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Abstract : Let Rd and Qd denote the real and the rational d-dimensional space, respectively, equipped with the usual 

Euclidean metric. For a real number 𝜌 > 0, a mapping 𝑓: 𝐴 ⟶ 𝑋,  where X is either Rd or Qd and 𝐴 ⊆ 𝑋, is called 𝜌- 

distance preserving ║𝑥 − 𝑦║ = ρ implies ║𝑓(𝑥) − 𝑓(𝑦)║ = ρ , for all x,y in 𝐴.  

 

Let G(Qd,a) denote the graph that has Qd  as its set of vertices, and where two vertices x and y are connected by edge 

if and only if ║𝑥 − 𝑦║ = 𝑎 . Thus, G(Qd,1) is the unit distance graph. Let ω(G) denote the clique number of the 

graph G and let ω(d) denote ω(G(Qd, 1)). 

 

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from Rd into Rd is an 

isometry, provided d ≥ 2. 

The rational analogues of Beckman- Quarles theorem means that, for certain dimensions d, every unit- distance 

preserving mapping from Qd into Qd is an isometry. 

 

A few papers [2, 3, 4, 5, 6, 8,9,10 and 11] were written about rational analogues of this theorem, i.e, treating, for 

some values of 𝑑, the property "Every unit- distance preserving mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑 is an isometry". 

The purpose of this thesis is to present all the results (see [3, 5, 6 and 7]) about the rational analogues of the 

Beckman-Quarles theorem, and to establish rational analogues of the Beckman-Quarles theorem, for all the 

dimensions 𝑑, 𝑑 ≥5. 

 

1.1 Introduction: 

Let Rd and Qd denote the real and the rational d-dimensional space, respectively. 

Let 𝜌 > 0 be a real number, a mapping : 𝑅𝑑 ⟶ 𝑄𝑑  , is called 𝜌- distance preserving if             ║𝑥 − 𝑦║ = ρ   

implies ║𝑓(𝑥) − 𝑓(𝑦)║ = ρ.  
 

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from Rd into Rd is an 

isometry, provided𝑑 ≥ 2.  

A few papers [4, 5, 6, 8,9,10 and 11] were written about the rational analogues of this theorem, i.e, treating, for 

some values of d, the property "every unit- distance preserving mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑  is isometry". 

 

We shall survey the results from the papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the 

Backman-Quarles theorem, and we will extend them to all the remaining dimensions , 𝑑 ≥ 5 . 

 

History of the rational analogues of the Backman-Quarles theorem: 

We shall survey the results from papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the 

Backman-Quarles theorem. 

 

1.      A mapping of the rational space Qd into itself, for d=2, 3 or 4, which preserves all unit- distance is not 

necessarily an isometry; this is true by W.Bens [2, 3] and H.Lenz [6]. 

 

2.      W.Bens [2, 3] had shown the every mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑  that preserves the distances 1 and 2 is an isometry, 

provided 𝑑 ≥5. 

 

3.      Tyszka [8] proved that every unit- distance preserving mapping 𝑓: 𝑄8 ⟶ 𝑄8 is an isometry; moreover, he 

showed that for every two points x and y in Q8  there exists a finite set Sxy in Q8 containing x and y such that every 
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𝑏2 −
(𝑏2 − 𝑎2 + 𝑐2)2

4𝑐2

> 0

unit- distance preserving mapping 𝑓: 𝑆𝑥𝑦 ⟶ 𝑄8 preserves the distance between x and y. This is a kind of 

compactness argument, that shows that for every two points x and y in Qd there exists a finite set Sxy, that contains x 

and y ("a neighborhood of x and y") for which already every unit- distance preserving mapping from this 

neighborhood of x and y to Qd must preserve the distance from x to y. This implies that every unit preserving 

mapping from Qd to Qd must preserve the distance between every two points of Qd. 

 

4.       J.Zaks [8, 9] proved that the rational analogues hold in all the even dimensions 𝑑 of the form d = 4k (k+1), for 

k≥1, and they hold for all the odd dimensions d of the form d = 2n2-1 = m2. For integers n, m≥2, (in [9]), or d = 2n2 -

1, n≥3 (in [10]). 

 

5.      R.Connelly and J.Zaks [5] showed that the rational analogues hold for all even dimensions 𝑑, 𝑑 ≥6. 

 

   We wish to remark that during the preparation of this thesis, it was pointed out to us that an important argument, in 

the proof of the even dimensions 𝑑, 𝑑 ≥6, is missing. Here we propose a valid proof for all the cases of 𝑑, 𝑑 ≥5.  

 

6.      J.Zaks [11] had shown that every mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑  that preserves the distances 1 and √2 is an isometry, 

provided 𝑑 ≥5. 

 

New results: 

Denote by L[d] the set of 4 ∙ (
𝑑
2

) Points in Qd in which precisely two non-zero coordinates are equal to 1/2 or -1/2. 

  A "quadruple" in L[d] means here a set Lij [d], i ≠ j 𝜖 I = {1, 2, …, d}; contains four j points of L[d] in which the 

non- zero coordinates are in some fixed two coordinates i and j; i.e.  

                                                                     i                 j 

Lij [d]= (0,…0, ± ½, 0…0, ±½, 0, …0) 

 

Our main results are the following:  

 

 Theorem 1: 

Every unit- distance preserving mapping 𝑓: 𝑄5 ⟶ 𝑄5is an isometry; moreover, dim (aff(f(L[5])))= 5. 

 

Theorem 2: 

Every unit- distance preserving mapping 𝑓: 𝑄6 ⟶ 𝑄6is an isometry; moreover, dim (aff(f(L[6])))= 6. 

 

Theorem 3: 

For all the dimensions d, d ≥ 5, every unit- distance preserving mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑is an isometry. 

 

Auxiliary Lemmas: 

 

   We need the following Lemmas for our proofs of the Theorems 1 and 2. 

 

Lemma 1: (due J.Zaks [10]). 

If v1 , … , vn  , w1, … , wm are points in Qd, n ≤ m such that ║𝑣𝑖 − 𝑣𝑗║ = ║𝑤𝑟 − 𝑤𝑠 , 

 for all 1 ≤ i ≤ j ≤ n,1 ≤ r ≤ s ≤ m then there exists a congruence 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑, such that 

 f(𝑣𝑖) = 𝑤𝑖  for all 1 ≤ i ≤ n. 

 

Lemma 2: (due to Chilakamarri [4]). 

a.   For even d, ω(d) = d+1, if d+1 is a complete square; otherwise ω(d) = d. 

b.   For odd d, d ≥ 5, the value of ω(d) is as follows: if d= 2n2 -1, then ω(d) = d+1; if d ≠ 2n2-1 and the Diophantine 

equation dx2 – 2(d - 1)y2= z2 has a solution in which x ≠ 0 then ω(d) = d; otherwise ω(d) = d – 1. 

 

Lemma 3:          

If a, b, c are three numbers that satisfy the triangle inequality and if a2, b2, c2 are rational numbers then:     

a.                                                           , and 
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 b.     The space 𝑄𝑑 , 𝑑 ≥ 8 contains a triangle ABC, having edge length: AB=c, BC=a, AC=b. 

 

Proof of Lemma 3:          

To prove (a), its suffices to prove that  4𝑏2𝑐2 − (𝑏2 − 𝑎2 + 𝑐2)2 > 0 

 

4𝑏2𝑐2 − (𝑏2 − 𝑎2 + 𝑐2)2 = 

 

= [2𝑏𝑐 + (𝑏2 − 𝑎2 + 𝑐2)] ∙ [2𝑏𝑐 − (𝑏2 − 𝑎2 + 𝑐2)] 
= [(𝑏 + 𝑐)2 − 𝑎2] ∙ [𝑎2 − (𝑏 − 𝑐)2] 

= (a + b + c)(b + c − a)(a + b − c)(a − b + c) > 0. 
The triangle inequality implies that the expression in the previous line on the left is positive; it appears also in 

Heron’s formula. 

  

To prove (b): Let a, b, c be three numbers that satisfy the triangle inequality, and so that a2 ,b2 ,c2 are rational 

numbers. 

The number c2 /4 is positive and rational, hence there exist, according to Lagrange Four Squares theorem [8], 

rational numbers 𝛼, 𝛽, 𝛾, 𝛿  such that  c2 /4= 𝛼2 + 𝛽2 + 𝛾2 + 𝛿2.  
 

By part (a), the following holds: 𝑏2 −
(𝑏2−𝑎2+𝑐2)2

4𝑐2 > 0, therefore there exist by Lagrange  

Theorem rational numbers: x, y, z, w, such that:      

𝑏2 −
(𝑏2−𝑎2+𝑐2)

2

4𝑐2 = 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2. 

Consider the following points: 

𝐴 = (−𝛼, −𝛽, −𝛾, −𝛿, 0, … ,0) 

𝐵 = (𝛼, 𝛽, 𝛾, 𝛿, 0, … ,0) 

𝐶 = (
𝑏2  − 𝑎2

𝑐2
𝛼,

𝑏2  − 𝑎2

𝑐2
𝛽,

𝑏2  − 𝑎2

𝑐2
𝛾,

𝑏2  − 𝑎2

𝑐2
𝛿, 𝑥, 𝑦, 𝑧, 𝑤, 0, … ,0)   

 

The points A,B and C satisfy:  

 

║𝐴 − 𝐵║ = √4(𝛼2 + 𝛽2 + 𝛿2 + 𝛾2 = 𝑐 

 

║𝐴 − 𝐶║ = √[
𝑏2  − 𝑎2

𝑐2
+ 1]

2

(𝛼2 + 𝛽2 + 𝛿2 + 𝛾2 ) + 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 

 

 = √
(𝑏2 − 𝑎2 + 𝑐2)2

4𝑐2
+ 𝑏2 −  

(𝑏2 − 𝑎2 + 𝑐2)2

4𝑐2
   = 𝑏,                      

 

and: 

║𝐵 − 𝐶║ = √[
𝑏2  − 𝑎2

𝑐2
− 1]

2

(𝛼2 + 𝛽2 + 𝛿2 + 𝛾2 ) + 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 

= √
(𝑏2 − 𝑎2 − 𝑐2)2

4𝑐2
− 

(𝑏2 − 𝑎2 + 𝑐2)2

4𝑐2
+ 𝑏2  =   

= √
−4(𝑏2 − 𝑎2)𝑐2 + 4𝑏2𝑐2

4𝑐2
  = 𝑎   

 

This completes the proof of Lemma 3. 

 

Corollary 1: 
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𝑏2 −
(𝑏2 − 𝑎2 + 1)2

4
= 𝛼2 + 𝛽2 + 𝛿2 + 𝛾2  

 

If a, b, 1 satisfy the triangle inequality and if 𝑎2, 𝑏2 are rational numbers, then the space 𝑄5 contains the vertices of a 

triangle which has edge lengths a, b, 1. 

 

Proof: 

Consider the following points: 
 

𝐴 = (
1

2
 ,0,0,0,0) 

𝐵 = (−
1

2
 ,0,0,0,0) 

                 𝐶 = ((𝑏2 − 𝑎2  )
1

2
 , 𝛼, 𝛽, 𝛾, 𝛿) 

 

Where 𝛼, 𝛽, 𝛾, 𝛿 are the rational numbers that exist according to Lagrange theorem, for which:  

 

 From the proof of Lemma 2 the triangle, ABC has the edge length a, b, 1. 

 

Corollary 2: 

If t is a number such that √2 +
2

𝑚−1
− 1 ≤ 𝑡 ≤ √2 +

2

𝑚−1
+ 1  , 𝑡2 ∈ 𝑄 

Where 𝑚 ≥ 4 is a natural number, then the space 𝑄𝑑 , 𝑑 ≥ 5, contains a triangle ABC having edge length 1,t, 

√2 +
2

𝑚−1
   . 

 

Proof:  

According to Lemma 2, the numbers 1,t, √2 +
2

𝑚−1
 satisfy the triangle inequality, and the result follows from 

Corollary 1. 

 

Lemma 4: 

If x and y are two points in 𝑄𝑑 , 𝑑 ≥ 5, so that: 

√2 +
2

𝑚 − 1
− 1 ≤ ║𝑥 − 𝑦║ ≤ √2 +

2

𝑚 − 1
+ 1   

where 𝜔(𝑑) = 𝑚, then there exists a finite set S(x,y), contains x and y such that f(x)≠f(y) holds for every unit- 

distance preserving mapping  f: S(x,y)→ 𝑄𝑑 . 

 

Proof of Lemma 4:   

Let x and y be points in 𝑄𝑑 , 𝑑 ≥ 5, for which, 

 √2 +
2

𝑚−1
− 1 ≤ ║𝑥 − 𝑦║ ≤ √2 +

2

𝑚−1
+ 1   where 𝜔(𝑑) = 𝑚. 

The real numbers ║x-y║, √2 +
2

𝑚−1
 and 1 satisfy the triangle inequality, hence by Corollary 2 there exist three 

points A, B, C such that ║A-B║=║x-y║, 

║A-C║= √2 +
2

𝑚−1
  and ║B-C║=1. It follows by two rational reflections that there exists a rational point z for 

which ║y-z║=1 and ║x-z║=√2 +
2

𝑚−1
 , (see Figure 1). 

Let {𝑣0, … , 𝑣𝑚−1} be a maximum clique in G(𝑄𝑑,1), and let 𝑤0 be the reflection of 𝑣0 with respect to the rational 

hyperplane passing through the points {𝑣1, … , 𝑣𝑚−1} it follows that ║𝑣0 − 𝑤0 ║ =  √2 +
2

𝑚−1
  , (see Figure 2). 
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Figure 1 

 

 

Figure 2 

 

 

Based on ║x-z║=║𝑣0 − 𝑤0║ and lemma 1, there exist a rational translation h for which h(𝑣0)= x and h(𝑤0)=z. 

Denote g (h(𝑣𝑖))= 𝑉𝑖 for all 1≤ i≤m-1, (see Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

 

Denote S(x, y) = {x, y, z,𝑣1, … , 𝑣𝑚−1}. Suppose that f(x)= f(y) holds for some unit- distance preserving mapping f: 

S(x,y)→ 𝑄𝑑. 

𝑥 

𝑦 

𝑣0 

𝑣1 

𝑤0 

{𝑣1, … , 𝑣𝑚−1} 

h(𝑣0)= x 

h(𝑣1)= V1 

𝑦 

h(𝑤0)= z 

{𝑉1, … , 𝑉𝑚−1} 
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The assumption f(x) = f(y) and ║y-z║=1 imply that ║f(y) - f(z)║=1=║f(x) = f(z)║, hence the set 

{𝑓(𝑥), 𝑓(𝑧), 𝑓(𝑣1), … , 𝑓(𝑣𝑚−1)}, forms a clique in G(𝑄𝑑,1) of size m+1,which is a contradiction. It follows that f(x) 

≠ f(y) holds for every unit- distance preserving mapping f: S(x,y)→ 𝑄𝑑 . 

This completes the proof of Lemma 4. 

 

Corollary 3: 

If x and y are two points in 𝑄𝑑 , 𝑑 ≥ 5, such that ║x-y║=√2 , then every unit- distance preserving mapping  f: 𝑄𝑑 →
𝑄𝑑 satisfies f(x)≠f(y). 

Mappings of 𝑸𝟓 to 𝑸𝟓 that preserve distance 1 

The purpose of this section is to prove the following Theorem. 

 

Theorem 1: 

Every unit- distance preserving mapping f: 𝑄5 →𝑄5 is an isometry; moreover, dim(aff(f(L[5])))=5.  

To prove Theorem 1, we prove first the following Theorem. 

 

Theorem 1*: 

If Z, W are two points in 𝑄5, for which ║𝑍 − 𝑊║ = √2, then there exists a finite set 𝑀5, containing Z and W, such 

that for every unit- distance preserving mapping f: 𝑀5→𝑄5, the following equality holds: 

║f(Z)-f(W)║= ║Z-W║  

 

Proof of Theorem 1*: 

Let Z, W are any two points in 𝑄5, for which ║𝑍 − 𝑊║ = √2. 

Denote by L[5] the set of   4 ∙ (
5
2

) = 40 points in 𝑄𝑑 in which precisely two coordinates are non- zero and are equal 

to 1/2 or  -1/2 . 

A "quadruple" in L[5] means a set 𝐿𝑖𝑗[5], 𝑖 ≠ 𝑗𝜖𝐼 = {1, 2, 3, 4, 5}, containing four points of L[5] in which the non-

zero coordinates are in some fixed two, the i-th and the j-th coordinates; i.e. 

 

 

 

𝐿𝑖𝑗[5] = {(0, ±
1

2
, 0, ±

1

2
, 0)} 

 

If 𝜌 is a distance between any two points of the set L[5] then  𝜌𝜖 {√0.5, 1, √1.5, √2}. 

 Fix a quadruple 𝐿𝑖𝑗[5] let x, y two points in 𝐿𝑖𝑗[5]  such that ║x-y║=√2. 

By Lemma 1 and based on ║Z-W║=║x-y║, there exists a rational isometry ℎ: 𝑄5 →𝑄5 for which h(x) =:Z=x* and 

h(y)=W:=y* ; denote h(l)=l* for all l𝜖 L[5]. 

 Let L*[5] = {l* = h(l) for all l𝜖 L[5]}; it is clear that Z, W 𝜖 L*[5], and to simplify terminology we will denote 

L*[5] = {𝑙   𝑖
∗ } when i 𝜖{1, 2, …, 40}. 

Define the set 𝑀5 by: 𝑀5 =∪ { 𝑆(𝑙   𝑖
∗ , 𝑙  𝑗

∗ ) ∪ 𝑆(𝑙   𝑛
∗ , 𝑙   𝑚

∗ ) ∪ 𝑆(𝑙   𝑠
∗ , 𝑙   𝑡

∗ )  )};  

for all i, j, n, m, s ,t𝜖{1, 2, …, 40} when  ║𝑙   𝑖
∗ −  𝑙  𝑗

∗ ║ = √0.5, 

║𝑙   𝑛
∗ − 𝑙   𝑛

∗  ║ =  √1.5 and ║𝑙   𝑠
∗ − 𝑙   𝑡

∗  ║ =  √2; where the sets S are given by Lemma 4. 

 

Let f, f: 𝑀5→Q5 be any unit- distance preserving mapping. 

 

Claim 1:  

If x and y are two points in L*[5] for which ║x-y║=1, √2 then f(x) ≠ f(y). 

Proof of Claim 1:   

Clearly, if ║x-y║=1, then ║f(x) - f(y) ║=1, hence f(x) ≠ f(y). 

The distance √2 is between√2 +
2

𝑚−1
− 1 and √2 +

2

𝑚−1
+ 1.  

Where m=ω(d)=4 for d=5. 

 1      i      .      j      5 



The Beckman-Quarles Theorem For Rational Spaces: Mapping Of 𝑄𝑑 To 𝑄𝑑 That Preserve Distance 1 

1944 

Therefore, if ║x-y║=√2, then there exist an i and j, 1≤ i≠j ≤ 40, such that x=𝑙   𝑖
∗ , y=𝑙  𝑗

∗  and   ║𝑙   𝑖
∗ −  𝑙  𝑗

∗ ║ = √2. ( 𝑙   𝑖
∗  

and  𝑙  𝑗
∗   on the same quadruple). 

By Lemma 4, applied to 𝑙   𝑖
∗  𝑎𝑛𝑑 𝑙  𝑗

∗ , there exists a set S(𝑙   𝑖
∗ , 𝑙  𝑗

∗ ), that contains  𝑙   𝑖
∗  𝑎𝑛𝑑 𝑙  𝑗

∗ , for which every unit- 

distance preserving mapping   g: S(𝑙   𝑖
∗ , 𝑙  𝑗

∗ )→ 𝑄5 satisfies 

 g(𝑙   𝑖
∗ )≠ g(, 𝑙  𝑗

∗ ). 

In particular this holds for the mapping g= f / S(𝑙   𝑖
∗ , 𝑙  𝑗

∗ ), therefore f(𝑙   𝑖
∗ )≠ f(, 𝑙  𝑗

∗ ). 

 

Claim 2: 

 The mapping f preserves all the distances√2. In particular ║f(Z)-f(W)║= √2. 
Proof of Claim 2: 

Consider the graph P of unit distances among the points of L*[5]; it is isomorphic to the famous Petersen’s graph, 

by substituting a 4-cycle for each vertex of P. 

(See figure 4). 

 

 

 

 

 

 

 

 

 

                       

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 

 

 We prove that the affine dimension of the f- image of each quadruple, i.e., the image of the four points that 

correspond to one vertex of P must be 2. Indeed, by claim 1 this dimension is at least 2, since f (𝑙   𝑖
∗ ) ≠ f ( 𝑙  𝑗

∗ ) for all 

𝑙   𝑖
∗  and 𝑙  𝑗

∗  on L*[5]  

(In particular, this holds for all 𝑙   𝑖
∗  and 𝑙  𝑗

∗  on the same quadruple). 

Suppose, by contradiction, that dim(aff(f(A))) ≥ 3, for some quadruple A, let the quadruple B, C, D, and E correspond 

to vertices of P so that A, B, C, D and E is a cycle in P. 

All the points of f(B) and f(E) must be at unit distance from those of f(A), so all the points of f(B) and f(E) lie on a 

circle, say circle S with enter O.  

This means that f(B) and f(C) are two squares inscribed in S. it follows that all the points of f(C) and f(D) must lie on 

the 3-flat that is perpendicular to 2-flat determined by S and passes through O.  

But this cannot happen, since the points of f(C) span a flat of dimension at least 2 in this 3-flat, which then forces the 

points of f(D) to lie on a line, which is impossible. 

It follows that the points of any f(F) lie on the intersection of some unit-distance spheres and a 2-flat which is a 

circle; when F={a, b, c, d} is a given block,  

such that ║a-b║= ║b-c║=║c-d║=║d-a║=1 and ║a-c║=║b-d║=√2. 

Thus f(a), f(b), f(c),and f(d) form the vertex set of quadrangle, of edge length one that lies in a circle. (See figure 5).  

𝐴 

𝐵 

𝐶 𝐷 

𝐸 
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Figure 5 

 

The situations (i) and (ii) are impossible since f (𝑙   𝑖
∗ ) ≠ f ( 𝑙  𝑗

∗ ) for all 𝑙   𝑖
∗ and  𝑙  𝑗

∗  on L*[5]. 

It follows that f(a), f(b), f(c), and f(d) form vertex set of a square in circle of diameter √2, implying: ║f(a)-

f(c)║=║f(b)-f(d)║= √2. 

Hence, the distance√2, within each quadrangle are preserved. In particular 

 ║f(Z)-f(W)║= √2. 

This completes the proof of Theorem 1*. 

 
   Proof of Theorem 1: 

Let f be a unit distance preserving mapping f:Q5 → Q5. By Theorem 1* the unit distance preserving mapping f 

preserves the distance √2  . 

Our result follows by using a Theorem of J. Zaks [8], which states that if a mapping 

 g:Qd → Qd preserves the distances 1 and √2, then g is an isometry, provided d ≥ 5. 

Moreover, dim(aff(f(L[5]))) = 5: 

The mapping f is an isometry, hence it suffices to provide that dim(aff (L[5])) = 5. 

To show this, notice that: 
1

2
(

1

2
,
1

2
, 0,0,0) +

1

2
(

1

2
, −

1

2
, 0,0,0) =

1

2
(1,0,0,0,0) 

1

2
(

1

2
,
1

2
, 0,0,0) +

1

2
(−

1

2
,
1

2
, 0,0,0) =

1

2
(0,1,0,0,0) 

1

2
(0,0,

1

2
,
1

2
, 0) +

1

2
(0,0,

1

2
, −

1

2
, 0) =

1

2
(0,0,1,0,0) 

1

2
(0,0,

1

2
,
1

2
, 0) +

1

2
(0,0, −

1

2
,
1

2
, 0) =

1

2
(0,0,0,1,0) 

1

2
(0,0,0,

1

2
,
1

2
) +

1

2
(0,0,0, −

1

2
,
1

2
) =

1

2
(0,0,0,0,1) 

Hence all the major unit vectors in R5 when multiplied by 
1

2
, are convex combinations of points in L[5]. 

 This completes the proof of Theorem 1. 

 

Mapping of 𝑸𝟔 to 𝑸𝟔 that preserve distance 1 

 

The purpose of this section is to prove the following Theorem: 

Theorem 2: 

𝑓(𝑎) 𝑓(𝑏) 

𝑓(𝑐) 
𝑓(𝑑) 

𝑓(𝑎) 
𝑓(𝑏) 

𝑓(𝑐) 
𝑓(𝑑) 

𝑓(𝑑) = 𝑓(𝑏) 
𝑓(𝑑) = 𝑓(𝑏) 

(𝑖𝑖) (𝑖) 

(𝑖𝑖𝑖) 
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Every unit –distance preserving mapping  𝑓: 𝑄6 → 𝑄6 is an isometry; moreover, 

dim (aff(f(L[6]))) = 6.  

     To prove Theorem 2, we prove first the following Theorem. 

 

Theorem 2*: 

if Z,W are any two points in 𝑄6, for which ║Z-W║= √2 , then there exists a finite set M6, containing Z and W, such 

that for every unit –distance preserving mapping f: M6 → 𝑄6, the following equality holds: 

║f(Z)-f(W)║=║Z-W║. 

 

Proof of Theorem 2*: 

Consider the 6 points {A1, …, A6}, defined as follows:  

𝐴1 = (
1

2
,     0,     0,     0,     0,      

1

2
) 

𝐴2 = (
1

2
,     0,     0,     0,     0,   −

1

2
) 

𝐴3 = (0,     
1

2
,     0,     0,     

1

2
,     0) 

𝐴4 = (0,     
1

2
,     0,     0,   −

1

2
,    0) 

𝐴5 = (0,     0,      
1

2
,     

1

2
,     0,      0) 

𝐴6 = (0,     0,     
1

2
,   −

1

2
,     0,     0) 

The points {𝐴1, … , 𝐴6} form the vertices of a regular 5- simplex of edge length one in 𝑄6. Let the 6 points 

𝐵1, 𝐵2 , … , 𝐵6 of 𝑄6 be defined by 𝐵𝑖 = −𝐴𝑖 , 1 ≤ 𝑖 ≤ 6, their mutual distances are one, so they form the vertices of 

a regular 5 – simplex of edge length one in 𝑄6. Let 𝑇6 = {𝐴1, … , 𝐴6, 𝐵1, … , 𝐵6}. 

Fix a 𝑘, 1 ≤ 𝑘 ≤ 6, by Lemma 1 and based on ║𝑍 − 𝑊║ = ║𝐴𝑘 − 𝐵𝑘║there exists a rational isometry ℎ: 𝑄6 → 𝑄6 

for which ℎ(𝐴𝑘) = 𝑍: = 𝐴∗
𝑘 and ℎ(𝐵𝑘) = 𝑊: = 𝐵∗

𝑘 ; denote ℎ(𝐴𝑖) = 𝐴∗
𝑖 and ℎ(𝐵𝑖) = 𝐵∗

𝑖  for all 1 ≤ 𝑖 ≤ 6. 

Let 𝑇∗
6 = {𝐴∗

1, … , 𝐴∗
𝑑, 𝐵∗

1, … , 𝐵∗
6} ; it is clear that 𝑍, 𝑊 ∈  𝑇∗

6.   
Define the set 𝑀6 by: 𝑀6 = 𝑆(𝐴∗

1, 𝐵∗
1) ∪ 𝑆(𝐴∗

2, 𝐵∗
2) ∪ … ∪ 𝑆(𝐴∗

6, 𝐵∗
6), where the sets S are given by Lemma 4. 

Let 𝑓, 𝑓: 𝑀6 → 𝑄6 be any unit-distance preserving mapping. 

 

Claim 3: 

If 𝑥 and 𝑦 are two points in 𝑇∗
6, then 𝑓(𝑥) ≠ 𝑓(𝑦). 

Proof of Claim 3:  

   Computing the mutual distances of the points in 𝑇∗
6 show that:  

║𝐴∗
𝑖 − 𝐴∗

𝑗║ = ║𝐵∗
𝑖 − 𝐵∗

𝑗║ = ║𝐴∗
𝑖 − 𝐵∗

𝑗║ = 1, for all 1 ≤ 𝑖 < 𝑗 ≤ 6, and 

║𝐴∗
𝑖 − 𝐵∗

𝑖║ = √2, for all 1 ≤ 𝑖 ≤ 6. 

All of the distances above are between √2 +
2

𝑚−1
− 1 and √2 +

2

𝑚−1
+ 1. 

where 𝑚 = 𝜔(𝑑) = 6 for 𝑑 = 6. 

Therefore if ║𝑥 − 𝑦║ = 1, then ║f(𝑥) − 𝑓(𝑦)║ = 1, hence 𝑓(𝑥) ≠ 𝑓(𝑦);  

if ║𝑥 − 𝑦║ = √2 there is an 𝑖, 1 ≤ 𝑖 ≤ 6, such that 𝑥 = 𝐴∗
𝑖 , 𝑦 = 𝐵∗

𝑖 and 

 ║𝐴∗
𝑖 − 𝐵∗

𝑖║ = √2. 

By Lemma 4, applied to 𝐴∗
𝑖 and 𝐵∗

𝑖, there exists a set 𝑆(𝐴∗
𝑖 , 𝐵∗

𝑖), that contains 𝐴∗
𝑖 and 𝐵∗

𝑖, for which every unit-

distance preserving mapping 𝑔: 𝑆(𝐴∗
𝑖 , 𝐵∗

𝑖) → 𝑄𝑑satisfies 𝑔(𝐴∗
𝑖) ≠ 𝑔(𝐵∗

𝑖).  
  In particular, this holds for the mapping 𝑔 = 𝑓/𝑆(𝐴∗

𝑖 , 𝐵∗
𝑖), therefore𝑓(𝐴∗

𝑖) ≠ 𝑓(𝐵∗
𝑖). 

 

Claim 4: 

The mapping 𝑓 preserves all the distances√2, between 𝐴∗
𝑖 and 𝐵∗

𝑖 for all 𝑖 = 1,2, … ,6. In particular ║𝑓(𝑍) −

𝑓(𝑤)║ = √2. 
Proof of Claim 4: 

Consider the following (4) points: 

∆1= {𝑓(𝐴3
∗ ), 𝑓(𝐵4

∗), 𝑓(𝐵5
∗), 𝑓(𝐵6

∗)}. 
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All of their mutual distances are one, since 𝑓 preserves distance one, so they form the vertices of a regular 3- 

simplex of edge length one in 𝑄6. The intersection of the 4 unit spheres, centered at the vertices of this simplex, is a 

2-sphere of radius𝑡 = √
5

8
, centered at the center 𝑂1 of ∆1; let 𝑆(𝑂1,𝑡)

2  denote this 2-sphere. 

Let ∆2 be defined by:  

∆2= {𝑓(𝐴4
∗ ), 𝑓(𝐵3

∗), 𝑓(𝐵5
∗), 𝑓(𝐵6

∗)}. 
In the similar way we obtain the 2-spheres 𝑆(𝑂2,𝑡)

2 , having her center at 𝑂2, which is also the center of ∆2. 

The four points 𝑓(𝐴1
∗ ), 𝑓(𝐴2

∗ ), 𝑓(𝐵1
∗) and 𝑓(𝐵2

∗) are in the intersection of the two 2-spheres 𝑆(𝑂𝑗,𝑡)
2 , 𝑗 = 1,2. 

By claim 3, the two simplices ∆1, and ∆2 are different, but they have vertices 𝑓(𝐵5
∗), 𝑎𝑛𝑑 𝑓(𝐵6

∗)  in common. 

We will prove that 𝑂1 ≠ 𝑂2: 

Assume that 𝑂1 = 𝑂2 = 𝑂. (See figure 6)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       

It follows that ║𝑓(𝐵𝑗
∗) − 𝑂║ = ║𝑓(𝐴𝑖

∗) − 𝑂║=t, i=3, 4, and j=3,4, 5, 6. 

{𝑓(𝐵3
∗), 𝑓(𝐵4

∗), 𝑓(𝐵5
∗), 𝑓(𝐵6

∗)} In particular, the point O the center of the simplex 

, so 

O = 
1

4
 (𝑓(𝐵3

∗) +  𝑓(𝐵4
∗), +𝑓(𝐵5

∗) +  𝑓(𝐵6
∗)), but point O is also the center of the simplex ∆1 so O = 

1

4
 (𝑓(𝐴3

∗ ) +

 𝑓(𝐴4
∗ ), +𝑓(𝐴5

∗ ) +  𝑓(𝐴6
∗ )). 

It follows that 𝑓(𝐴3
∗ ) =  𝑓(𝐵3

∗), a contradiction to Claim 3, thus 𝑂1 ≠ 𝑂2. 

Therefore the 2- spheres 𝑆(𝑂𝑗,𝑡)
2 ,  𝑗 = 1,2, are different. 

They have the same radius 𝑡 = √
5

8
 and they have a non-empty intersection. It follows that there two 2-spheres 

intersect in a one-dimensional sphere, which is a circle. 

   Thus 𝑓(𝐴1
∗ ), 𝑓(𝐴2

∗ ), 𝑓(𝐵1
∗) and 𝑓(𝐵2

∗) form the vartex set of a quadrangle, of edge length one, that lies in a circle. 

(See figure 5). 

  It follows as the previous case that 𝑓(𝐴1
∗ ), 𝑓(𝐴2

∗ ), 𝑓(𝐵1
∗) and 𝑓(𝐵2

∗) form the vartex set of a square in a circle of 

diameter √2, implying: 

║ 𝑓(𝐴1
∗ ) −  𝑓(𝐵1

∗)║ = ║𝑓(𝐴2
∗ ) − 𝑓(𝐵2

∗)║ = √2 since 𝑓(𝐴𝑖
∗) ≠  𝑓(𝐵𝑖

∗) for 𝑖 = 1,2. 

    It follows by Lemma 1 that the mapping 𝑓 preserves the distance √2 between 𝐴𝑖
∗ and 𝐵𝑖

∗ for all 𝑖 = 1,2, … ,6. In 

particular ║ 𝑓(𝑍) −  𝑓(𝑊)║ = √2. 

 

This completes the proof of Theorem 2*. 

 

Proof of Theorem 2 

Let 𝑓 be a unit distance preserving mapping 𝑓: 𝑄6 → 𝑄6. By Theorem 2* the unit distance preserving mapping 

𝑓(𝐵∗
5), 𝑓(𝐵∗

6
) 

𝑓(𝐴∗
3) 

𝑓(𝐵∗
3) 

𝑓(𝐵∗
4) 

𝑓(𝐴∗
4) 

Figure 6 
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𝑓preserves the distance √2. 

Our result follows by using a Theorem of J.Zaks [8], which states that if a mapping 

 𝑔: 𝑄𝑑  → 𝑄𝑑 preserves the distance 1 and √2, then 𝑔 is an isometry, provided  𝑑 ≥ 5. 

The proof that dim(aff(L[6])) = 6 is similar to the proof that dim(aff(L[5])) = 5 that appeared in of Theorem 1, hence 

it is omitted. 

 

This completes the proof of Theorem 2. 

 

Mapping of 𝑸𝒅 to 𝑸𝒅 that preserve distance 1 

The purpose of this section is to prove the following Theorem: 

Theorem 3:   

For all the dimensions, 𝑑, 𝑑 ≥ 5, every unit- distance preserving mapping 𝑓: 𝑄𝑑 → 𝑄𝑑 is an isometry. 

To prove Theorem 3, we prove first the following Theorem in which 𝐿[𝑑] and quadruples are defined in a way, similar 

to the one that appeared in the proof of Theorem 1* in page 11.  

Theorem 3*: 

 For every value of 𝑑, 𝑑 ≥ 5 if 𝑔: 𝐿[𝑑] → 𝑅𝑑 is a mapping that preserves unit distances, for which 𝑔(𝑥) ≠ 𝑔(𝑦) 

holds for any two points 𝑥, 𝑦 such that║𝑥 − 𝑦║ =  √2, then the following holds: 

a. For every quadruple T of 𝐿[𝑑] , g(T) is the vertex set of a planar unit square. 

b. dim(aff(g(L[d]))) = d 

Proof of Theorem 3*: 

 It is clear that Theorem 3* holds for 𝑑 = 5 and 𝑑 = 6 from Theorems1 and 2. 

Suppose, inductively on 𝑑, that the assertion holds for 𝑑 and for 𝑑 + 1, 𝑑 ≥ 5, and let 𝑓: 𝐿[𝑑 + 2] → 𝑅𝑑+2 be any 

unit- preserving mapping such that 𝑓(𝑥) ≠ 𝑓(𝑦) for any two points 𝑥, 𝑦 of 𝐿[𝑑 + 2] satisfying ║𝑥 − 𝑦║ =  √2. 

Let 𝑇 = 𝐿𝑖𝑗[𝑑 + 2] be any quadruple in 𝐿[𝑑 + 2], which we may assume, without loss of generality, that it is the 

quadruple: 

𝑇 = 𝐿𝑑+1,𝑑+2[𝑑 + 2] = {(0, … ,0, ±1/2, ±1,2) ⊂  𝑅𝑑+2}. 

By assumption we know that 𝑓(𝑥) ≠ 𝑓(𝑦) for any two points 𝑥, 𝑦 such that 

║𝑥 − 𝑦║ =  √2, (in particular for any two points 𝑥, 𝑦 such that ║𝑥 − 𝑦║ =  √2 in the quadruple T). 

Consider the subset 𝐾[𝑑 + 2] of 𝐿[𝑑 + 2], consisting of all the points of 𝐿[𝑑 + 2] in which the last two coordinates 

vanish. Notice that the set 𝐾[𝑑 + 2]  is, of course, congruent to the last set L[d]. 

 

To show that 𝑓(𝑇) has affine dimension 2: 

Assume, for contradiction, that dim(aff(f(T)))≥ 3. 

We restrict our attention to the set 𝑓(𝑇 ∪ 𝐾[𝑑 + 2]). 

The image 𝑓(𝐾[𝑑 + 2]) lies in the intersection of the unit spheres centered at the points of 𝑓(𝑇), and since 

dim(aff(f(T)))≥ 3 it follows that the dimension of the intersection of these four (𝑑 + 1)-spheres is at most 𝑑 − 2, 

and it lies in an affine flat, say F, of dimension at most 𝑑 − 1. 
Let ℎ: 𝐹 → 𝑅𝑑 be an isometric embedding, and consider the composition 

 ℎ°𝑓: 𝐾[𝑑 + 2] → 𝑅𝑑 . By an inductive assumption on the dimension 𝑑,  

dim(aff(ℎ0𝑓: (𝐾[𝑑 + 2])))= dim(aff(ℎ°𝑓(𝐿[𝑑])))= d. 

This is a contradiction, since 𝑓(𝐾[𝑑 + 2]) lies in the affine flat F which is of dimension at most 𝑑 − 1. 
To show that dim(aff(𝑓(𝐿[𝑑 + 2]))) = 𝑑 + 2: 

It follows by part (a) that dim(aff(𝑓(𝑇))) = 2, and 𝑓(𝑇) forms the vartex set of some planar unit square. 

Assume, by contradiction that dim(aff(𝑓(𝐿[𝑑 + 2]))) ≤ 𝑑 + 1, and consider the effect of the mapping 𝑓 on the set 

𝑇 ∪ 𝐾[𝑑 + 2]; as in the previous case, all the points of 𝐾[𝑑 + 2] are at unit distance from all those of T, therefore all 

the points of 𝑓(𝐾[𝑑 + 2]) are at unit distance from all the points of 𝑓(𝑇), hence the affine hull of 𝑓(𝐾[𝑑 + 2]) is 

orthogonal to the affine hull of 𝑓(𝑇), thus: 

𝑑 + 1 ≥  dim (𝑎𝑓𝑓(𝑓((𝐿[𝑑 + 2])))) ≥  dim (𝑎𝑓𝑓(𝑓(𝑇))) + dim(aff(𝑓(𝐾[𝑑 + 2])))= 

   = 2 + dim(aff(𝑓)𝐿[𝑑]))) = d+2, which is a contradiction. 

It follows that dim(aff(𝑓(𝐿[𝑑 + 2]))) = 𝑑 + 2. 

 

This completes the proof of Theorem 3*. 
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Proof of Theorem 3: 

We will prove first the following Claim: 

Claim 5: 

Every unit-distance preserving mapping 𝑓: 𝑄𝑑 → 𝑄𝑑 preserves the distance √2, for all 𝑑 ≥ 5. 

Proof of Claim 5: 

Let 𝑑 ≥ 5 and let 𝑓: 𝑄𝑑 → 𝑄𝑑  be a unit distance-preserving mapping. 

By Corollary 3 it follows that 𝑓(𝑥) ≠ 𝑓(𝑦) holds for every two points 𝑥 and 𝑦 in 𝑄𝑑, for which ║𝑥 − 𝑦║ =  √2. 

Let 𝑖: 𝑄𝑑 → 𝑅𝑑 be the natural inclusion isometry, and consider the combined mapping 𝑖°𝑓: : 𝑄𝑑 → 𝑅𝑑 . 

By Theorem 3*, the distance √2 of opposite vertices in T preserved by 𝑖°𝑓, hence it is preserved by 𝑓.  

It follows by Lemma 1 that for every pair of points 𝑥 and 𝑦, if ║𝑥 − 𝑦║ =  √2, then 

 ║f(𝑥) − 𝑓(𝑦)║ =  √2, i.e, the mapping 𝑓 preserves the distance √2. 

Let 𝑑 be an integer,𝑑 ≥ 5, and let 𝑓 be a unit distance preserving mapping 𝑓: 𝑄𝑑 → 𝑄𝑑. By Claim 5 the unit distance 

preserving mapping 𝑓 preserves the distance √2. Our result follows by using a Theorem of J.Zaks [11] which states 

that if a mapping g: 𝑄𝑑 → 𝑄𝑑  preserves the distances 1 and √2, then g is an isometry, provided𝑑 ≥ 5. 

 

This completes the proof of Theorem 3. 
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