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Abstract : Let R"and QY denote the real and the rational d-dimensional space, respectively, equipped with the usual
Euclidean metric. For a real number p > 0, a mapping f: A — X, where X is either R%or Q¥ and A C X, is called p-
distance preserving ||x — y|| = p implies | f(x) = () || = p, for all x,y in A.

Let G(Q¢a) denote the graph that has Q¢ as its set of vertices, and where two vertices x and y are connected by edge
if and only if || xX—y || = a . Thus, G(Q¢,1) is the unit distance graph. Let o(G) denote the clique number of the
graph G and let o(d) denote w(G(QY, 1)).

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from RY into RY is an
isometry, provided d > 2.

The rational analogues of Beckman- Quarles theorem means that, for certain dimensions d, every unit- distance
preserving mapping from QY into Q¢ is an isometry.

A few papers [2, 3, 4, 5, 6, 8,9,10 and 11] were written about rational analogues of this theorem, i.e, treating, for
some values of d, the property "Every unit- distance preserving mapping f: Q¢ — Q¢ is an isometry".

The purpose of this thesis is to present all the results (see [3, 5, 6 and 7]) about the rational analogues of the
Beckman-Quarles theorem, and to establish rational analogues of the Beckman-Quarles theorem, for all the
dimensions d, d >5.

1.1 Introduction:
Let R%and Q¢ denote the real and the rational d-dimensional space, respectively.
Let p > 0 be a real number, a mapping : R — Q¢ , is called p- distance preserving if lx—yl =p

implies || £(x) = fO) ]| = o

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from RY into R? is an
isometry, providedd > 2.

A few papers [4, 5, 6, 8,9,10 and 11] were written about the rational analogues of this theorem, i.e, treating, for
some values of d, the property "every unit- distance preserving mapping f: Q¢ — Q¢ is isometry".

We shall survey the results from the papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the
Backman-Quarles theorem, and we will extend them to all the remaining dimensions ,d > 5 .

History of the rational analogues of the Backman-Quarles theorem:
We shall survey the results from papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the
Backman-Quarles theorem.

1. A mapping of the rational space Q¢ into itself, for d=2, 3 or 4, which preserves all unit- distance is not
necessarily an isometry; this is true by W.Bens [2, 3] and H.Lenz [6].

2. W.Bens [2, 3] had shown the every mapping f: Q¢ — Q¢ that preserves the distances 1 and 2 is an isometry,
provided d >5.

3. Tyszka [8] proved that every unit- distance preserving mapping f: Q%8 — Q8 is an isometry; moreover, he
showed that for every two points x and y in Q8 there exists a finite set S, in Q8 containing x and y such that every
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unit- distance preserving mapping f: S, — Q8 preserves the distance between x and y. This is a kind of
compactness argument, that shows that for every two points x and y in Q® there exists a finite set Sy, that contains x
and y ("a neighborhood of x and y") for which already every unit- distance preserving mapping from this
neighborhood of x and y to Q9 must preserve the distance from x to y. This implies that every unit preserving
mapping from QY to QY must preserve the distance between every two points of QY.

4, J.Zaks [8, 9] proved that the rational analogues hold in all the even dimensions d of the form d = 4k (k+1), for
k>1, and they hold for all the odd dimensions d of the form d = 2n2-1 = m2. For integers n, m>2, (in [9]), or d = 2n? -
1, n>3 (in [10]).

5. R.Connelly and J.Zaks [5] showed that the rational analogues hold for all even dimensions d, d >6.

We wish to remark that during the preparation of this thesis, it was pointed out to us that an important argument, in
the proof of the even dimensions d, d >6, is missing. Here we propose a valid proof for all the cases of d, d >5.

6.  J.Zaks [11] had shown that every mapping f: Q¢ — Q< that preserves the distances 1 and v/2 is an isometry,
provided d >5.

New results:
Denote by L[d] the set of 4 - (Czi) Points in Q¢ in which precisely two non-zero coordinates are equal to 1/2 or -1/2.

A "quadruple” in L[d] means here aset Ljj /d], i#j e | = {1, 2, ..., d}; contains four j points of L[d] in which the
non- zero coordinates are in some fixed two coordinates i and j; i.e.
i ]
Lij [d]= (0,...0, £ 5, 0...0, £%, 0, ...0)
Our main results are the following:

Theorem 1:
Every unit- distance preserving mapping f: Q> — Q°®is an isometry; moreover, dim (aff(f(L[5])))= 5.

Theorem 2:
Every unit- distance preserving mapping f: Q¢ — Q°®is an isometry; moreover, dim (aff(f(L[6])))= 6.

Theorem 3:
For all the dimensions d, d > 5, every unit- distance preserving mapping f: Q¢ — Q%is an isometry.

Auxiliary Lemmas:

We need the following Lemmas for our proofs of the Theorems 1 and 2.

Lemma 1: (due J.Zaks [10]).

If Vi, ..., Va Wi, ..., wmare points in Q% n <msuch that [|v; — v; || = ||w — ws,
forall 1 <i<j<n,I <r<s<m then there exists a congruence f: Q¢ — Q¢, such that
fw) =w;forall L<i<n.

Lemma 2: (due to Chilakamarri [4]).

a. Forevend w(d) = d+1, if d+1 is a complete square; otherwise w(d) = d.

b. Foroddd, d > 35, the value of w(d) is as follows: if d=2n? -1, then w(d) = d+1; if d # 2n?-1 and the Diophantine
equation dx? — 2(d - 1)y?= z? has a solution in which x # 0 then w(d) = d; otherwise w(d) = d — 1.

Lemma 3:
If a, b, ¢ are three numbers that satisfy the triangle inequality and if a2, b?, c?are rational numbers then:
a. , and

(bZ _ a2 + CZ)Z

b? —
42
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b. The space Q¢,d > 8 contains a triangle ABC, having edge length: AB=c, BC=a, AC=b.

Proof of Lemma 3:
To prove (a), its suffices to prove that 4b%c? — (b? —a? + c*)? > 0

4b%c? — (b?2 —a% + ¢?)? =

= [2bc + (b? — a® + ¢?)] - [2bc — (b? — a® + ¢?)]
=[(b+¢)?—a?]-[a® — (b —c)’]
=(a+b+c)(b+c—a)@+b—-c)(a—b+c)>0.
The triangle inequality implies that the expression in the previous line on the left is positive; it appears also in
Heron’s formula.

To prove (b): Let a, b, ¢ be three numbers that satisfy the triangle inequality, and so that a2 ,b? c?are rational
numbers.

The number c?/4 is positive and rational, hence there exist, according to Lagrange Four Squares theorem [8],
rational numbers a, 8,¥,8 such that ¢?/4=a? + B2 +y2 + 5%

(bz—a2+c2)2

By part (), the following holds: h? — v
Theorem rational numbers: X, y, z, w, such that:

p2 — (I72—0L2+c2)2
4c2

> 0, therefore there exist by Lagrange

=x?+y*+ 22 + wl
Consider the following points:
A= (-a,—B,-v,—6,0,..,0)
B = (a,B,v,6,0,..,0)
b2 —a? b2 —qg? b2 —q? p? — g2
C = ( a’, C2 y’

p p , 5 6,x,y,z,w,0,..,0)

The points A,B and C satisfy:

|4-B|| =V4@?+B2+82+y2=c

pz — g2 2
||A—C||=\/[ = +1] (@2 + B2+ 682 +y2) +x2 +y2 + 22 + w?

= b,

_ (bZ _ a2 + CZ)Z N b2 3 (bZ _ a2 + CZ)Z
4c2 4c?

and:

p2 — g2 2
|B-cl| = [ 2 —1] (a2 +p2+62+y2)+x2+y? +2z2 +w?

+b2 =

B (bZ _ aZ _ CZ)Z (bZ _ a2 + CZ)Z
B 4c2 4c2

—4(b? — a?)c? + 4b?c?
- 4c2 -a

This completes the proof of Lemma 3.

Corollary 1:
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If a, b, 1 satisfy the triangle inequality and if a2, b? are rational numbers, then the space Q5 contains the vertices of a
triangle which has edge lengths a, b, 1.

Proof:
Consider the following points:

1
= (— 0,0,0,0)
= (-=,0,0,0,0)
C= ((bz - a )E :a:ﬁ!y!g)
Where a, 8,7, 8 are the rational numbers that exist according to Lagrange theorem, for which:

From the proof of Lemma 2 th{&btgangle ZABC{?ﬁ the edge length a, b, 1.
2 2
Corollary 2: =a*+p*+ 8% +y?

If t is a number such that /2+——1<t< /2+—+1 t?€eqQ

Where m > 4 is a natural number, then the space Q¢,d > 5, contains a triangle ABC having edge length 1,t,
fz TN
m-—1
Proof:

According to Lemma 2, the numbers 1,t, /2 + ﬁ satisfy the triangle inequality, and the result follows from
Corollary 1.

Lemma 4:
If x and y are two points in Q¢,d = 5, so that:

2 2 1< < |2 2 1
t—g 1< x-yll < 24—+

where w(d) = m, then there exists a finite set S(x,y), contains x and y such that f{x)#f(») holds for every unit-
distance preserving mapping f: S(x,y)— Q¢.

Proof of Lemma 4:
Let x and y be points in Q¢,d > 5, for which,

/2+ﬁ—1g |x-y] < /2+ﬁ+1 where w(d) =

The real numbers [|x-y||, /2 + ﬁ and 1 satisfy the triangle inequality, hence by Corollary 2 there exist three
points A, B, C such that || 4-B]|=||x-||.

IA-C|l= |2 +—= and ||B-C||=1. It follows by two rational reflections that there exists a rational point z for

. _ . 2 .
which [|ly-z[|=1 and ||xz|= |2 + —, (see Figure 1).
Let {v, ..., V;y_1 } be @ maximum clique in G(Q%,1), and let w, be the reflection of v, with respect to the rational

hyperplane passing through the points {vy, ..., v,,_, } it follows that [|vo — w, || = |2 +——, (see Figure 2).
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\\x/v\\

Figure 1

Figure 2

Based on ||x-z|| =||vo — wo || and lemma 1, there exist a rational translation h for which h(v,)= x and h(w,)=z2.
Denote g (h(v;))=V; for all /1<i<m-1, (see Figure 3).

h(vg)= X

{Vi, .. Vi1 }

Figure 3

Denote S(x, y) = {X, Y, ,v4, -.., Vm_1}- Suppose that f(x)= f(y) holds for some unit- distance preserving mapping f:
S(xy)— Q4.
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The assumption (x) = f(y) and ||3-z|| =7 imply that ||/3) - fi2) | =1=|/x) = /(=) ||, hence the set

{f(x), f(2), f(W1), ., f(Vm—1)}, forms a clique in G(Q%,1) of size m+1,which is a contradiction. It follows that f(x)
# f(v) holds for every unit- distance preserving mapping 1 S¢x,y)— Q<.

This completes the proof of Lemma 4.

Corollary 3:
If x and y are two points in Q¢,d > 5, such that ||x-y||=v2 , then every unit- distance preserving mapping f: Q¢ -

Q¢ satisfies f{x)#f(v).
Mappings of Q> to Q° that preserve distance 1
The purpose of this section is to prove the following Theorem.

Theorem 1:
Every unit- distance preserving mapping f: Q> —Q> is an isometry; moreover, dim(aff(f(L[5])))=5.
To prove Theorem 1, we prove first the following Theorem.

Theorem 1*:
If Z, W are two points in Q°, for which || Z — W|| = V2, then there exists a finite set Mg, containing Z and W, such
that for every unit- distance preserving mapping f: Ms—Q®, the following equality holds:

lrz-sm | = || z-w|
Proof of Theorem 1*:
Let Z, W are any two points in Q®, for which || Z — w | = V2.
Denote by L[5] the set of 4 - (5

2
to1/2 or -1/2.
A "quadruple” in L[5] means a set L;;[5],i # jel = {1, 2,3, 4,5}, containing four points of L[5] in which the non-
zero coordinates are in some fixed two, the i-th and the j-th coordinates; i.e.

) = 40 points in Q¢ in which precisely two coordinates are non- zero and are equal

. . .
Lij[5]={(0,i§,0,iz,0)} i .3

If p is a distance between any two points of the set L[5] then pe {~/0.5,1,v1.5,/2}.

Fix a quadruple L;;[5] let x, y two points in L;;[5] such that ||x-y[|=v2.

By Lemma 1 and based on || Z-w|| = || x-y||, there exists a rational isometry h: Q° —Q® for which h(x) =:Z=x* and
h(y)=W:=y* ; denote h(l)=I* for all le L[5].

Let L*[5] = {I* = h(I) for all le L[5]}; it is clear that Z, W € L*[5], and to simplify terminology we will denote
L*[5] ={l*;}whenie{l,2, ..., 40}.

Define the set My by: Mg =U { S(I";, ") US(I"p, ') US(U5, 1) )}

foralli,j,n,m,s te{l,2,...,40} when [I";— I*;|| = V05,

Vo=, | = viSand ||I"s — 1", || = VZ; where the sets S are given by Lemma 4.

Let f, f: Ms—Q® be any unit- distance preserving mapping.

Claim 1:

If x and y are two points in L*[5] for which || x-y||=1, V2 then f{x) # f(3).
Proof of Claim 1:

Clearly, if " X-y” =1, then || f(x) - f(y) || =1, hence f(x) # f(»).
The distance V2 is between /2 +—2—1and /2 +——+1.

m-1 m-—1
Where m=w(d)=4 for d=5.
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Therefore, if || x-y||=v2, then there exist an i and j, 1< i# <40, such that x=I";, y=I"; and =V2.(l%;
and [*; on the same quadruple).

By Lemma 4, applied to I*; and "}, there exists a set S(I";, *;), that contains [*; and "}, for which every unit-
distance preserving mapping g: S(I*;, I*;)— Q> satisfies

(" # e I'p).

In particular this holds for the mapping g=f/ S(I*;, I*;), therefore f(I*,)# f(, I")).

l*i - l*]

Claim 2:

The mapping f preserves all the distancesv/2. In particular || f(2)-f(W)||=v2.

Proof of Claim 2:

Consider the graph P of unit distances among the points of L*[5]; it is isomorphic to the famous Petersen’s graph,
by substituting a 4-cycle for each vertex of P.

(See figure 4).

Figure 4

We prove that the affine dimension of the f- image of each quadruple, i.e., the image of the four points that
correspond to one vertex of P must be 2. Indeed, by claim 1 this dimension is at least 2, since f (I*;) # f (1*;) for all
I*; and I"; on L*[5]

(In particular, this holds for all I*; and I*; on the same quadruple).

Suppose, by contradiction, that dim(aff(f(A))) > 3, for some quadruple A, let the quadruple B, C, D, and E correspond
to vertices of P so that A, B, C, D and E is a cycle in P.

All the points of f(B) and f(E) must be at unit distance from those of f(A), so all the points of f(B) and f(E) lie on a
circle, say circle S with enter O.

This means that f(B) and f(C) are two squares inscribed in S. it follows that all the points of f(C) and f(D) must lie on
the 3-flat that is perpendicular to 2-flat determined by S and passes through O.

But this cannot happen, since the points of f(C) span a flat of dimension at least 2 in this 3-flat, which then forces the
points of f(D) to lie on a line, which is impossible.

It follows that the points of any f(F) lie on the intersection of some unit-distance spheres and a 2-flat which is a
circle; when F={a, b, c, d} is a given block,

such that ” a-b " = " b-c || = " c-d" = " d-a " =1 and " a-c || = "b-d" =V/2.

Thus f(a), f(b), f(c),and f(d) form the vertex set of quadrangle, of edge length one that lies in a circle. (See figure 5).
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f(a) f(b)
@ (ii) \
e | f(O
f(d)=f(b)/ fdy *— f(d) = f(b)
fl@) g 7 (b) |
(iid) .
Fd) @
Figure 5

The situations (i) and (ii) are impossible since f (I*;) # f (I*;) for all [*;and [*; on L*[5].
It follows that f(a), f(b), f(c), and f(d) form vertex set of a square in circle of diameter V2, implying: ||/{a)-
1ol =l | =va.

Hence, the distancev/2, within each quadrangle are preserved. In particular

lf2-fom) || = V2.

This completes the proof of Theorem 1*.

Proof of Theorem 1:
Let f be a unit distance preserving mapping f:Q® — Q°. By Theorem 1" the unit distance preserving mapping f

preserves the distance v2 .
Our result follows by using a Theorem of J. Zaks [8], which states that if a mapping
9:Q? — Q9 preserves the distances 1 and V2, then g is an isometry, provided d > 5.

Moreover, dim(aff(f(L[5]))) = 5:
The mapping f is an isometry, hence it suffices to provide that dim(aff (L[5])) = 5.

To show this, notice that:

_<_’_’ ”)+_< , , ”>—_(’,’,)
2(2’2’ ”) 2( 2’2’ ”) 2(’,’,)
_< ,0,—,—, )+_< ,0,—, -, )—_( ,0,1,0, )
2(”2’2’ ) 2(” 2’2’ ) 2(’,’,)
2 ”’2,2 2 e 2’2 2(’,’,)

Hence all the major unit vectors in RS when multiplied by % are convex combinations of points in L[5].
This completes the proof of Theorem 1.

Mapping of Q° to Q° that preserve distance 1

The purpose of this section is to prove the following Theorem:
Theorem 2:
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Every unit —distance preserving mapping f: Q% — Q° is an isometry; moreover,
dim (aff(f(L[6]))) = 6.
To prove Theorem 2, we prove first the following Theorem.

Theorem 2™

if Z,W are any two points in Q®, for which || Z-W ||= /2, then there exists a finite set Me, containing Z and W, such
that for every unit —distance preserving mapping f: Mg — Q®, the following equality holds:

l2)-fom) || = || z-w].

Proof of Theorem 2™
Consider the 6 points {Ay, ..., A¢}, defined as follows:

A = ! 0, 0, 0 O !
1 = (E’ ) ] ) ] E)
A, = ! 0, 0 0, O !
2 = (zl ) ) ) ) 2)
A; = (0 ! 0, 0 ! 0
3 = ( ) 2 ) ] ] 2 ) )
A, = (0 ! 0, 0 ! 0
4 — ( ) 2 ) ) y 2 ) )
As;=(0, O L1 0, 0
5 — ( ) ) 12; 2: ) )
A6 = (0: O; E; - EJ 05 0)
The points {4, ..., A} form the vertices of a regular 5- simplex of edge length one in Q°. Let the 6 points
Bi,B,, ..., Bg of Q6 be defined by B; = —A4; , 1 < i < 6, their mutual distances are one, so they form the vertices of
a regular 5 — simplex of edge length one in Q°. Let T, = {4, ..., Ag, By, ..., B }.
Fixak,1 <k <6,by Lemmalandbasedon |Z—W| = | A, — By there exists a rational isometry h: Q® - Q°

for which h(4,) = Z: = A*;, and h(B,) = W:= B*} ; denote h(4;) = A*; and h(B;) = B*; forall1 < i < 6.
LetT*, = {A*y, ..., A% 3, B*1, ..., B*c} ;itisclearthat Z, W € T*,.

Define the set My by: My, = S(A*;,B*1) US(A",,B*,) U ... US(A%,, B*s), Where the sets S are given by Lemma 4.
Let £, f: M, — Q° be any unit-distance preserving mapping.

Claim 3:
If x and y are two points in T*¢, then f(x) # f(¥).
Proof of Claim 3:
Computing the mutual distances of the points in T*¢ show that:
a7 — 45| = ||B" —B%|| = |4 —B|| =1 foralll <i<j<6and
| A" =B || =v2,forall1 <i<6.

All of the distances above are between /2 + ﬁ —1and /2 + ﬁ +1.

wherem = w(d) = 6 ford = 6.
Therefore if |x — y|| = 1, then || f(x) — fF(») || = 1, hence f(x) # F();
if |[x —y| = V2 thereisani, 1 <i < 6, such that x = A*;,y = B*; and
4 - B =2
By Lemma 4, applied to A*; and B*;, there exists a set S(4*;, B*;), that contains A*; and B*;, for which every unit-
distance preserving mapping g: S(A*;, B*;) — Q%satisfies g(4*;) # g(B*)).
In particular, this holds for the mapping g = f/S(4";, B*;), thereforef (A*;) # f(B™;).

Claim 4:

The mapping f preserves all the distancesv'2, between A*; and B*; for all i = 1,2, ...,6. In particular || £(2) —
fm| =v2.

Proof of Claim 4:

Consider the following (4) points:

A= {f(A3), f(By), f(Bs), f (B}
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All of their mutual distances are one, since f preserves distance one, so they form the vertices of a regular 3-
simplex of edge length one in Q6. The intersection of the 4 unit spheres, centered at the vertices of this simplex, is a

2-sphere of radiust = \E centered at the center O, of A;; let 5(201,0 denote this 2-sphere.

Let A, be defined by:

A= {f (A2, f(B3), f(Bs), f (B&}
In the similar way we obtain the 2-spheres 5(202‘0, having her center at 0,, which is also the center of A,.
The four points f (A7), f(43), f(BY) and f(B5) are in the intersection of the two 2-spheres S(Zoj_t), j=12.
By claim 3, the two simplices A;, and A, are different, but they have vertices f (BZ), and f(Bg) in common.

We will prove that 0, # 0,:
Assume that 0; = 0, = 0. (See figure 6)

f(B's),f(B",)
f(B"3)
f(4%3) f(B*4)
Figure 6
It follows that || £(B;) — 0| = || f(4)) — 0| =t, i=3, 4, and j=3,4,5, 6.
In particular, the point O the center of the simplex f(A™) {f(B3),f(Bs),f(B:), f(Bg)}

, SO
0= % (f(B3) + f(By),+f(B2) + f(B¢)), but point O is also the center of the simplex A, so O = % (f(43) +
f(AL), +f (A5) + f(Ap)).

It follows that £ (45) = f(B3), a contradiction to Claim 3, thus 0; # 0,.

Therefore the 2- spheres S(Zoj,t), j = 1,2, are different.

They have the same radius t = \/g and they have a non-empty intersection. It follows that there two 2-spheres

intersect in a one-dimensional sphere, which is a circle.

Thus f(A3), f(A%), f(B7) and f(B;) form the vartex set of a quadrangle, of edge length one, that lies in a circle.
(See figure 5).

It follows as the previous case that f (A7), f(43), f(B7) and f(B;) form the vartex set of a square in a circle of
diameter v/2, implying:
I Fean = FBO| = £5) = fBD || = VZsince f(4) = f(B;) fori =1,2.

It follows by Lemma 1 that the mapping f preserves the distance V2 between A} and B; forall i = 1,2, ...,6. In

particular | f(2) — FW) || = V2.

This completes the proof of Theorem 2",

Proof of Theorem 2
Let £ be a unit distance preserving mapping f: Q¢ — Q. By Theorem 2" the unit distance preserving mapping

1947



The Beckman-Quarles Theorem For Rational Spaces: Mapping Of Q¢ To Q¢ That Preserve Distance 1

fpreserves the distance v2.

Our result follows by using a Theorem of J.Zaks [8], which states that if a mapping

g: Q% — Q¢ preserves the distance 1 and v/2, then g is an isometry, provided d > 5.

The proof that dim(aff(L[6])) = 6 is similar to the proof that dim(aff(L[5])) = 5 that appeared in of Theorem 1, hence
it is omitted.

This completes the proof of Theorem 2.

Mapping of Q¢ to Q¢ that preserve distance 1

The purpose of this section is to prove the following Theorem:

Theorem 3:

For all the dimensions, d,d > 5, every unit- distance preserving mapping f: Q¢ — Q¢ is an isometry.

To prove Theorem 3, we prove first the following Theorem in which L[d] and quadruples are defined in a way, similar
to the one that appeared in the proof of Theorem 1 in page 11.

Theorem 3™

For every value of d,d > 5 if g: L[d] — R“ is a mapping that preserves unit distances, for which g(x) # g(y)
holds for any two points x, y such that || x — y|| = V2, then the following holds:

a. For every quadruple T of L[d] , g(T) is the vertex set of a planar unit square.

b. dim(aff(g(L[d]))) =d

Proof of Theorem 3™

It is clear that Theorem 3" holds for d = 5 and d = 6 from Theorems1 and 2.

Suppose, inductively on d, that the assertion holds for d and for d + 1,d > 5, and let f: L[d + 2] — R**? be any
unit- preserving mapping such that £ (x) # f(y) for any two points x,y of L[d + 2] satisfying ||x — y|| = V2.
LetT = L;j[d + 2] be any quadruple in L[d + 2], which we may assume, without loss of generality, that it is the
quadruple:

T =Lgy1as2ld + 2] ={(0,..,0,£1/2,£1,2) ¢ R%+2}.

By assumption we know that f(x) # f(y) for any two points x, y such that

|lx = | = V2, (in particular for any two points x,y such that ||x — y|| = V2 in the quadruple T).

Consider the subset K[d + 2] of L[d + 2], consisting of all the points of L[d + 2] in which the last two coordinates
vanish. Notice that the set K[d + 2] is, of course, congruent to the last set L[d].

To show that £(T) has affine dimension 2:
Assume, for contradiction, that dim(aff(f(T)))> 3.
We restrict our attention to the set f(T U K[d + 2]).
The image f(K[d + 2]) lies in the intersection of the unit spheres centered at the points of f(T), and since
dim(aff(f(T)))= 3 it follows that the dimension of the intersection of these four (d + 1)-spheres is at most d — 2,
and it lies in an affine flat, say F, of dimension at most d — 1.
Let h: F — R% be an isometric embedding, and consider the composition
h°f:K[d + 2] —» R%. By an inductive assumption on the dimension d,
dim(aff(hyf: (K[d + 2])))=dim(aff(h°f (L[d])))=d.
This is a contradiction, since f (K [d + 2]) lies in the affine flat F which is of dimension at most d — 1.
To show that dim(aff(f(L[d + 2]))) = d + 2:
It follows by part (a) that dim(aff(f (T))) = 2, and f(T) forms the vartex set of some planar unit square.
Assume, by contradiction that dim(aff(f (L[d + 2]))) < d + 1, and consider the effect of the mapping f on the set
T U K[d + 2]; as in the previous case, all the points of K[d + 2] are at unit distance from all those of T, therefore all
the points of f(K[d + 2]) are at unit distance from all the points of f(T), hence the affine hull of f(K[d + 2]) is
orthogonal to the affine hull of f(T), thus:
d+ 12 dim (aff(f((L[d + 21)))) = dim (aff(f(T))) + dim(aff(f (K [d + 2])))=
= 2 + dim(aff(f)L[d]))) = d+2, which is a contradiction.
It follows that dim(aff(f (L[d + 2]))) = d + 2.

This completes the proof of Theorem 3™,
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Proof of Theorem 3:
We will prove first the following Claim:
Claim 5:
Every unit-distance preserving mapping f: Q¢ — Q¢ preserves the distance v/2, forall d > 5.
Proof of Claim 5:
Letd > 5and let f: Q¢ — Q¢ be a unit distance-preserving mapping.
By Corollary 3 it follows that £ (x) # f () holds for every two points x and y in Q¢, for which ||x — y|| = V2.
Let i: Q¢ - R% be the natural inclusion isometry, and consider the combined mapping i°f:: Q¢ — R<.
By Theorem 3*, the distance V2 of opposite vertices in T preserved by i°f, hence it is preserved by f.
It follows by Lemma 1 that for every pair of points x and y, if [|x — y|| = V2, then
| £Gx) = F) || = V2, i.e, the mapping f preserves the distance V2.
Let d be an integer,d > 5, and let f be a unit distance preserving mapping f: Q¢ — Q¢. By Claim 5 the unit distance
preserving mapping f preserves the distance v/2. Our result follows by using a Theorem of J.Zaks [11] which states
that if a mapping g: Q¢ — Q¢ preserves the distances 1 and v/2, then g is an isometry, providedd > 5.

This completes the proof of Theorem 3.
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