Research Article

The Beckman-Quarles Theorem For Rational Spaces: Mapping Of Q^d To Q^d That Preserve Distance 1

By: Wafiq Hibi

Wafiq. hibi@gmail.com The college of sakhnin - math department

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 16 April 2021

Abstract : Let \mathbb{R}^d and \mathbb{Q}^d denote the real and the rational d-dimensional space, respectively, equipped with the usual Euclidean metric. For a real number $\rho > 0$, a mapping $f: A \to X$, where X is either \mathbb{R}^d or \mathbb{Q}^d and $A \subseteq X$, is called ρ -distance preserving $||x - y|| = \rho$ implies $||f(x) - f(y)|| = \rho$, for all x, y in A.

Let $G(Q^d, a)$ denote the graph that has Q^d as its set of vertices, and where two vertices x and y are connected by edge if and only if ||x - y|| = a. Thus, $G(Q^d, 1)$ is the unit distance graph. Let $\omega(G)$ denote the clique number of the graph G and let $\omega(d)$ denote $\omega(G(Q^d, 1))$.

The Beckman-Quarles theorem [1] states that every unit-distance-preserving mapping from R^d into R^d is an isometry, provided $d \ge 2$.

The rational analogues of Beckman- Quarles theorem means that, for certain dimensions d, every unit-distance preserving mapping from Q^d into Q^d is an isometry.

A few papers [2, 3, 4, 5, 6, 8,9,10 and 11] were written about rational analogues of this theorem, i.e, treating, for some values of *d*, the property "Every unit- distance preserving mapping $f: Q^d \rightarrow Q^d$ is an isometry". The purpose of this thesis is to present all the results (see [3, 5, 6 and 7]) about the rational analogues of the Beckman-Quarles theorem, and to establish rational analogues of the Beckman-Quarles theorem, for all the dimensions $d, d \ge 5$.

1.1 Introduction:

Let R^d and Q^d denote the real and the rational d-dimensional space, respectively. Let $\rho > 0$ be a real number, a mapping : $R^d \to Q^d$, is called ρ - distance preserving if $||x - y|| = \rho$ implies $||f(x) - f(y)|| = \rho$.

The Beckman-Quarles theorem [1] states that every unit-distance-preserving mapping from R^d into R^d is an isometry, provided $d \ge 2$.

A few papers [4, 5, 6, 8,9,10 and 11] were written about the rational analogues of this theorem, i.e, treating, for some values of d, the property "every unit- distance preserving mapping $f: Q^d \to Q^d$ is isometry".

We shall survey the results from the papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the Backman-Quarles theorem, and we will extend them to all the remaining dimensions, $d \ge 5$.

History of the rational analogues of the Backman-Quarles theorem:

We shall survey the results from papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the Backman-Quarles theorem.

1. A mapping of the rational space Q^d into itself, for d=2, 3 or 4, which preserves all unit-distance is not necessarily an isometry; this is true by W.Bens [2, 3] and H.Lenz [6].

2. W.Bens [2, 3] had shown the every mapping $f: Q^d \to Q^d$ that preserves the distances 1 and 2 is an isometry, provided $d \ge 5$.

3. Tyszka [8] proved that every unit- distance preserving mapping $f: Q^8 \to Q^8$ is an isometry; moreover, he showed that for every two points x and y in Q^8 there exists a finite set S_{xy} in Q^8 containing x and y such that every

unit- distance preserving mapping $f: S_{xy} \to Q^8$ preserves the distance between x and y. This is a kind of compactness argument, that shows that for every two points x and y in Q^d there exists a finite set S_{xy} that contains x and y ("a neighborhood of x and y") for which already every unit- distance preserving mapping from this neighborhood of x and y to Q^d must preserve the distance from x to y. This implies that every unit preserving mapping from Q^d to Q^d must preserve the distance between every two points of Q^d .

4. J.Zaks [8, 9] proved that the rational analogues hold in all the even dimensions *d* of the form d = 4k (k+1), for $k \ge 1$, and they hold for all the odd dimensions d of the form $d = 2n^2 \cdot 1 = m^2$. For integers *n*, $m \ge 2$, (in [9]), or $d = 2n^2 \cdot 1$, $n \ge 3$ (in [10]).

5. R.Connelly and J.Zaks [5] showed that the rational analogues hold for all even dimensions $d, d \ge 6$.

We wish to remark that during the preparation of this thesis, it was pointed out to us that an important argument, in the proof of the even dimensions $d, d \ge 6$, is missing. Here we propose a valid proof for all the cases of $d, d \ge 5$.

6. J.Zaks [11] had shown that every mapping $f: Q^d \to Q^d$ that preserves the distances 1 and $\sqrt{2}$ is an isometry, provided $d \ge 5$.

New results:

Denote by L[d] the set of $4 \cdot \binom{d}{2}$ Points in Q^d in which precisely two non-zero coordinates are equal to 1/2 or -1/2.

A "quadruple" in L[d] means here a set $L_{ij}[d]$, $i \neq j \in I = \{1, 2, ..., d\}$; contains four *j* points of L[d] in which the non-zero coordinates are in some fixed two coordinates *i* and *j*; i.e.

$$L_{ij} \begin{bmatrix} d \end{bmatrix} = (0, \dots, 0, \pm \frac{1}{2}, 0, \dots, 0, \pm \frac{1}{2}, 0, \dots, 0)$$

Our main results are the following:

Theorem 1:

Every unit- distance preserving mapping $f: Q^5 \rightarrow Q^5$ is an isometry; moreover, dim (aff(f(L[5]))) = 5.

Theorem 2:

Every unit- distance preserving mapping $f: Q^6 \to Q^6$ is an isometry; moreover, dim (aff(f(L[6]))) = 6.

Theorem 3:

For all the dimensions d, d \geq 5, every unit- distance preserving mapping $f: Q^d \rightarrow Q^d$ is an isometry.

Auxiliary Lemmas:

We need the following Lemmas for our proofs of the Theorems 1 and 2.

Lemma 1: (due J.Zaks [10]).

If $v_1, \ldots, v_n, w_l, \ldots, w_m$ are points in Q^d , $n \le m$ such that $||v_i - v_j|| = ||w_r - w_s|$, for all $1 \le i \le j \le n, l \le r \le s \le m$ then there exists a congruence $f: Q^d \longrightarrow Q^d$, such that $f(v_i) = w_i$ for all $1 \le i \le n$.

Lemma 2: (due to Chilakamarri [4]).

a. For even d, $\omega(d) = d+1$, if d+1 is a complete square; otherwise $\omega(d) = d$. **b.** For odd d, $d \ge 5$, the value of $\omega(d)$ is as follows: if $d = 2n^2 - 1$, then $\omega(d) = d+1$; if $d \ne 2n^2 - 1$ and the Diophantine

equation $dx^2 - 2(d - 1)y^2 = z^2$ has a solution in which $x \neq 0$ then $\omega(d) = d$; otherwise $\omega(d) = d - 1$.

Lemma 3:

If *a*, *b*, *c* are three numbers that satisfy the triangle inequality and if a^2 , b^2 , c^2 are rational numbers then: **a.** , and

$$b^2 - \frac{(b^2 - a^2 + c^2)^2}{4c^2}$$

b. The space Q^d , $d \ge 8$ contains a triangle *ABC*, having edge length: AB=c, BC=a, AC=b.

Proof of Lemma 3:

To prove (a), its suffices to prove that $4b^2c^2 - (b^2 - a^2 + c^2)^2 > 0$

$$4b^2c^2 - (b^2 - a^2 + c^2)^2 =$$

$$= [2bc + (b^2 - a^2 + c^2)] \cdot [2bc - (b^2 - a^2 + c^2)]$$

= [(b + c)^2 - a^2] \cdot [a^2 - (b - c)^2]
= (a + b + c)(b + c - a)(a + b - c)(a - b + c) > 0.

The triangle inequality implies that the expression in the previous line on the left is positive; it appears also in Heron's formula.

To prove (b): Let *a*, *b*, *c* be three numbers that satisfy the triangle inequality, and so that a^2, b^2, c^2 are rational numbers.

The number $c^2/4$ is positive and rational, hence there exist, according to Lagrange Four Squares theorem [8], rational numbers $\alpha, \beta, \gamma, \delta$ such that $c^2/4 = \alpha^2 + \beta^2 + \gamma^2 + \delta^2$.

By part (a), the following holds: $b^2 - \frac{(b^2 - a^2 + c^2)^2}{4c^2} > 0$, therefore there exist by Lagrange Theorem rational numbers: *x*, *y*, *z*, *w*, such that:

$$b^{2} - \frac{(b^{2} - a^{2} + c^{2})^{2}}{4c^{2}} = x^{2} + y^{2} + z^{2} + w^{2}$$

Consider the following points: $A = (-\alpha, -\beta, -\gamma, -\delta, 0, ..., 0)$ $B = (\alpha, \beta, \gamma, \delta, 0, ..., 0)$ $C = (\frac{b^2 - a^2}{c^2} \alpha, \frac{b^2 - a^2}{c^2} \beta, \frac{b^2 - a^2}{c^2} \gamma, \frac{b^2 - a^2}{c^2} \delta, x, y, z, w, 0, ..., 0)$

The points A, B and C satisfy:

$$\begin{split} \|A - B\| &= \sqrt{4(\alpha^2 + \beta^2 + \delta^2 + \gamma^2)} = c \\ \|A - C\| &= \sqrt{\left[\frac{b^2 - a^2}{c^2} + 1\right]^2 (\alpha^2 + \beta^2 + \delta^2 + \gamma^2) + x^2 + y^2 + z^2 + w^2} \\ &= \sqrt{\frac{(b^2 - a^2 + c^2)^2}{4c^2} + b^2 - \frac{(b^2 - a^2 + c^2)^2}{4c^2}} = b, \end{split}$$

and:

$$\|B - C\| = \sqrt{\left[\frac{b^2 - a^2}{c^2} - 1\right]^2 (\alpha^2 + \beta^2 + \delta^2 + \gamma^2) + x^2 + y^2 + z^2 + w^2}$$
$$= \sqrt{\frac{(b^2 - a^2 - c^2)^2}{4c^2} - \frac{(b^2 - a^2 + c^2)^2}{4c^2} + b^2} =$$
$$= \sqrt{\frac{-4(b^2 - a^2)c^2 + 4b^2c^2}{4c^2}} = a$$

This completes the proof of Lemma 3.

Corollary 1:

If a, b, 1 satisfy the triangle inequality and if a^2 , b^2 are rational numbers, then the space Q^5 contains the vertices of a triangle which has edge lengths a, b, 1.

Proof:

Consider the following points:

$$A = (\frac{1}{2}, 0, 0, 0, 0)$$

$$B = (-\frac{1}{2}, 0, 0, 0, 0)$$

$$C = ((b^2 - a^2) \frac{1}{2}, \alpha, \beta, \gamma, \delta)$$

Where α , β , γ , δ are the rational numbers that exist according to Lagrange theorem, for which:

From the proof of Lemma 2 the triangle, *ABC* has the edge length *a*, *b*, *1*. **Corollary 2:** $b^{2} - \frac{(b^{2} - a^{2} + 1)^{2}}{4} = a^{2} + \beta^{2} + \delta^{2} + \gamma^{2}$ If t is a number such that $\sqrt{2 + \frac{2}{m-1}} - 1 \le t \le \sqrt{2 + \frac{2}{m-1}} + 1$, $t^{2} \in Q$

Where $m \ge 4$ is a natural number, then the space Q^d , $d \ge 5$, contains a triangle ABC having edge length 1,t, $\sqrt{2 + \frac{2}{m-1}}$

Proof:

According to Lemma 2, the numbers 1,t, $\sqrt{2 + \frac{2}{m-1}}$ satisfy the triangle inequality, and the result follows from Corollary 1.

Lemma 4:

If x and y are two points in Q^d , $d \ge 5$, so that:

$$\sqrt{2 + \frac{2}{m-1}} - 1 \le ||x - y|| \le \sqrt{2 + \frac{2}{m-1}} + 1$$

where $\omega(d) = m$, then there exists a finite set S(x, y), contains x and y such that $f(x) \neq f(y)$ holds for every unitdistance preserving mapping $f: S(x,y) \rightarrow Q^d$.

Proof of Lemma 4:

Let x and y be points in
$$Q^d$$
, $d \ge 5$, for which,
 $\sqrt{2 + \frac{2}{m-1}} - 1 \le ||x - y|| \le \sqrt{2 + \frac{2}{m-1}} + 1$ where $\omega(d) = m$.

The real numbers ||x-y||, $\sqrt{2} + \frac{2}{m-1}$ and *I* satisfy the triangle inequality, hence by Corollary 2 there exist three points A, B, C such that ||A-B|| = ||x-y||,

 $||A-C|| = \sqrt{2 + \frac{2}{m-1}}$ and ||B-C|| = l. It follows by two rational reflections that there exists a rational point **z** for which ||y-z|| = 1 and $||x-z|| = \sqrt{2 + \frac{2}{m-1}}$, (see Figure 1).

Let $\{v_0, \dots, v_{m-1}\}$ be a maximum clique in $G(Q^d, 1)$, and let w_0 be the reflection of v_0 with respect to the rational hyperplane passing through the points $\{v_1, \dots, v_{m-1}\}$ it follows that $||v_0 - w_0|| = \sqrt{2 + \frac{2}{m-1}}$, (see Figure 2).

Based on $||x-z|| = ||v_0 - w_0||$ and lemma 1, there exist a rational translation h for which $h(v_0) = x$ and $h(w_0) = z$. Denote $g(h(v_i)) = V_i$ for all $1 \le i \le m-1$, (see Figure 3).

Denote $S(x, y) = \{x, y, z, v_1, ..., v_{m-1}\}$. Suppose that f(x) = f(y) holds for some unit-distance preserving mapping $f: S(x,y) \rightarrow Q^d$.

The assumption f(x) = f(y) and ||y-z|| = l imply that ||f(y) - f(z)|| = l = ||f(x) = f(z)||, hence the set $\{f(x), f(z), f(v_1), \dots, f(v_{m-1})\}$, forms a clique in $G(Q^d, 1)$ of size m+l, which is a contradiction. It follows that $f(x) \neq f(y)$ holds for every unit- distance preserving mapping $f: S(x,y) \to Q^d$. This completes the proof of Lemma 4.

Corollary 3:

If x and y are two points in Q^d , $d \ge 5$, such that $||x-y|| = \sqrt{2}$, then every unit-distance preserving mapping $f: Q^d \to Q^d$ satisfies $f(x) \neq f(y)$.

Mappings of Q^5 to Q^5 that preserve distance 1

The purpose of this section is to prove the following Theorem.

Theorem 1:

Every unit- distance preserving mapping $f: Q^5 \rightarrow Q^5$ is an isometry; moreover, dim(aff(f(L[5])))=5. To prove Theorem 1, we prove first the following Theorem.

Theorem 1*:

If Z, W are two points in Q^5 , for which $||Z - W|| = \sqrt{2}$, then there exists a finite set M_5 , containing Z and W, such that for every unit- distance preserving mapping $f: M_5 \rightarrow Q^5$, the following equality holds: ||f(Z)-f(W)|| = ||Z-W||

Proof of Theorem 1*:

Let Z, W are any two points in Q^5 , for which $||Z - W|| = \sqrt{2}$.

Denote by L[5] the set of $4 \cdot {5 \choose 2} = 40$ points in Q^d in which precisely two coordinates are non-zero and are equal to 1/2 or -1/2.

A "quadruple" in L[5] means a set $L_{ij}[5]$, $i \neq j \in I = \{1, 2, 3, 4, 5\}$, containing four points of L[5] in which the non-zero coordinates are in some fixed two, the *i*-th and the *j*-th coordinates; i.e.

$$L_{ij}[5] = \{ \left(0, \pm \frac{1}{2}, 0, \pm \frac{1}{2}, 0 \right) \} \qquad \qquad 1 \quad i \quad . \quad j \quad 5$$

If ρ is a distance between any two points of the set L[5] then $\rho \in \{\sqrt{0.5}, 1, \sqrt{1.5}, \sqrt{2}\}$.

Fix a quadruple $L_{ij}[5]$ let *x*, *y* two points in $L_{ij}[5]$ such that $||x-y|| = \sqrt{2}$.

By Lemma 1 and based on ||Z-W|| = ||x-y||, there exists a rational isometry $h: Q^5 \to Q^5$ for which $h(x) = :Z = x^*$ and $h(y) = W: = y^*$; denote $h(l) = l^*$ for all $l \in L[5]$.

Let $L^*[5] = \{l^* = h(l) \text{ for all } l \in L[5]\}$; it is clear that *Z*, $W \in L^*[5]$, and to simplify terminology we will denote $L^*[5] = \{l^*_i\}$ when $i \in \{1, 2, ..., 40\}$.

Define the set M_5 by: $M_5 = \bigcup \{ S(l_i^*, l_j^*) \cup S(l_n^*, l_m^*) \cup S(l_s^*, l_t^*) \};$

for all *i*, *j*, *n*, *m*, *s*, $t \in \{1, 2, ..., 40\}$ when $||l_i^* - l_j^*|| = \sqrt{0.5}$,

 $\|l_n^* - l_n^*\| = \sqrt{1.5}$ and $\|l_s^* - l_t^*\| = \sqrt{2}$; where the sets S are given by Lemma 4.

Let *f*, *f*: $M_5 \rightarrow Q^5$ be any unit- distance preserving mapping.

Claim 1:

If x and y are two points in $L^*[5]$ for which $||x-y|| = 1, \sqrt{2}$ then $f(x) \neq f(y)$. **Proof of Claim 1:** Clearly, if ||x-y|| = 1, then ||f(x) - f(y)|| = 1, hence $f(x) \neq f(y)$. The distance $\sqrt{2}$ is between $\sqrt{2 + \frac{2}{m-1}} - 1$ and $\sqrt{2 + \frac{2}{m-1}} + 1$. Where $m = \omega(d) = 4$ for d = 5. Therefore, if $||x-y|| = \sqrt{2}$, then there exist an *i* and *j*, $1 \le i \ne j \le 40$, such that $x = l_i^*$, $y = l_j^*$ and $||l_i^* - l_j^*|| = \sqrt{2}$. (l_i^* and l_j^* on the same quadruple).

By Lemma 4, applied to l_i^* and l_j^* , there exists a set $S(l_i^*, l_j^*)$, that contains l_i^* and l_j^* , for which every unitdistance preserving mapping $g: S(l_i^*, l_j^*) \rightarrow Q^5$ satisfies

 $g(l_i^*) \neq g(l_i^*)$.

In particular this holds for the mapping $g = f / S(l_i^*, l_j^*)$, therefore $f(l_i^*) \neq f(l_i^*, l_j^*)$.

Claim 2:

The mapping f preserves all the distances $\sqrt{2}$. In particular $||f(Z)-f(W)|| = \sqrt{2}$. **Proof of Claim 2:**

Consider the graph P of unit distances among the points of $L^{*}[5]$; it is isomorphic to the famous Petersen's graph, by substituting a 4-cycle for each vertex of P.

(See figure 4).

Figure 4

We prove that the affine dimension of the *f*- image of each quadruple, i.e., the image of the four points that correspond to one vertex of P must be 2. Indeed, by claim 1 this dimension is at least 2, since $f(l^*_i) \neq f(l^*_j)$ for all l^*_i and l^*_i on $L^*(5)$

l_i^* and l_j^* on $L^*[5]$

(In particular, this holds for all l_i^* and l_j^* on the same quadruple).

Suppose, by contradiction, that $dim(aff(f(A))) \ge 3$, for some quadruple *A*, let the quadruple *B*, *C*, *D*, and *E* correspond to vertices of P so that A, B, C, D and *E* is a cycle in P.

All the points of f(B) and f(E) must be at unit distance from those of f(A), so all the points of f(B) and f(E) lie on a circle, say circle S with enter O.

This means that f(B) and f(C) are two squares inscribed in S. it follows that all the points of f(C) and f(D) must lie on the 3-flat that is perpendicular to 2-flat determined by S and passes through O.

But this cannot happen, since the points of f(C) span a flat of dimension at least 2 in this 3-flat, which then forces the points of f(D) to lie on a line, which is impossible.

It follows that the points of any f(F) lie on the intersection of some unit-distance spheres and a 2-flat which is a circle; when $F = \{a, b, c, d\}$ is a given block,

such that ||a-b|| = ||b-c|| = ||c-d|| = ||d-a|| = 1 and $||a-c|| = ||b-d|| = \sqrt{2}$.

Thus f(a), f(b), f(c), and f(d) form the vertex set of quadrangle, of edge length one that lies in a circle. (See figure 5).

The situations (*i*) and (*ii*) are impossible since $f(l_i^*) \neq f(l_j^*)$ for all l_i^* and l_j^* on $L^*[5]$. It follows that f(a), f(b), f(c), and f(d) form vertex set of a square in circle of diameter $\sqrt{2}$, implying: $||f(a) - f(c)|| = ||f(b) - f(d)|| = \sqrt{2}$. Hence, the distance $\sqrt{2}$, within each quadrangle are preserved. In particular $||f(Z) - f(W)|| = \sqrt{2}$.

This completes the proof of Theorem 1*.

Proof of Theorem 1:

Let *f* be a unit distance preserving mapping $f: Q^5 \to Q^5$. By Theorem 1^{*} the unit distance preserving mapping f preserves the distance $\sqrt{2}$.

Our result follows by using a Theorem of J. Zaks [8], which states that if a mapping $g:Q^d \to Q^d$ preserves the distances 1 and $\sqrt{2}$, then g is an isometry, provided $d \ge 5$. Moreover, dim(*aff(f(L[5])*)) = 5:

The mapping f is an isometry, hence it suffices to provide that dim(aff(L[5])) = 5. To show this, notice that:

$$\begin{aligned} &\frac{1}{2} \left(\frac{1}{2}, \frac{1}{2}, 0, 0, 0 \right) + \frac{1}{2} \left(\frac{1}{2}, -\frac{1}{2}, 0, 0, 0 \right) = \frac{1}{2} (1, 0, 0, 0, 0) \\ &\frac{1}{2} \left(\frac{1}{2}, \frac{1}{2}, 0, 0, 0 \right) + \frac{1}{2} \left(-\frac{1}{2}, \frac{1}{2}, 0, 0, 0 \right) = \frac{1}{2} (0, 1, 0, 0, 0) \\ &\frac{1}{2} \left(0, 0, \frac{1}{2}, \frac{1}{2}, 0 \right) + \frac{1}{2} \left(0, 0, \frac{1}{2}, -\frac{1}{2}, 0 \right) = \frac{1}{2} (0, 0, 1, 0, 0) \\ &\frac{1}{2} \left(0, 0, \frac{1}{2}, \frac{1}{2}, 0 \right) + \frac{1}{2} \left(0, 0, -\frac{1}{2}, \frac{1}{2}, 0 \right) = \frac{1}{2} (0, 0, 0, 1, 0) \\ &\frac{1}{2} \left(0, 0, 0, \frac{1}{2}, \frac{1}{2} \right) + \frac{1}{2} \left(0, 0, 0, -\frac{1}{2}, \frac{1}{2} \right) = \frac{1}{2} (0, 0, 0, 0, 1) \end{aligned}$$

Hence all the major unit vectors in R^5 when multiplied by $\frac{1}{2}$, are convex combinations of points in L[5]. This completes the proof of Theorem 1.

Mapping of Q^6 to Q^6 that preserve distance 1

The purpose of this section is to prove the following Theorem: **Theorem 2:**

Every unit –distance preserving mapping $f: Q^6 \to Q^6$ is an isometry; moreover, dim (aff(f(L[6]))) = 6.

To prove Theorem 2, we prove first the following Theorem.

Theorem 2*:

if *Z*, *W* are any two points in Q^6 , for which $||Z-W|| = \sqrt{2}$, then there exists a finite set M_6 , containing *Z* and *W*, such that for every unit –distance preserving mapping $f: M_6 \to Q^6$, the following equality holds: ||f(Z)-f(W)|| = ||Z-W||.

Proof of Theorem 2*:

Consider the 6 points $\{A_1, ..., A_6\}$, defined as follows:

$$A_{1} = (\frac{1}{2}, 0, 0, 0, 0, \frac{1}{2})$$

$$A_{2} = (\frac{1}{2}, 0, 0, 0, 0, -\frac{1}{2})$$

$$A_{3} = (0, \frac{1}{2}, 0, 0, \frac{1}{2}, 0)$$

$$A_{4} = (0, \frac{1}{2}, 0, 0, -\frac{1}{2}, 0)$$

$$A_{5} = (0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0)$$

$$A_{6} = (0, 0, \frac{1}{2}, -\frac{1}{2}, 0, 0)$$

The points $\{A_1, ..., A_6\}$ form the vertices of a regular 5- simplex of edge length one in Q^6 . Let the 6 points $B_1, B_2, ..., B_6$ of Q^6 be defined by $B_i = -A_i$, $1 \le i \le 6$, their mutual distances are one, so they form the vertices of a regular 5 – simplex of edge length one in Q^6 . Let $T_6 = \{A_1, ..., A_6, B_1, ..., B_6\}$.

Fix a $k, 1 \le k \le 6$, by Lemma 1 and based on $||Z - W|| = ||A_k - B_k||$ there exists a rational isometry $h: Q^6 \to Q^6$ for which $h(A_k) = Z: = A^*_k$ and $h(B_k) = W: = B^*_k$; denote $h(A_i) = A^*_i$ and $h(B_i) = B^*_i$ for all $1 \le i \le 6$. Let $T^*_6 = \{A^*_1, \dots, A^*_d, B^*_1, \dots, B^*_6\}$; it is clear that $Z, W \in T^*_6$.

Define the set M_6 by: $M_6 = S(A_1^*, B_1^*) \cup S(A_2^*, B_2^*) \cup ... \cup S(A_6^*, B_6^*)$, where the sets S are given by Lemma 4. Let $f, f: M_6 \to Q^6$ be any unit-distance preserving mapping.

Claim 3:

If x and y are two points in T_6^* , then $f(x) \neq f(y)$. **Proof of Claim 3:**

Computing the mutual distances of the points in T_6^* show that:

 $\|A_{i}^{*} - A_{j}^{*}\| = \|B_{i}^{*} - B_{j}^{*}\| = \|A_{i}^{*} - B_{j}^{*}\| = 1, \text{ for all } 1 \le i < j \le 6, \text{ and } \|A_{i}^{*} - B_{i}^{*}\| = \sqrt{2}, \text{ for all } 1 \le i \le 6.$

All of the distances above are between $\sqrt{2 + \frac{2}{m-1}} - 1$ and $\sqrt{2 + \frac{2}{m-1}} + 1$.

where $m = \omega(d) = 6$ for d = 6. Therefore if ||x - y|| = 1, then ||f(x) - f(y)|| = 1, hence $f(x) \neq f(y)$; if $||x - y|| = \sqrt{2}$ there is an $i, 1 \le i \le 6$, such that $x = A^*_{i}, y = B^*_{i}$ and $||A^*_{i} - B^*_{i}|| = \sqrt{2}$.

By Lemma 4, applied to A_i^* and B_i^* , there exists a set $S(A_i^*, B_i^*)$, that contains A_i^* and B_i^* , for which every unitdistance preserving mapping $g: S(A_i^*, B_i^*) \to Q^d$ satisfies $g(A_i^*) \neq g(B_i^*)$.

In particular, this holds for the mapping $g = f/S(A^*_i, B^*_i)$, therefore $f(A^*_i) \neq f(B^*_i)$.

Claim 4:

The mapping f preserves all the distances $\sqrt{2}$, between A_i^* and B_i^* for all i = 1, 2, ..., 6. In particular $||f(Z) - f(w)|| = \sqrt{2}$.

Proof of Claim 4:

Consider the following (4) points:

$$\Delta_1 = \{ f(A_3^*), f(B_4^*), f(B_5^*), f(B_6^*) \}$$

All of their mutual distances are one, since f preserves distance one, so they form the vertices of a regular 3simplex of edge length one in Q^6 . The intersection of the 4 unit spheres, centered at the vertices of this simplex, is a

2-sphere of radius $t = \sqrt{\frac{5}{8}}$, centered at the center O_1 of Δ_1 ; let $S^2_{(O_1,t)}$ denote this 2-sphere. Let Δ_2 be defined by:

 $\Delta_2 = \{ f(A_4^*), f(B_3^*), f(B_5^*), f(B_6^*) \}.$

In the similar way we obtain the 2-spheres $S^2_{(O_2,t)}$, having her center at O_2 , which is also the center of Δ_2 . The four points $f(A_1^*)$, $f(A_2^*)$, $f(B_1^*)$ and $f(B_2^*)$ are in the intersection of the two 2-spheres $S^2_{(O_j,t)}$, j = 1,2. By claim 3, the two simplices Δ_1 , and Δ_2 are different, but they have vertices $f(B_5^*)$, and $f(B_6^*)$ in common. We will prove that $O_1 \neq O_2$: Assume that $O_1 = O_2 = O$. (See figure 6)

 $f(B_{5}) f(B_{6})$ $f(A_{3})$ $f(A_{3})$ $f(B_{4})$ $f(B_{4})$

Figure 6

It follows that $||f(B_j^*) - 0|| = ||f(A_i^*) - 0|| = t$, i=3, 4, and In particular, the point O the center of the simplex $f(A^*_4)$ $\{f(B_3^*), f(B_4^*), f(B_5^*), f(B_6^*)\}$, so

 $O = \frac{1}{4} (f(B_3^*) + f(B_4^*), +f(B_5^*) + f(B_6^*)), \text{ but point O is also the center of the simplex } \Delta_1 \text{ so } O = \frac{1}{4} (f(A_3^*) + f(A_4^*), +f(A_5^*) + f(A_6^*)).$ It follows that $f(A_3^*) = f(B_3^*)$, a contradiction to Claim 3, thus $O_1 \neq O_2$.

It follows that $f(A_3) = f(B_3)$, a contradiction to Claim 3, thus $O_1 \neq$ Therefore the 2- spheres $S^2_{(O_j,t)}$, j = 1,2, are different.

They have the same radius $t = \sqrt{\frac{5}{8}}$ and they have a non-empty intersection. It follows that there two 2-spheres intersect in a one-dimensional sphere, which is a circle.

Thus $f(A_1^*)$, $f(A_2^*)$, $f(B_1^*)$ and $f(B_2^*)$ form the vartex set of a quadrangle, of edge length one, that lies in a circle. (See figure 5).

It follows as the previous case that $f(A_1^*)$, $f(A_2^*)$, $f(B_1^*)$ and $f(B_2^*)$ form the vartex set of a square in a circle of diameter $\sqrt{2}$, implying:

 $\| f(A_1^*) - f(B_1^*) \| = \| f(A_2^*) - f(B_2^*) \| = \sqrt{2}$ since $f(A_i^*) \neq f(B_i^*)$ for i = 1, 2.

It follows by Lemma 1 that the mapping f preserves the distance $\sqrt{2}$ between A_i^* and B_i^* for all i = 1, 2, ..., 6. In particular $|| f(Z) - f(W) || = \sqrt{2}$.

This completes the proof of Theorem 2^* .

Proof of Theorem 2

Let f be a unit distance preserving mapping $f: Q^6 \to Q^6$. By Theorem 2^{*} the unit distance preserving mapping

f preserves the distance $\sqrt{2}$. Our result follows by using a Theorem of J.Zaks [8], which states that if a mapping $g: Q^d \to Q^d$ preserves the distance 1 and $\sqrt{2}$, then g is an isometry, provided $d \ge 5$. The proof that dim(aff(L[6])) = 6 is similar to the proof that dim(aff(L[5])) = 5 that appeared in of Theorem 1, hence it is omitted.

This completes the proof of Theorem 2.

Mapping of Q^d to Q^d that preserve distance 1

The purpose of this section is to prove the following Theorem: **Theorem 3:**

For all the dimensions, $d, d \ge 5$, every unit- distance preserving mapping $f: Q^d \to Q^d$ is an isometry.

To prove Theorem 3, we prove first the following Theorem in which L[d] and quadruples are defined in a way, similar to the one that appeared in the proof of Theorem 1^* in page 11.

Theorem 3^{*}:

For every value of $d, d \ge 5$ if $g: L[d] \to R^d$ is a mapping that preserves unit distances, for which $g(x) \ne g(y)$ holds for any two points x, y such that $||x - y|| = \sqrt{2}$, then the following holds:

a. For every quadruple T of L[d], g(T) is the vertex set of a planar unit square.

b. dim(aff(g(L[d]))) = d

Proof of Theorem 3*:

It is clear that Theorem 3^* holds for d = 5 and d = 6 from Theorems1 and 2.

Suppose, inductively on d, that the assertion holds for d and for $d + 1, d \ge 5$, and let $f: L[d + 2] \rightarrow R^{d+2}$ be any unit- preserving mapping such that $f(x) \neq f(y)$ for any two points x, y of L[d+2] satisfying $||x - y|| = \sqrt{2}$. Let $T = L_{ii}[d+2]$ be any quadruple in L[d+2], which we may assume, without loss of generality, that it is the quadruple:

 $\overline{T} = L_{d+1,d+2}[d+2] = \{(0, \dots, 0, \pm 1/2, \pm 1, 2) \subset \mathbb{R}^{d+2}\}.$

By assumption we know that $f(x) \neq f(y)$ for any two points x, y such that

 $||x - y|| = \sqrt{2}$, (in particular for any two points x, y such that $||x - y|| = \sqrt{2}$ in the quadruple T).

Consider the subset K[d+2] of L[d+2], consisting of all the points of L[d+2] in which the last two coordinates vanish. Notice that the set K[d + 2] is, of course, congruent to the last set L[d].

To show that f(T) has affine dimension 2:

Assume, for contradiction, that $\dim(aff(f(T))) \ge 3$.

We restrict our attention to the set $f(T \cup K[d+2])$.

The image f(K[d+2]) lies in the intersection of the unit spheres centered at the points of f(T), and since $\dim(aff(f(T))) \ge 3$ it follows that the dimension of the intersection of these four (d+1)-spheres is at most d-2. and it lies in an affine flat, say F, of dimension at most d - 1.

Let $h: F \to R^d$ be an isometric embedding, and consider the composition

 $h^{\circ}f: K[d+2] \rightarrow R^{d}$. By an inductive assumption on the dimension d,

 $\dim(\operatorname{aff}(h_0 f: (K[d+2]))) = \dim(\operatorname{aff}(h^\circ f(L[d]))) = d.$

This is a contradiction, since f(K[d+2]) lies in the affine flat F which is of dimension at most d-1. To show that $\dim(\operatorname{aff}(f(L[d+2]))) = d + 2$:

It follows by part (a) that $\dim(aff(f(T))) = 2$, and f(T) forms the vartex set of some planar unit square.

Assume, by contradiction that $\dim(aff(f(L[d+2]))) \le d+1$, and consider the effect of the mapping f on the set $T \cup K[d+2]$; as in the previous case, all the points of K[d+2] are at unit distance from all those of T, therefore all the points of f(K[d+2]) are at unit distance from all the points of f(T), hence the affine hull of f(K[d+2]) is orthogonal to the affine hull of f(T), thus:

 $d + 1 \ge \dim (aff(f((L[d + 2])))) \ge \dim (aff(f(T))) + \dim (aff(f(K[d + 2]))) =$

 $= 2 + \dim(aff(f)L[d])) = d+2$, which is a contradiction.

It follows that $\dim(\operatorname{aff}(f(L[d+2]))) = d + 2$.

This completes the proof of Theorem 3^* .

Proof of Theorem 3:

We will prove first the following Claim:

Claim 5:

Every unit-distance preserving mapping $f: Q^d \to Q^d$ preserves the distance $\sqrt{2}$, for all $d \ge 5$.

Proof of Claim 5:

Let $d \ge 5$ and let $f: Q^d \to Q^d$ be a unit distance-preserving mapping.

By Corollary 3 it follows that $f(x) \neq f(y)$ holds for every two points x and y in Q^d , for which $||x - y|| = \sqrt{2}$. Let *i*: $Q^d \rightarrow R^d$ be the natural inclusion isometry, and consider the combined mapping $i^\circ f :: Q^d \rightarrow R^d$.

By Theorem 3*, the distance $\sqrt{2}$ of opposite vertices in T preserved by $i^{\circ}f$, hence it is preserved by f.

It follows by Lemma 1 that for every pair of points x and y, if $||x - y|| = \sqrt{2}$, then

 $\|f(x) - f(y)\| = \sqrt{2}$, i.e, the mapping f preserves the distance $\sqrt{2}$.

Let *d* be an integer, $d \ge 5$, and let *f* be a unit distance preserving mapping $f: Q^d \to Q^d$. By Claim 5 the unit distance preserving mapping *f* preserves the distance $\sqrt{2}$. Our result follows by using a Theorem of J.Zaks [11] which states that if a mapping g: $Q^d \to Q^d$ preserves the distances 1 and $\sqrt{2}$, then g is an isometry, provided $d \ge 5$.

This completes the proof of Theorem 3.

References

- 1. F.S Beckman and D.A Quarles: On isometries of Euclidean spaces, Proc. Amer. Math. Soc. 4, (1953), 810-815.
- 2. W.Benz, An elementary proof of the Beckman and Quarles, Elem.Math. 42 (1987), 810-815
- 3. W.Benz, Geometrische Transformationen, B.I.Hochltaschenbucher, Manheim 1992.
- 4. Karin B. Chilakamarri: Unit-distance graphs in rational n-spaces Discrete Math. 69 (1988), 213-218.
- 5. R.Connelly and J.Zaks: The Beckman-Quarles theorem for rational d-spaces, deven and d≥6. Discrete Geometry, Marcel Dekker, Inc. New York (2003) 193-199, edited by Andras Bezdek.
- 6. H.Lenz: Der Satz von Beckman-Quarles in rationalen Raum, Arch. Math. 49 (1987), 106-113.
- 7. I.M.Niven, H.S.Zuckerman, H.L.Montgomery: An introduction to the theory of numbers, J. Wiley and Sons, N.Y., (1992).
- 8. A.Tyszka: A discrete form of the Beckman-Quarles theorem for rational eight- space. Aequationes Math. 62 (2001), 85-93.
- 9. J.Zaks: A distcrete form of the Beckman-Quarles theorem for rational spaces. J. of Geom. 72 (2001), 199-205.
- 10. J.Zaks: The Beckman-Quarles theorem for rational spaces. Discrete Math. 265 (2003), 311-320.
- 11. J.Zaks: On mapping of Q^d to Q^d that preserve distances 1 and $\sqrt{2}$. and the Beckman-Quarles theorem. J of Geom. 82 (2005), 195-203.