Long, Y., & Rui-Jin, W. (2019). Deep 

Learning in Drebin: Android Malware Image Texture Median Filter Analysis and Detection. KSII 

Transactions on Internet and Information Systems, 13(7), 3654–3670. 

https://doi.org/10.3837/tiis.2019.07.018 

21. Onwuzurike, L., Mariconti, E., Andriotis, P., De Cristofaro, E., Ross, G., & Stringhini, G. (2019). 

Mamadroid: Detecting Android Malware by Building Markov Chains of Behavioral Models. ACM 

Transactions on Privacy and Security, 22(2). https://doi.org/10.1145/3313391 

22. Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G., & Furnell, S. (2017). AndroDialysis: Analysis 

of Android Intent Effectiveness in Malware Detection. Computers and Security, 65, 121–134. 

https://doi.org/10.1016/j.cose.2016.11.007 

23. Karbab, E. M. B., Debbabi, M., Derhab, A., & Mouheb, D. (2018). MalDozer: Automatic framework for 

android malware detection using deep learning. In Proceedings of the 5th Annual DFRWS 2018 Europe 

(Vol. 24, pp. S48–S59). Elsevier. https://doi.org/10.1016/j.diin.2018.01.007 

https://doi.org/10.1016/j.diin.2018.01.007


Turkish Journal of Computer and Mathematics Education      Vol.12 No.8 (2021), 1761-1766  

                                                                                                                                        Research Article                                                                                                                                                                                                 

1766 

 

24. Tansettanakorn, C., Thongprasit, S., Thamkongka, S., & Visoottiviseth, V. (2016). ABIS: A prototype 

of Android Botnet Identification System. Proceedings of the 2016 5th ICT International Student Project 

Conference, ICT-ISPC 2016, 1–5. https://doi.org/10.1109/ICT-ISPC.2016.7519221 

25. Altaher, A., & Mohammed, O. (2017). Intelligent Hybrid Approach for Android Malware Detection 

based on Permissions and API Calls. International Journal of Advanced Computer Science and 

Applications, 8(6).  

26. Rana, M. S., Motiur Rahman, S. S. M., & Sung, A. H. (2018). Evaluation of Tree Based Machine 

Learning Classifiers for Android Malware Detection. In Lecture Notes in Computer Science (including 

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 11056 

LNAI, pp. 377–385). Springer International Publishing. https://doi.org/10.1007/978-3-319-98446-9_35 

27. Qamar, A., Karim, A., & Shamshirband, S. (2019). A Learning Based Framework for Detection of 

Android C&C Enabled Applications Using Hybrid Analysis. Preprints. 

https://doi.org/10.20944/preprints201906.0060.v1 

 


