The Beckman-Quarles Theorem For Rational Spaces: Mapping Of Q^{d} To Q^{d} That Preserve Distance 1

By: Wafiq Hibi

Wafiq. hibi@gmail.com
The college of sakhnin - math department
Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 16 April 2021

```
Abstract : Let \(R^{d}\) and \(Q^{d}\) denote the real and the rational d-dimensional space, respectively, equipped with the usual
Euclidean metric. For a real number \(\rho>0\), a mapping \(f: A \rightarrow X\), where \(X\) is either \(R^{d}\) or \(Q^{d}\) and \(A \subseteq X\), is called \(\rho\) -
distance preserving \(\|x-y\|=\rho\) implies \(\|f(x)-f(y)\|=\rho\), for all \(x, y\) in \(A\).
Let \(\mathrm{G}\left(\mathrm{Q}^{\mathrm{d}}, \mathrm{a}\right)\) denote the graph that has \(Q^{d}\) as its set of vertices, and where two vertices \(x\) and \(y\) are connected by edge if and only if \(\|x-y\|=a\). Thus, \(\mathrm{G}\left(Q^{d}, 1\right)\) is the unit distance graph. Let \(\omega(\mathrm{G})\) denote the clique number of the graph G and let \(\omega(d)\) denote \(\omega\left(\mathrm{G}\left(Q^{d}, 1\right)\right)\).
```

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from R^{d} into R^{d} is an isometry, provided $d \geq 2$.
The rational analogues of Beckman- Quarles theorem means that, for certain dimensions d, every unit- distance preserving mapping from Q^{d} into Q^{d} is an isometry.

A few papers [2, 3, 4, 5, 6, 8,9,10 and 11] were written about rational analogues of this theorem, i.e, treating, for some values of d, the property "Every unit- distance preserving mapping $f: Q^{d} \rightarrow Q^{d}$ is an isometry".
The purpose of this thesis is to present all the results (see [3,5,6 and 7]) about the rational analogues of the Beckman-Quarles theorem, and to establish rational analogues of the Beckman-Quarles theorem, for all the dimensions $d, d \geq 5$.

1.1 Introduction:

Let R^{d} and Q^{d} denote the real and the rational d-dimensional space, respectively.
Let $\rho>0$ be a real number, a mapping : $R^{d} \rightarrow Q^{d}$, is called ρ - distance preserving if $\quad\|x-y\|=\rho$ implies $\|f(x)-f(y)\|=\rho$.

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from R^{d} into R^{d} is an isometry, provided $d \geq 2$.
A few papers [4, 5, 6, 8,9,10 and 11] were written about the rational analogues of this theorem, i.e, treating, for some values of d, the property "every unit- distance preserving mapping $f: Q^{d} \rightarrow Q^{d}$ is isometry".

We shall survey the results from the papers $[2,3,4,5,6,8,9,10$ and 11$]$ concerning the rational analogues of the Backman-Quarles theorem, and we will extend them to all the remaining dimensions , $d \geq 5$.

History of the rational analogues of the Backman-Quarles theorem:

We shall survey the results from papers [$2,3,4,5,6,8,9,10$ and 11] concerning the rational analogues of the Backman-Quarles theorem.

1. A mapping of the rational space Q^{d} into itself, for $d=2,3$ or 4 , which preserves all unit- distance is not necessarily an isometry; this is true by W.Bens [2, 3] and H.Lenz [6].
2. W.Bens [2,3] had shown the every mapping $f: Q^{d} \rightarrow Q^{d}$ that preserves the distances 1 and 2 is an isometry, provided $d \geq 5$.
3. Tyszka [8] proved that every unit- distance preserving mapping $f: Q^{8} \rightarrow Q^{8}$ is an isometry; moreover, he showed that for every two points x and y in Q^{8} there exists a finite set $\mathrm{S}_{x y}$ in Q^{8} containing x and y such that every
unit- distance preserving mapping $f: S_{x y} \rightarrow Q^{8}$ preserves the distance between x and y. This is a kind of compactness argument, that shows that for every two points x and y in Q^{d} there exists a finite set $S_{x y}$, that contains x and y ("a neighborhood of x and y ") for which already every unit- distance preserving mapping from this neighborhood of x and y to Q^{d} must preserve the distance from x to y. This implies that every unit preserving mapping from Q^{d} to Q^{d} must preserve the distance between every two points of Q^{d}.
4. J.Zaks [8,9] proved that the rational analogues hold in all the even dimensions d of the form $d=4 k(k+1)$, for $k \geq 1$, and they hold for all the odd dimensions d of the form $d=2 n^{2}-1=m^{2}$. For integers $n, m \geq 2$, (in [9]), or $d=2 n^{2}$ $1, n \geq 3$ (in [10]).
5. R.Connelly and J.Zaks [5] showed that the rational analogues hold for all even dimensions $d, d \geq 6$.

We wish to remark that during the preparation of this thesis, it was pointed out to us that an important argument, in the proof of the even dimensions $d, d \geq 6$, is missing. Here we propose a valid proof for all the cases of $d, d \geq 5$.
6. J.Zaks [11] had shown that every mapping $f: Q^{d} \rightarrow Q^{d}$ that preserves the distances 1 and $\sqrt{2}$ is an isometry, provided $d \geq 5$.

New results:

Denote by $L[d]$ the set of $4 \cdot\binom{d}{2}$ Points in Q^{d} in which precisely two non-zero coordinates are equal to $1 / 2$ or $-1 / 2$. A "quadruple" in $L[d]$ means here a set $L_{i j}[d], i \neq j \in I=\{1,2, \ldots, \mathrm{~d}\}$; contains four j points of $L[d]$ in which the non- zero coordinates are in some fixed two coordinates i and j; i.e.

$$
\stackrel{i}{i j}[d]=(0, \ldots 0, \pm 1 / 2,0 \ldots 0, \pm 1 / 2,0, \ldots 0)
$$

Our main results are the following:

Theorem 1:

Every unit- distance preserving mapping $f: Q^{5} \rightarrow Q^{5}$ is an isometry; moreover, $\operatorname{dim}(\operatorname{aff}(f(L[5])))=5$.

Theorem 2:

Every unit- distance preserving mapping $f: Q^{6} \rightarrow Q^{6}$ is an isometry; moreover, $\operatorname{dim}(a f f(f(L[6])))=6$.

Theorem 3:

For all the dimensions $\mathrm{d}, \mathrm{d} \geq 5$, every unit- distance preserving mapping $f: Q^{d} \rightarrow Q^{d}$ is an isometry.

Auxiliary Lemmas:

We need the following Lemmas for our proofs of the Theorems 1 and 2.
Lemma 1: (due J.Zaks [10]).
If $v_{l}, \ldots, v_{n}, w_{l}, \ldots, w_{m}$ are points in $Q^{d}, n \leq m$ such that $\left\|v_{i}-v_{j}\right\|=\| w_{r}-w_{s}$,
for all $l \leq i \leq j \leq n, l \leq r \leq s \leq m$ then there exists a congruence $f: Q^{d} \rightarrow Q^{d}$, such that $f\left(v_{i}\right)=w_{i}$ for all $l \leq i \leq n$.

Lemma 2: (due to Chilakamarri [4]).
a. For even $d, \omega(d)=d+1$, if $d+1$ is a complete square; otherwise $\omega(d)=d$.
b. For odd $d, d \geq 5$, the value of $\omega(d)$ is as follows: if $d=2 n^{2}-1$, then $\omega(d)=d+1$; if $d \neq 2 n^{2}-1$ and the Diophantine equation $d x^{2}-2(d-1) y^{2}=z^{2}$ has a solution in which $x \neq 0$ then $\omega(d)=d$; otherwise $\omega(d)=d-1$.

Lemma 3:

If a, b, c are three numbers that satisfy the triangle inequality and if a^{2}, b^{2}, c^{2} are rational numbers then:

$$
b^{2}-\frac{\left(b^{2}-a^{2}+c^{2}\right)^{2}}{4 c^{2}}
$$

, and
b. The space $Q^{d}, d \geq 8$ contains a triangle $A B C$, having edge length: $A B=c, B C=a, A C=b$.

Proof of Lemma 3:

To prove (a), its suffices to prove that $4 b^{2} c^{2}-\left(b^{2}-a^{2}+c^{2}\right)^{2}>0$

$$
\begin{gathered}
4 b^{2} c^{2}-\left(b^{2}-a^{2}+c^{2}\right)^{2}= \\
=\left[2 b c+\left(b^{2}-a^{2}+c^{2}\right)\right] \cdot\left[2 b c-\left(b^{2}-a^{2}+c^{2}\right)\right] \\
=\left[(b+c)^{2}-a^{2}\right] \cdot\left[a^{2}-(b-c)^{2}\right] \\
=(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{b}+\mathrm{c}-\mathrm{a})(\mathrm{a}+\mathrm{b}-\mathrm{c})(\mathrm{a}-\mathrm{b}+\mathrm{c})>0 .
\end{gathered}
$$

The triangle inequality implies that the expression in the previous line on the left is positive; it appears also in Heron's formula.

To prove (b): Let a, b, c be three numbers that satisfy the triangle inequality, and so that a^{2}, b^{2}, c^{2} are rational numbers.
The number $\mathrm{c}^{2} / 4$ is positive and rational, hence there exist, according to Lagrange Four Squares theorem [8], rational numbers $\alpha, \beta, \gamma, \delta$ such that $\mathrm{c}^{2} / 4=\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$.

By part (a), the following holds: $b^{2}-\frac{\left(b^{2}-a^{2}+c^{2}\right)^{2}}{4 c^{2}}>0$, therefore there exist by Lagrange
Theorem rational numbers: x, y, z, w, such that:

$$
b^{2}-\frac{\left(b^{2}-a^{2}+c^{2}\right)^{2}}{4 c^{2}}=x^{2}+y^{2}+z^{2}+w^{2} .
$$

Consider the following points:
$A=(-\alpha,-\beta,-\gamma,-\delta, 0, \ldots, 0)$
$B=(\alpha, \beta, \gamma, \delta, 0, \ldots, 0)$
$C=\left(\frac{b^{2}-a^{2}}{c^{2}} \alpha, \frac{b^{2}-a^{2}}{c^{2}} \beta, \frac{b^{2}-a^{2}}{c^{2}} \gamma, \frac{b^{2}-a^{2}}{c^{2}} \delta, x, y, z, w, 0, \ldots, 0\right)$
The points A, B and C satisfy:

$$
\begin{aligned}
& \|A-B\|=\sqrt{4\left(\alpha^{2}+\beta^{2}+\delta^{2}+\gamma^{2}\right.}=c \\
& \|A-C\|=\sqrt{\left[\frac{b^{2}-a^{2}}{c^{2}}+1\right]^{2}\left(\alpha^{2}+\beta^{2}+\delta^{2}+\gamma^{2}\right)+x^{2}+y^{2}+z^{2}+w^{2}} \\
& \quad=\sqrt{\frac{\left(b^{2}-a^{2}+c^{2}\right)^{2}}{4 c^{2}}+b^{2}-\frac{\left(b^{2}-a^{2}+c^{2}\right)^{2}}{4 c^{2}}}=b,
\end{aligned}
$$

and:

$$
\begin{gathered}
\|B-C\|=\sqrt{\left[\frac{b^{2}-a^{2}}{c^{2}}-1\right]^{2}\left(\alpha^{2}+\beta^{2}+\delta^{2}+\gamma^{2}\right)+x^{2}+y^{2}+z^{2}+w^{2}} \\
=\sqrt{\frac{\left(b^{2}-a^{2}-c^{2}\right)^{2}}{4 c^{2}}-\frac{\left(b^{2}-a^{2}+c^{2}\right)^{2}}{4 c^{2}}+b^{2}}= \\
=\sqrt{\frac{-4\left(b^{2}-a^{2}\right) c^{2}+4 b^{2} c^{2}}{4 c^{2}}}=a
\end{gathered}
$$

This completes the proof of Lemma 3.

Corollary 1:

If $a, b, 1$ satisfy the triangle inequality and if a^{2}, b^{2} are rational numbers, then the space Q^{5} contains the vertices of a triangle which has edge lengths a, b, l.

Proof:

Consider the following points:

$$
\begin{aligned}
A & =\left(\frac{1}{2}, 0,0,0,0\right) \\
B & =\left(-\frac{1}{2}, 0,0,0,0\right) \\
C & =\left(\left(b^{2}-a^{2}\right) \frac{1}{2}, \alpha, \beta, \gamma, \delta\right)
\end{aligned}
$$

Where $\alpha, \beta, \gamma, \delta$ are the rational numbers that exist according to Lagrange theorem, for which:

Corollary 2:

$$
\begin{aligned}
& \text { From the proof of Lemma } 2 \text { the triangle, } A B C \text { has the edge length } a, b, 1 \text {. } \\
& \text { Corollary 2: } \quad b^{2}-\frac{\left(b^{2}-\right)^{2}+1}{4}=\alpha^{2}+\beta^{2}+\delta^{2}+\gamma^{2}
\end{aligned}
$$

If t is a number such that $\sqrt{2+\frac{2}{m-1}}-1 \leq t \leq \sqrt{2+\frac{2}{m-1}}+1, t^{2} \in Q$
Where $m \geq 4$ is a natural number, then the space $Q^{d}, d \geq 5$, contains a triangle $A B C$ having edge length $1, t$,
$\sqrt{2+\frac{2}{m-1}}$.

Proof:

According to Lemma 2, the numbers 1,t, $\sqrt{2+\frac{2}{m-1}}$ satisfy the triangle inequality, and the result follows from Corollary 1.

Lemma 4:

If x and y are two points in $Q^{d}, d \geq 5$, so that:

$$
\sqrt{2+\frac{2}{m-1}}-1 \leq\|x-y\| \leq \sqrt{2+\frac{2}{m-1}}+1
$$

where $\omega(d)=m$, then there exists a finite set $S(x, y)$, contains x and y such that $f(x) \neq f(y)$ holds for every unitdistance preserving mapping $f: S(x, y) \rightarrow Q^{d}$.

Proof of Lemma 4:

Let x and y be points in $Q^{d}, d \geq 5$, for which,
$\sqrt{2+\frac{2}{m-1}}-1 \leq\|x-y\| \leq \sqrt{2+\frac{2}{m-1}}+1 \quad$ where $\omega(d)=m$.
The real numbers $\|x-y\|, \sqrt{2+\frac{2}{m-1}}$ and l satisfy the triangle inequality, hence by Corollary 2 there exist three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ such that $\|A-B\|=\|x-y\|$,
$\|A-C\|=\sqrt{2+\frac{2}{m-1}}$ and $\|B-C\|=1$. It follows by two rational reflections that there exists a rational point \mathbf{z} for which $\|y-z\|=1$ and $\|x-z\|=\sqrt{2+\frac{2}{m-1}}$, (see Figure 1).
Let $\left\{v_{0}, \ldots, v_{m-1}\right\}$ be a maximum clique in $\mathrm{G}\left(Q^{d}, 1\right)$, and let w_{0} be the reflection of v_{0} with respect to the rational hyperplane passing through the points $\left\{v_{1}, \ldots, v_{m-1}\right\}$ it follows that $\left\|v_{0}-w_{0}\right\|=\sqrt{2+\frac{2}{m-1}}$, (see Figure 2).

Figure 1

Figure 2

Based on $\|x-z\|=\left\|v_{0}-w_{0}\right\|$ and lemma 1, there exist a rational translation h for which $h\left(v_{0}\right)=x$ and $h\left(w_{0}\right)=z$.
Denote $g\left(h\left(v_{i}\right)\right)=V_{i}$ for all $1 \leq i \leq m-1$, (see
Figure 3).

Figure 3
Denote $\mathrm{S}(x, y)=\left\{x, y, z, v_{1}, \ldots, v_{m-1}\right\}$. Suppose that $f(x)=f(y)$ holds for some unit- distance preserving mapping f : $S(x, y) \rightarrow Q^{d}$.

The assumption $f(x)=f(y)$ and $\|y-z\|=1$ imply that $\|f(y)-f(z)\|=1=\|f(x)=f(z)\|$, hence the set
$\left\{f(x), f(z), f\left(v_{1}\right), \ldots, f\left(v_{m-1}\right)\right\}$, forms a clique in $\mathrm{G}\left(Q^{d}, 1\right)$ of size $m+1$, which is a contradiction. It follows that $f(x)$ $\neq f(y)$ holds for every unit- distance preserving mapping $f: S(x, y) \rightarrow Q^{d}$.
This completes the proof of Lemma 4.

Corollary 3:

If x and y are two points in $Q^{d}, d \geq 5$, such that $\|x-y\|=\sqrt{2}$, then every unit- distance preserving mapping $f: Q^{d} \rightarrow$ Q^{d} satisfies $f(x) \neq f(y)$.

Mappings of $\boldsymbol{Q}^{\mathbf{5}}$ to $\boldsymbol{Q}^{\mathbf{5}}$ that preserve distance 1

The purpose of this section is to prove the following Theorem.

Theorem 1:

Every unit- distance preserving mapping $f: Q^{5} \rightarrow Q^{5}$ is an isometry; moreover, $\operatorname{dim}(\operatorname{aff}(f(L[5])))=5$.
To prove Theorem 1, we prove first the following Theorem.

Theorem 1*:

If Z, W are two points in Q^{5}, for which $\|Z-W\|=\sqrt{2}$, then there exists a finite set M_{5}, containing Z and W, such that for every unit- distance preserving mapping $f: M_{5} \rightarrow Q^{5}$, the following equality holds:
$\|f(Z)-f(W)\|=\|Z-W\|$

Proof of Theorem 1*:

Let Z, W are any two points in Q^{5}, for which $\|Z-W\|=\sqrt{2}$.
Denote by $L[5]$ the set of $4 \cdot\binom{5}{2}=40$ points in Q^{d} in which precisely two coordinates are non- zero and are equal to $1 / 2$ or $-1 / 2$.
A "quadruple" in $L[5]$ means a set $L_{i j}[5], i \neq j \epsilon I=\{1,2,3,4,5\}$, containing four points of $L[5]$ in which the nonzero coordinates are in some fixed two, the i-th and the j-th coordinates; i.e.

$$
L_{i j}[5]=\left\{\left(0, \pm \frac{1}{2}, 0, \pm \frac{1}{2}, 0\right)\right\} \quad 1 \quad i \quad . \quad j \quad 5
$$

If ρ is a distance between any two points of the set $L[5]$ then $\rho \epsilon\{\sqrt{0.5}, 1, \sqrt{1.5}, \sqrt{2}\}$.
Fix a quadruple $L_{i j}[5]$ let x, y two points in $L_{i j}[5]$ such that $\|x-y\|=\sqrt{2}$.
By Lemma 1 and based on $\|Z-W\|=\|x-y\|$, there exists a rational isometry $h: Q^{5} \rightarrow Q^{5}$ for which $h(x)=: Z=x^{*}$ and $h(y)=W:=y^{*}$; denote $h(l)=l^{*}$ for all $\mathrm{l} \epsilon L[5]$.
Let $L^{*}[5]=\left\{l^{*}=h(l)\right.$ for all $\left.l \in L[5]\right\}$; it is clear that $Z, W \in L^{*}[5]$, and to simplify terminology we will denote $L^{*}[5]=\left\{l^{*}{ }_{i}\right\}$ when $i \in\{1,2, \ldots, 40\}$.
Define the set M_{5} by: $\left.M_{5}=\cup\left\{S\left(l^{*}{ }_{i}, l^{*}{ }_{j}\right) \cup S\left(l^{*}{ }_{n}, l^{*}{ }_{m}\right) \cup S\left(l^{*}{ }_{s}, l^{*}{ }_{t}\right)\right)\right\}$;
for all $i, j, n, m, s, t \in\{1,2, \ldots, 40\}$ when $\left\|l^{*}{ }_{i}-l^{*}{ }_{j}\right\|=\sqrt{0.5}$,
$\left\|l^{*}{ }_{n}-l^{*}{ }_{n}\right\|=\sqrt{1.5}$ and $\left\|l^{*}{ }_{s}-l^{*}{ }_{t}\right\|=\sqrt{2 \text {; where the sets } S \text { are given by Lemma } 4 .}$
Let $f, f: M_{5} \rightarrow Q^{5}$ be any unit- distance preserving mapping.

Claim 1:

If x and y are two points in $L^{*}[5]$ for which $\|x-y\|=1, \sqrt{2}$ then $f(x) \neq f(y)$.

Proof of Claim 1:

Clearly, if $\|x-y\|=1$, then $\|f(x)-f(y)\|=1$, hence $f(x) \neq f(y)$.
The distance $\sqrt{2}$ is between $\sqrt{2+\frac{2}{m-1}}-1$ and $\sqrt{2+\frac{2}{m-1}}+1$.
Where $m=\omega(d)=4$ for $d=5$.

Therefore, if $\|x-y\|=\sqrt{2}$, then there exist an i and $j, 1 \leq i \neq j \leq 40$, such that $x=l^{*}{ }_{i}, y=l^{*}{ }_{j}$ and $\left\|l^{*}{ }_{i}-l^{*}{ }_{j}\right\|=\sqrt{2}$. $\left(l^{*}{ }_{i}\right.$ and $l^{*}{ }_{j}$ on the same quadruple).
By Lemma 4, applied to $l^{*}{ }_{i}$ and $l^{*}{ }_{j}$, there exists a set $\mathrm{S}\left(l^{*}{ }_{i}, l^{*}{ }_{j}\right)$, that contains $l^{*}{ }_{i}$ and $l^{*}{ }_{j}$, for which every unitdistance preserving mapping $g: \mathrm{S}\left(l^{*}{ }_{i}, l^{*}{ }_{j}\right) \rightarrow Q^{5}$ satisfies
$\mathrm{g}\left(l^{*}{ }_{i}\right) \neq \mathrm{g}\left(, l^{*}{ }_{j}\right)$.
In particular this holds for the mapping $g=f / \mathrm{S}\left(l^{*}{ }_{i}, l^{*}{ }_{j}\right)$, therefore $\mathrm{f}\left(l^{*}{ }_{i}\right) \neq \mathrm{f}\left(, l^{*}{ }_{j}\right)$.

Claim 2:

The mapping f preserves all the distances $\sqrt{2}$. In particular $\|f(Z)-f(W)\|=\sqrt{2}$.

Proof of Claim 2:

Consider the graph P of unit distances among the points of $L^{*}[5]$; it is isomorphic to the famous Petersen's graph, by substituting a 4 -cycle for each vertex of P .
(See figure 4).

Figure 4
We prove that the affine dimension of the f - image of each quadruple, i.e., the image of the four points that correspond to one vertex of P must be 2 . Indeed, by claim 1 this dimension is at least 2 , since $f\left(l^{*}{ }_{i}\right) \neq f\left(l^{*}{ }_{j}\right)$ for all $l^{*}{ }_{i}$ and $l^{*}{ }_{j}$ on $L^{*}[5]$
(In particular, this holds for all $l^{*}{ }_{i}$ and $l^{*}{ }_{j}$ on the same quadruple).
Suppose, by contradiction, that $\operatorname{dim}(\operatorname{aff}(f(A))) \geq 3$, for some quadruple A, let the quadruple B, C, D, and E correspond to vertices of P so that $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E is a cycle in P .
All the points of $f(B)$ and $f(E)$ must be at unit distance from those of $f(A)$, so all the points of $f(B)$ and $f(E)$ lie on a circle, say circle S with enter O.
This means that $f(B)$ and $f(C)$ are two squares inscribed in S . it follows that all the points of $f(C)$ and $f(D)$ must lie on the 3-flat that is perpendicular to 2-flat determined by S and passes through O .
But this cannot happen, since the points of $f(C)$ span a flat of dimension at least 2 in this 3-flat, which then forces the points of $f(D)$ to lie on a line, which is impossible.
It follows that the points of any $f(\mathrm{~F})$ lie on the intersection of some unit-distance spheres and a 2-flat which is a circle; when $\mathrm{F}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ is a given block, such that $\|a-b\|=\|b-c\|=\|c-d\|=\|d-a\|=1$ and $\|a-c\|=\|b-d\|=\sqrt{2}$.
Thus $f(a), f(b), f(c)$, and $f(d)$ form the vertex set of quadrangle, of edge length one that lies in a circle. (See figure 5).

Figure 5
The situations (i) and (ii) are impossible since $f\left(l^{*}{ }_{i}\right) \neq f\left(l^{*}{ }_{j}\right)$ for all $l^{*}{ }_{i}$ and $l^{*}{ }_{j}$ on $L^{*}[5]$.
It follows that $f(a), f(b), f(c)$, and $f(d)$ form vertex set of a square in circle of diameter $\sqrt{2}$, implying: $\| f(a)$ $f(c)\|=\| f(b)-f(d) \|=\sqrt{2}$.
Hence, the distance $\sqrt{2}$, within each quadrangle are preserved. In particular

$$
\|f(Z)-f(W)\|=\sqrt{2}
$$

This completes the proof of Theorem 1*.

Proof of Theorem 1:

Let f be a unit distance preserving mapping $f: Q^{5} \rightarrow Q^{5}$. By Theorem 1^{*} the unit distance preserving mapping f preserves the distance $\sqrt{2}$.
Our result follows by using a Theorem of J. Zaks [8], which states that if a mapping
$g: Q^{d} \rightarrow Q^{d}$ preserves the distances 1 and $\sqrt{2}$, then g is an isometry, provided $d \geq 5$.
Moreover, $\operatorname{dim}(\operatorname{aff}(f(L[5])))=5$:
The mapping f is an isometry, hence it suffices to provide that $\operatorname{dim}(a f f(L[5]))=5$.
To show this, notice that:

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{1}{2}, \frac{1}{2}, 0,0,0\right)+\frac{1}{2}\left(\frac{1}{2},-\frac{1}{2}, 0,0,0\right)=\frac{1}{2}(1,0,0,0,0) \\
& \frac{1}{2}\left(\frac{1}{2}, \frac{1}{2}, 0,0,0\right)+\frac{1}{2}\left(-\frac{1}{2}, \frac{1}{2}, 0,0,0\right)=\frac{1}{2}(0,1,0,0,0) \\
& \frac{1}{2}\left(0,0, \frac{1}{2}, \frac{1}{2}, 0\right)+\frac{1}{2}\left(0,0, \frac{1}{2},-\frac{1}{2}, 0\right)=\frac{1}{2}(0,0,1,0,0) \\
& \frac{1}{2}\left(0,0, \frac{1}{2}, \frac{1}{2}, 0\right)+\frac{1}{2}\left(0,0,-\frac{1}{2}, \frac{1}{2}, 0\right)=\frac{1}{2}(0,0,0,1,0) \\
& \frac{1}{2}\left(0,0,0, \frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2}\left(0,0,0,-\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2}(0,0,0,0,1)
\end{aligned}
$$

Hence all the major unit vectors in R^{5} when multiplied by $\frac{1}{2}$, are convex combinations of points in $L[5]$.
This completes the proof of Theorem 1.

Mapping of Q^{6} to Q^{6} that preserve distance 1

The purpose of this section is to prove the following Theorem:
Theorem 2:

Every unit-distance preserving mapping $f: Q^{6} \rightarrow Q^{6}$ is an isometry; moreover,
$\operatorname{dim}(\operatorname{aff}(f(L[6])))=6$.
To prove Theorem 2, we prove first the following Theorem.

Theorem 2*:

if Z, W are any two points in Q^{6}, for which $\|Z-W\|=\sqrt{2}$, then there exists a finite set M_{6}, containing Z and W, such that for every unit -distance preserving mapping $f: M_{6} \rightarrow Q^{6}$, the following equality holds:
$\|f(Z)-f(W)\|=\|Z-W\|$.

Proof of Theorem 2*:

Consider the 6 points $\left\{A_{1}, \ldots, A_{6}\right\}$, defined as follows:

$$
\begin{aligned}
& A_{1}=\left(\frac{1}{2}, \quad 0, \quad 0, \quad 0, \quad 0, \quad \frac{1}{2}\right) \\
& A_{2}=\left(\frac{1}{2}, \quad 0, \quad 0, \quad 0, \quad 0,-\frac{1}{2}\right) \\
& A_{3}=\left(0, \frac{1}{2}, \quad 0, \quad 0, \quad \frac{1}{2}, \quad 0\right) \\
& A_{4}=\left(0, \quad \frac{1}{2}, \quad 0, \quad 0,-\frac{1}{2}, \quad 0\right) \\
& A_{5}=\left(0, \quad 0, \quad \frac{1}{2}, \quad \frac{1}{2}, \quad 0, \quad 0\right) \\
& A_{6}=\left(0, \quad 0, \quad \frac{1}{2},-\frac{1}{2}, 0,0\right)
\end{aligned}
$$

The points $\left\{A_{1}, \ldots, A_{6}\right\}$ form the vertices of a regular 5- simplex of edge length one in Q^{6}. Let the 6 points $B_{1}, B_{2}, \ldots, B_{6}$ of Q^{6} be defined by $B_{i}=-A_{i}, 1 \leq i \leq 6$, their mutual distances are one, so they form the vertices of a regular 5 - simplex of edge length one in Q^{6}. Let $T_{6}=\left\{A_{1}, \ldots, A_{6}, B_{1}, \ldots, B_{6}\right\}$.
Fix a $k, 1 \leq k \leq 6$, by Lemma 1 and based on $\|Z-W\|=\left\|A_{k}-B_{k}\right\|$ there exists a rational isometry $h: Q^{6} \rightarrow Q^{6}$ for which $h\left(A_{k}\right)=Z:=A^{*}{ }_{k}$ and $h\left(B_{k}\right)=W:=B^{*}{ }_{k}$; denote $h\left(A_{i}\right)=A^{*}{ }_{i}$ and $h\left(B_{i}\right)=B_{i}{ }_{i}$ for all $1 \leq i \leq 6$.
Let $T^{*}{ }_{6}=\left\{A^{*}{ }_{1}, \ldots, A^{*}{ }_{d}, B^{*}{ }_{1}, \ldots, B_{6}^{*}\right\}$; it is clear that $Z, W \in T^{*}{ }_{6}$.
Define the set M_{6} by: $M_{6}=S\left(A^{*}{ }_{1}, B^{*}{ }_{1}\right) \cup S\left(A^{*}{ }_{2}, B^{*}{ }_{2}\right) \cup \ldots \cup S\left(A_{6}{ }_{6}, B^{*}{ }_{6}\right)$, where the sets S are given by Lemma 4. Let $f, f: M_{6} \rightarrow Q^{6}$ be any unit-distance preserving mapping.

Claim 3:

If x and y are two points in T^{*}, then $f(x) \neq f(y)$.
Proof of Claim 3:
Computing the mutual distances of the points in T_{6}^{*} show that:
$\left\|A_{i}{ }_{i}-A^{*}{ }_{j}\right\|=\left\|B^{*}{ }_{i}-B_{j}{ }_{j}\right\|=\left\|A_{i}{ }_{i}-B_{j}{ }_{j}\right\|=1$, for all $1 \leq i<j \leq 6$, and $\left\|A^{*}{ }_{i}-B^{*}{ }_{i}\right\|=\sqrt{2}$, for all $1 \leq i \leq 6$.
All of the distances above are between $\sqrt{2+\frac{2}{m-1}}-1$ and $\sqrt{2+\frac{2}{m-1}}+1$.
where $m=\omega(d)=6$ for $d=6$.
Therefore if $\|x-y\|=1$, then $\|\mathrm{f}(x)-f(y)\|=1$, hence $f(x) \neq f(y)$;
if $\|x-y\|=\sqrt{2}$ there is an $i, 1 \leq i \leq 6$, such that $x=A^{*}{ }_{i}, y=B^{*}{ }_{i}$ and $\left\|A_{i}{ }_{i}-B_{i}^{*}\right\|=\sqrt{2}$.
By Lemma 4, applied to $A^{*}{ }_{i}$ and $B^{*}{ }_{i}$, there exists a set $S\left(A^{*}{ }_{i}, B^{*}{ }_{i}\right)$, that contains $A^{*}{ }_{i}$ and $B^{*}{ }_{i}$, for which every unitdistance preserving mapping $g: S\left(A^{*}{ }_{i}, B_{i}{ }_{i}\right) \rightarrow Q^{d}$ satisfies $g\left(A_{i}^{*}\right) \neq g\left(B^{*}{ }_{i}\right)$.
In particular, this holds for the mapping $g=f / S\left(A^{*}{ }_{i}, B^{*}{ }_{i}\right)$, therefore $f\left(A^{*}{ }_{i}\right) \neq f\left(B^{*}{ }_{i}\right)$.

Claim 4:

The mapping f preserves all the distances $\sqrt{2}$, between A_{i}^{*} and $B_{i}{ }_{i}$ for all $i=1,2, \ldots, 6$. In particular $\| f(Z)-$ $f(w) \|=\sqrt{2}$.

Proof of Claim 4:

Consider the following (4) points:

$$
\Delta_{1}=\left\{f\left(A_{3}^{*}\right), f\left(B_{4}^{*}\right), f\left(B_{5}^{*}\right), f\left(B_{6}^{*}\right)\right\}
$$

All of their mutual distances are one, since f preserves distance one, so they form the vertices of a regular 3-
simplex of edge length one in Q^{6}. The intersection of the 4 unit spheres, centered at the vertices of this simplex, is a 2 -sphere of radiust $=\sqrt{\frac{5}{8}}$, centered at the center O_{1} of Δ_{1}; let $S_{\left(O_{1}, t\right)}^{2}$ denote this 2-sphere.
Let Δ_{2} be defined by:

$$
\Delta_{2}=\left\{f\left(A_{4}^{*}\right), f\left(B_{3}^{*}\right), f\left(B_{5}^{*}\right), f\left(B_{6}^{*}\right)\right\}
$$

In the similar way we obtain the 2 -spheres $S_{\left(O_{2}, t\right)}^{2}$, having her center at O_{2}, which is also the center of Δ_{2}.
The four points $f\left(A_{1}^{*}\right), f\left(A_{2}^{*}\right), f\left(B_{1}^{*}\right)$ and $f\left(B_{2}^{*}\right)$ are in the intersection of the two 2 -spheres $S_{\left(O_{j}, t\right)}^{2}, j=1,2$.
By claim 3, the two simplices Δ_{1}, and Δ_{2} are different, but they have vertices $f\left(B_{5}^{*}\right)$, and $f\left(B_{6}^{*}\right)$ in common.
We will prove that $O_{1} \neq O_{2}$:
Assume that $O_{1}=O_{2}=O$. (See figure 6)

Figure 6

It follows that $\left\|f\left(B_{j}^{*}\right)-O\right\|=\left\|f\left(A_{i}^{*}\right)-O\right\|=\mathrm{t}, i=3,4$, and In particular, the point O the center of the simplex

$$
f\left(A_{4}^{*}\right) \quad\left\{f\left(B_{3}^{*}\right), f\left(B_{4}^{*}\right), f\left(B_{5}^{*}\right), f\left(B_{6}^{*}\right)\right\}
$$, so

$\mathrm{O}=\frac{1}{4}\left(f\left(B_{3}^{*}\right)+f\left(B_{4}^{*}\right),+f\left(B_{5}^{*}\right)+f\left(B_{6}^{*}\right)\right)$, but point O is also the center of the simplex Δ_{1} so $\mathrm{O}=\frac{1}{4}\left(f\left(A_{3}^{*}\right)+\right.$ $\left.f\left(A_{4}^{*}\right),+f\left(A_{5}^{*}\right)+f\left(A_{6}^{*}\right)\right)$.
It follows that $f\left(A_{3}^{*}\right)=f\left(B_{3}^{*}\right)$, a contradiction to Claim 3, thus $O_{1} \neq O_{2}$.
Therefore the 2- spheres $S_{\left(o_{j}, t\right)}^{2}, j=1,2$, are different.
They have the same radius $t=\sqrt{\frac{5}{8}}$ and they have a non-empty intersection. It follows that there two 2 -spheres intersect in a one-dimensional sphere, which is a circle.
Thus $f\left(A_{1}^{*}\right), f\left(A_{2}^{*}\right), f\left(B_{1}^{*}\right)$ and $f\left(B_{2}^{*}\right)$ form the vartex set of a quadrangle, of edge length one, that lies in a circle. (See figure 5).
It follows as the previous case that $f\left(A_{1}^{*}\right), f\left(A_{2}^{*}\right), f\left(B_{1}^{*}\right)$ and $f\left(B_{2}^{*}\right)$ form the vartex set of a square in a circle of diameter $\sqrt{2}$, implying:
$\left\|f\left(A_{1}^{*}\right)-f\left(B_{1}^{*}\right)\right\|=\left\|f\left(A_{2}^{*}\right)-f\left(B_{2}^{*}\right)\right\|=\sqrt{2}$ since $f\left(A_{i}^{*}\right) \neq f\left(B_{i}^{*}\right)$ for $i=1,2$.
It follows by Lemma 1 that the mapping f preserves the distance $\sqrt{2}$ between A_{i}^{*} and B_{i}^{*} for all $i=1,2, \ldots, 6$. In particular $\|f(Z)-f(W)\|=\sqrt{2}$.

This completes the proof of Theorem 2*.

Proof of Theorem 2

Let f be a unit distance preserving mapping $f: Q^{6} \rightarrow Q^{6}$. By Theorem 2^{*} the unit distance preserving mapping
f preserves the distance $\sqrt{2}$.
Our result follows by using a Theorem of J.Zaks [8], which states that if a mapping $g: Q^{d} \rightarrow Q^{d}$ preserves the distance 1 and $\sqrt{2}$, then g is an isometry, provided $d \geq 5$.
The proof that $\operatorname{dim}(a f f(L[6]))=6$ is similar to the proof that $\operatorname{dim}(a f f(L[5]))=5$ that appeared in of Theorem 1, hence it is omitted.

This completes the proof of Theorem 2.

Mapping of Q^{d} to Q^{d} that preserve distance 1

The purpose of this section is to prove the following Theorem:

Theorem 3:

For all the dimensions, $d, d \geq 5$, every unit- distance preserving mapping $f: Q^{d} \rightarrow Q^{d}$ is an isometry.
To prove Theorem 3, we prove first the following Theorem in which $L[d]$ and quadruples are defined in a way, similar to the one that appeared in the proof of Theorem 1^{*} in page 11.

Theorem 3":

For every value of $d, d \geq 5$ if $g: L[d] \rightarrow R^{d}$ is a mapping that preserves unit distances, for which $g(x) \neq g(y)$ holds for any two points x, y such that $\|x-y\|=\sqrt{2}$, then the following holds:
a. For every quadruple T of $L[d], \mathrm{g}(\mathrm{T})$ is the vertex set of a planar unit square.
b. $\operatorname{dim}(\operatorname{aff}(g(L[d])))=\mathrm{d}$

Proof of Theorem 3*:

It is clear that Theorem 3^{*} holds for $d=5$ and $d=6$ from Theorems 1 and 2 .
Suppose, inductively on d, that the assertion holds for d and for $d+1, d \geq 5$, and let $f: L[d+2] \rightarrow R^{d+2}$ be any unit- preserving mapping such that $f(x) \neq f(y)$ for any two points x, y of $L[d+2]$ satisfying $\|x-y\|=\sqrt{2}$.
Let $T=L_{i j}[d+2]$ be any quadruple in $L[d+2]$, which we may assume, without loss of generality, that it is the quadruple:
$T=L_{d+1, d+2}[d+2]=\left\{(0, \ldots, 0, \pm 1 / 2, \pm 1,2) \subset R^{d+2}\right\}$.
By assumption we know that $f(x) \neq f(y)$ for any two points x, y such that
$\|x-y\|=\sqrt{2}$, (in particular for any two points x, y such that $\|x-y\|=\sqrt{2}$ in the quadruple T).
Consider the subset $K[d+2]$ of $L[d+2]$, consisting of all the points of $L[d+2]$ in which the last two coordinates vanish. Notice that the set $K[d+2]$ is, of course, congruent to the last set $\mathrm{L}[\mathrm{d}]$.

To show that $f(T)$ has affine dimension 2:
Assume, for contradiction, that $\operatorname{dim}(\operatorname{aff}(\mathrm{f}(\mathrm{T}))) \geq 3$.
We restrict our attention to the set $f(T \cup K[d+2])$.
The image $f(K[d+2])$ lies in the intersection of the unit spheres centered at the points of $f(T)$, and since $\operatorname{dim}(\operatorname{aff} f(f(T))) \geq 3$ it follows that the dimension of the intersection of these four $(d+1)$-spheres is at most $d-2$, and it lies in an affine flat, say F , of dimension at most $d-1$.
Let $h: F \rightarrow R^{d}$ be an isometric embedding, and consider the composition
$h^{\circ} f: K[d+2] \rightarrow R^{d}$. By an inductive assumption on the dimension d,
$\operatorname{dim}\left(\operatorname{aff}\left(h_{0} f:(K[d+2])\right)\right)=\operatorname{dim}\left(a f f\left(h^{\circ} f(L[d])\right)\right)=\mathrm{d}$.
This is a contradiction, since $f(K[d+2])$ lies in the affine flat F which is of dimension at most $d-1$.
To show that $\operatorname{dim}(\operatorname{aff}(f(L[d+2])))=d+2$:
It follows by part (a) that $\operatorname{dim}(a f f(f(T)))=2$ and $f(T)$ forms the vartex set of some planar unit square. Assume, by contradiction that $\operatorname{dim}(\operatorname{aff}(f(L[d+2]))) \leq d+1$, and consider the effect of the mapping f on the set $T \cup K[d+2]$; as in the previous case, all the points of $K[d+2]$ are at unit distance from all those of T, therefore all the points of $f(K[d+2])$ are at unit distance from all the points of $f(T)$, hence the affine hull of $f(K[d+2])$ is orthogonal to the affine hull of $f(T)$, thus:
$d+1 \geq \operatorname{dim}(\operatorname{aff}(f((L[d+2])))) \geq \operatorname{dim}(\operatorname{aff}(f(T)))+\operatorname{dim}(\operatorname{aff}(f(K[d+2])))=$ $=2+\operatorname{dim}(a f f(f) L[d]))=d+2$, which is a contradiction.
It follows that $\operatorname{dim}(\operatorname{aff}(f(L[d+2])))=d+2$.
This completes the proof of Theorem 3*.

Proof of Theorem 3:

We will prove first the following Claim:

Claim 5:

Every unit-distance preserving mapping $f: Q^{d} \rightarrow Q^{d}$ preserves the distance $\sqrt{2}$, for all $d \geq 5$.

Proof of Claim 5:

Let $d \geq 5$ and let $f: Q^{d} \rightarrow Q^{d}$ be a unit distance-preserving mapping.
By Corollary 3 it follows that $f(x) \neq f(y)$ holds for every two points x and y in Q^{d}, for which $\|x-y\|=\sqrt{2}$.
Let $i: Q^{d} \rightarrow R^{d}$ be the natural inclusion isometry, and consider the combined mapping $i^{\circ} f:: Q^{d} \rightarrow R^{d}$.
By Theorem 3^{*}, the distance $\sqrt{2}$ of opposite vertices in T preserved by $i^{\circ} f$, hence it is preserved by f.
It follows by Lemma 1 that for every pair of points x and y, if $\|x-y\|=\sqrt{2}$, then $\|\mathrm{f}(x)-f(y)\|=\sqrt{2}$, i.e, the mapping f preserves the distance $\sqrt{2}$.
Let d be an integer, $d \geq 5$, and let f be a unit distance preserving mapping $f: Q^{d} \rightarrow Q^{d}$. By Claim 5 the unit distance preserving mapping f preserves the distance $\sqrt{2}$. Our result follows by using a Theorem of J.Zaks [11] which states that if a mapping g: $Q^{d} \rightarrow Q^{d}$ preserves the distances 1 and $\sqrt{2}$, then g is an isometry, provided $d \geq 5$.

This completes the proof of Theorem 3.

References

1. F.S Beckman and D.A Quarles: On isometries of Euclidean spaces, Proc. Amer. Math. Soc. 4, (1953), 810-815.
2. W.Benz, An elementary proof of the Beckman and Quarles, Elem.Math. 42 (1987), 810-815
3. W.Benz, Geometrische Transformationen, B.I.Hochltaschenbucher, Manheim 1992.
4. Karin B. Chilakamarri: Unit-distance graphs in rational n-spaces Discrete Math. 69 (1988), 213-218.
5. R.Connelly and J.Zaks: The Beckman-Quarles theorem for rational d-spaces, deven and $d \geq 6$. Discrete Geometry, Marcel Dekker, Inc. New York (2003) 193-199, edited by Andras Bezdek.
6. H.Lenz: Der Satz von Beckman-Quarles in rationalen Raum, Arch. Math. 49 (1987), 106-113.
7. I.M.Niven, H.S.Zuckerman, H.L.Montgomery: An introduction to the theory of numbers, J. Wiley and Sons, N.Y., (1992).
8. A.Tyszka: A discrete form of the Beckman-Quarles theorem for rational eight- space. Aequationes Math. 62 (2001), 85-93.
9. J.Zaks: A distcrete form of the Beckman-Quarles theorem for rational spaces. J. of Geom. 72 (2001), 199205.
10. J.Zaks: The Beckman-Quarles theorem for rational spaces. Discrete Math. 265 (2003), 311-320.
11. J.Zaks: On mapping of Q^{d} to Q^{d} that preserve distances 1 and $\sqrt{2}$. and the Beckman-Quarles theorem. J of Geom. 82 (2005), 195-203.
