The Beckman-Quarles Theorem For Rational Spaces: Mapping Of $Q^{6} T o Q^{6}$ That Preserve Distance 1

By: Wafiq Hibi

Wafiq. hibi@gmail.com
The college of sakhnin - math department
Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 16 April 2021

```
Abstract: Let \(R^{d}\) and \(Q^{d}\) denote the real and the rational d-dimensional space, respectively, equipped with the usual
Euclidean metric. For a real number \(\rho>0\), a mapping \(f: A \rightarrow X\), where \(X\) is either \(R^{d}\) or \(Q^{d}\) and \(A \subseteq X\), is called \(\rho\) -
distance preserving \(\|x-y\|=\rho\) implies \(\|f(x)-f(y)\|=\rho\), for all \(x, y\) in \(A\).
Let \(\mathrm{G}\left(\mathrm{Q}^{\mathrm{d}}, \mathrm{a}\right)\) denote the graph that has \(Q^{d}\) as its set of vertices, and where two vertices \(x\) and \(y\) are connected by edge if and only if \(\|x-y\|=a\). Thus, \(\mathrm{G}\left(Q^{d}, 1\right)\) is the unit distance graph. Let \(\omega(\mathrm{G})\) denote the clique number of the graph G and let \(\omega(d)\) denote \(\omega\left(\mathrm{G}\left(Q^{d}, 1\right)\right)\).
The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from \(R^{d}\) into \(R^{d}\) is an isometry, provided \(d \geq 2\).
The rational analogues of Beckman- Quarles theorem means that, for certain dimensions \(d\), every unit- distance preserving mapping from \(Q^{d}\) into \(Q^{d}\) is an isometry.
A few papers [2, 3, 4, 5, 6, 8,9,10 and 11] were written about rational analogues of this theorem, i.e, treating, for some values of \(d\), the property "Every unit- distance preserving mapping \(f: Q^{d} \rightarrow Q^{d}\) is an isometry". The propos of this paper is to prove the following:
Every unit- distance preserving mapping \(f: Q^{6} \rightarrow Q^{6}\) is an isometry; moreover, \(\operatorname{dim}(a f f(f(L[6])))=6\).
```


Mapping of Q^{6} to Q^{6} that preserve distance 1

1.1 Introduction:

Let R^{d} and Q^{d} denote the real and the rational d-dimensional space, respectively.
Let $\rho>0$ be a real number, a mapping : $R^{d} \rightarrow Q^{d}$, is called ρ-distance preserving if $\quad\|x-y\|=\rho$ implies $\|f(x)-f(y)\|=\rho$.

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from R^{d} into R^{d} is an isometry, provided $d \geq 2$.
A few papers [4, 5, 6, 8,9,10 and 11] were written about the rational analogues of this theorem, i.e, treating, for some values of d, the property "every unit- distance preserving mapping $f: Q^{d} \rightarrow Q^{d}$ is isometry".

We shall survey the results from the papers $[2,3,4,5,6,8,9,10$ and 11$]$ concerning the rational analogues of the Backman-Quarles theorem, and we will extend them to all the remaining dimensions , $d \geq 5$.

History of the rational analogues of the Backman-Quarles theorem:

We shall survey the results from papers [2,3,4,5,6,8,9,10 and 11] concerning the rational analogues of the Backman-Quarles theorem.

1. A mapping of the rational space Q^{d} into itself, for $d=2,3$ or 4 , which preserves all unit- distance is not necessarily an isometry; this is true by W.Bens [2, 3] and H.Lenz [6].
2. W.Bens [2,3] had shown the every mapping $f: Q^{d} \rightarrow Q^{d}$ that preserves the distances 1 and 2 is an isometry, provided $d \geq 5$.
3. Tyszka [8] proved that every unit- distance preserving mapping $f: Q^{8} \rightarrow Q^{8}$ is an isometry; moreover, he showed that for every two points x and y in Q^{8} there exists a finite set $S_{x y}$ in Q^{8} containing x and y such that every unit- distance preserving mapping $f: S_{x y} \rightarrow Q^{8}$ preserves the distance between x and y. This is a kind of compactness argument, that shows that for every two points x and y in Q^{d} there exists a finite set $S_{x y}$, that contains x and y ("a neighborhood of x and y ") for which already every unit- distance preserving mapping from this neighborhood of x and y to Q^{d} must preserve the distance from x to y. This implies that every unit preserving mapping from Q^{d} to Q^{d} must preserve the distance between every two points of Q^{d}.
4. J.Zaks [8, 9] proved that the rational analogues hold in all the even dimensions d of the form $d=4 k(k+1)$, for $k \geq 1$, and they hold for all the odd dimensions d of the form $d=2 n^{2}-1=m^{2}$. For integers $n, m \geq 2$, (in [9]), or $d=2 n^{2}$ $1, n \geq 3$ (in [10]).
5. R.Connelly and J.Zaks [5] showed that the rational analogues hold for all even dimensions $d, d \geq 6$.

We wish to remark that during the preparation of this thesis, it was pointed out to us that an important argument, in the proof of the even dimensions $d, d \geq 6$, is missing. Here we propose a valid proof for all the cases of $d, d \geq 5$.
6. J.Zaks [11] had shown that every mapping $f: Q^{d} \rightarrow Q^{d}$ that preserves the distances 1 and $\sqrt{2}$ is an isometry, provided $d \geq 5$.

New results:

Denote by $L[d]$ the set of $4 \cdot\binom{d}{2}$ Points in Q^{d} in which precisely two non-zero coordinates are equal to $1 / 2$ or $-1 / 2$.
A "quadruple" in $L[d]$ means here a set $L_{i j}[d], i \neq j \in I=\{1,2, \ldots, \mathrm{~d}\}$; contains four j points of $L[d]$ in which the non- zero coordinates are in some fixed two coordinates i and j; i.e.

$$
\stackrel{\stackrel{i}{i}}{i j}[d]=(0, \ldots 0, \pm 1 / 2,0 \ldots 0, \pm 1 / 2,0, \ldots 0)
$$

Hibi Prove the following results:
Lemma:
If x and y are two points in $Q^{d}, d \geq 5$, so that:

$$
\sqrt{2+\frac{2}{m-1}}-1 \leq\|x-y\| \leq \sqrt{2+\frac{2}{m-1}}+1
$$

where $\omega(d)=m$, then there exists a finite set $S(x, y)$, contains x and y such that $f(x) \neq f(y)$ holds for every unitdistance preserving mapping $f: S(x, y) \rightarrow Q^{d}$.

Theorem 1

Every unit- distance preserving mapping $f: Q^{5} \rightarrow Q^{5}$ is an isometry; moreover, $\operatorname{dim}(a f f(f(L[5])))=5$.
We will prove the following theorem:

Theorem 2:

Every unit- distance preserving mapping $f: Q^{6} \rightarrow Q^{6}$ is an isometry; moreover, $\operatorname{dim}(a f f(f(L[6])))=6$.

Mapping of Q^{6} to $Q^{\mathbf{6}}$ that preserve distance 1

The purpose of this section is to prove the following Theorem:

Theorem 2:

Every unit-distance preserving mapping $f: Q^{6} \rightarrow Q^{6}$ is an isometry; moreover, $\operatorname{dim}(\operatorname{aff}(f(L[6])))=6$.

To prove Theorem 2, we prove first the following Theorem.

Theorem 2*:

if Z, W are any two points in Q^{6}, for which $\|Z-W\|=\sqrt{2}$, then there exists a finite set M_{6}, containing Z and W, such that for every unit -distance preserving mapping $f: M_{6} \rightarrow Q^{6}$, the following equality holds:
$\|f(Z)-f(W)\|=\|Z-W\|$.

Proof of Theorem 2*:

Consider the 6 points $\left\{A_{l}, \ldots, A_{6}\right\}$, defined as follows:

$$
\begin{aligned}
& A_{1}=\left(\frac{1}{2}, \quad 0, \quad 0, \quad 0, \quad 0, \quad \frac{1}{2}\right) \\
& A_{2}=\left(\frac{1}{2}, \quad 0, \quad 0, \quad 0, \quad 0,-\frac{1}{2}\right) \\
& A_{3}=\left(0, \frac{1}{2}, \quad 0, \quad 0, \quad \frac{1}{2}, \quad 0\right) \\
& A_{4}=\left(0, \quad \frac{1}{2}, \quad 0, \quad 0,-\frac{1}{2}, \quad 0\right) \\
& A_{5}=\left(0, \quad 0, \quad \frac{1}{2}, \quad \frac{1}{2}, \quad 0, \quad 0\right) \\
& A_{6}=\left(0, \quad 0, \quad \frac{1}{2},-\frac{1}{2}, \quad 0,0\right)
\end{aligned}
$$

The points $\left\{A_{1}, \ldots, A_{6}\right\}$ form the vertices of a regular 5- simplex of edge length one in Q^{6}. Let the 6 points $B_{1}, B_{2}, \ldots, B_{6}$ of Q^{6} be defined by $B_{i}=-A_{i}, 1 \leq i \leq 6$, their mutual distances are one, so they form the vertices of a regular 5 - simplex of edge length one in Q^{6}. Let $T_{6}=\left\{A_{1}, \ldots, A_{6}, B_{1}, \ldots, B_{6}\right\}$.
Fix a $k, 1 \leq k \leq 6$, by Lemma 1 and based on $\|Z-W\|=\left\|A_{k}-B_{k}\right\|$ there exists a rational isometry $h: Q^{6} \rightarrow Q^{6}$ for which $h\left(A_{k}\right)=Z:=A^{*}{ }_{k}$ and $h\left(B_{k}\right)=W:=B^{*}{ }_{k}$; denote $h\left(A_{i}\right)=A^{*}{ }_{i}$ and $h\left(B_{i}\right)=B_{i}{ }_{i}$ for all $1 \leq i \leq 6$.
Let $T^{*}{ }_{6}=\left\{A^{*}{ }_{1}, \ldots, A^{*}{ }_{d}, B^{*}{ }_{1}, \ldots, B^{*}{ }_{6}\right\}$; it is clear that $Z, W \in T^{*}{ }_{6}$.
Define the set M_{6} by: $M_{6}=S\left(A^{*}{ }_{1}, B^{*}{ }_{1}\right) \cup S\left(A^{*}{ }_{2}, B^{*}{ }_{2}\right) \cup \ldots \cup S\left(A^{*}{ }_{6}, B^{*}{ }_{6}\right)$, where the sets S are given by Lemma 4. Let $f, f: M_{6} \rightarrow Q^{6}$ be any unit-distance preserving mapping.

Claim 3:

If x and y are two points in T^{*}, then $f(x) \neq f(y)$.

Proof of Claim 3:

Computing the mutual distances of the points in $T^{*}{ }_{6}$ show that:
$\left\|A^{*}{ }_{i}-A^{*}{ }_{j}\right\|=\left\|B^{*}{ }_{i}-B_{j}{ }_{j}\right\|=\left\|A_{i}{ }_{i}-B_{j}{ }_{j}\right\|=1$, for all $1 \leq i<j \leq 6$, and
$\left\|A^{*}{ }_{i}-B^{*}{ }_{i}\right\|=\sqrt{2}$, for all $1 \leq i \leq 6$.
All of the distances above are between $\sqrt{2+\frac{2}{m-1}}-1$ and $\sqrt{2+\frac{2}{m-1}}+1$.
where $m=\omega(d)=6$ for $d=6$.
Therefore if $\|x-y\|=1$, then $\|\mathrm{f}(x)-f(y)\|=1$, hence $f(x) \neq f(y)$;
if $\|x-y\|=\sqrt{2}$ there is an $i, 1 \leq i \leq 6$, such that $x=A^{*}{ }_{i}, y=B^{*}{ }_{i}$ and $\left\|A^{*}{ }_{i}-B^{*}{ }_{i}\right\|=\sqrt{2}$.
By Lemma 4, applied to $A_{i}{ }_{i}$ and $B^{*}{ }_{i}$, there exists a set $S\left(A^{*}{ }_{i}, B^{*}{ }_{i}\right)$, that contains $A_{i}{ }_{i}$ and $B^{*}{ }_{i}$, for which every unitdistance preserving mapping $g: S\left(A^{*}{ }_{i}, B^{*}{ }_{i}\right) \rightarrow Q^{d}$ satisfies $g\left(A^{*}{ }_{i}\right) \neq g\left(B^{*}{ }_{i}\right)$.
In particular, this holds for the mapping $g=f / S\left(A^{*}{ }_{i}, B^{*}{ }_{i}\right)$, therefore $f\left(A^{*}{ }_{i}\right) \neq f\left(B^{*}{ }_{i}\right)$.

Claim 4:

The mapping f preserves all the distances $\sqrt{2}$, between A_{i}^{*} and $B_{i}{ }_{i}$ for all $i=1,2, \ldots, 6$. In particular $\| f(Z)-$ $f(w) \|=\sqrt{2}$.

Proof of Claim 4:

Consider the following (4) points:

$$
\Delta_{1}=\left\{f\left(A_{3}^{*}\right), f\left(B_{4}^{*}\right), f\left(B_{5}^{*}\right), f\left(B_{6}^{*}\right)\right\} .
$$

All of their mutual distances are one, since f preserves distance one, so they form the vertices of a regular 3simplex of edge length one in Q^{6}. The intersection of the 4 unit spheres, centered at the vertices of this simplex, is a 2 -sphere of radiust $=\sqrt{\frac{5}{8}}$, centered at the center O_{1} of Δ_{1}; let $S_{\left(O_{1}, t\right)}^{2}$ denote this 2-sphere.
Let Δ_{2} be defined by:

$$
\Delta_{2}=\left\{f\left(A_{4}^{*}\right), f\left(B_{3}^{*}\right), f\left(B_{5}^{*}\right), f\left(B_{6}^{*}\right)\right\}
$$

In the similar way we obtain the 2 -spheres $S_{\left(O_{2}, t\right)}^{2}$, having her center at O_{2}, which is also the center of Δ_{2}.
The four points $f\left(A_{1}^{*}\right), f\left(A_{2}^{*}\right), f\left(B_{1}^{*}\right)$ and $f\left(B_{2}^{*}\right)$ are in the intersection of the two 2 -spheres $S_{\left(O_{j}, t\right)}^{2}, j=1,2$.
By claim 3, the two simplices Δ_{1}, and Δ_{2} are different, but they have vertices $f\left(B_{5}^{*}\right)$, and $f\left(B_{6}^{*}\right)$ in common.

We will prove that $O_{1} \neq O_{2}$:
Assume that $O_{1}=O_{2}=O$. (See figure 6)

Figure 6
It follows that $\left\|f\left(B_{j}^{*}\right)-O\right\|=\left\|f\left(A_{i}^{*}\right)-O\right\|=\mathrm{t}, i=3,4$, and $j=3,4,5,6$.
In particular, the point O the center of the simplex $\left\{f\left(B_{3}^{*}\right), f\left(B_{4}^{*}\right), f\left(B_{5}^{*}\right), f\left(B_{6}^{*}\right)\right\}$, so $\mathrm{O}=\frac{1}{4}\left(f\left(B_{3}^{*}\right)+f\left(B_{4}^{*}\right),+f\left(B_{5}^{*}\right)+f\left(B_{6}^{*}\right)\right)$, but point O is also the center of the simplex Δ_{1} so $\mathrm{O}=\frac{1}{4}\left(f\left(A_{3}^{*}\right)+\right.$ $\left.f\left(A_{4}^{*}\right),+f\left(A_{5}^{*}\right)+f\left(A_{6}^{*}\right)\right)$.
It follows that $f\left(A_{3}^{*}\right)=f\left(B_{3}^{*}\right)$, a contradiction to Claim 3, thus $O_{1} \neq O_{2}$.
Therefore the 2-spheres $S_{\left(o_{j}, t\right)}^{2}, j=1,2$, are different.
They have the same radius $t=\sqrt{\frac{5}{8}}$ and they have a non-empty intersection. It follows that there two 2 -spheres intersect in a one-dimensional sphere, which is a circle.
Thus $f\left(A_{1}^{*}\right), f\left(A_{2}^{*}\right), f\left(B_{1}^{*}\right)$ and $f\left(B_{2}^{*}\right)$ form the vartex set of a quadrangle, of edge length one, that lies in a circle. (See figure 5).
It follows as the previous case that $f\left(A_{1}^{*}\right), f\left(A_{2}^{*}\right), f\left(B_{1}^{*}\right)$ and $f\left(B_{2}^{*}\right)$ form the vartex set of a square in a circle of diameter $\sqrt{2}$, implying:
$\left\|f\left(A_{1}^{*}\right)-f\left(B_{1}^{*}\right)\right\|=\left\|f\left(A_{2}^{*}\right)-f\left(B_{2}^{*}\right)\right\|=\sqrt{2}$ since $f\left(A_{i}^{*}\right) \neq f\left(B_{i}^{*}\right)$ for $i=1,2$.
It follows by Lemma 1 that the mapping f preserves the distance $\sqrt{2}$ between A_{i}^{*} and B_{i}^{*} for all $i=1,2, \ldots, 6$. In particular $\|f(Z)-f(W)\|=\sqrt{2}$.

This completes the proof of Theorem 2*.

Proof of Theorem

Let f be a unit distance preserving mapping $f: Q^{6} \rightarrow Q^{6}$. By Theorem 2^{*} the unit distance preserving mapping f preserves the distance $\sqrt{2}$.
Our result follows by using a Theorem of J.Zaks [8], which states that if a mapping
$g: Q^{d} \rightarrow Q^{d}$ preserves the distance 1 and $\sqrt{2}$, then g is an isometry, provided $d \geq 5$.
The proof that $\operatorname{dim}(a f f(L[6]))=6$ is similar to the proof that $\operatorname{dim}(a f f(L[5]))=5$ that appeared in of Theorem 1, hence it is omitted.

This completes the proof of Theorem

References

1. F.S Beckman and D.A Quarles: On isometries of Euclidean spaces, Proc. Amer. Math. Soc. 4, (1953), 810815.
2. W.Benz, An elementary proof of the Beckman and Quarles, Elem.Math. 42 (1987), 810-815
3. W.Benz, Geometrische Transformationen, B.I.Hochltaschenbucher, Manheim 1992.
4. Karin B. Chilakamarri: Unit-distance graphs in rational n-spaces Discrete Math. 69 (1988), 213-218.
5. R.Connelly and J.Zaks: The Beckman-Quarles theorem for rational d-spaces, d even and $d \geq 6$. Discrete Geometry, Marcel Dekker, Inc. New York (2003) 193-199, edited by Andras Bezdek.
6. H.Lenz: Der Satz von Beckman-Quarles in rationalen Raum, Arch. Math. 49 (1987), 106-113.
7. I.M.Niven, H.S.Zuckerman, H.L.Montgomery: An introduction to the theory of numbers, J. Wiley and Sons, N.Y., (1992).
8. A.Tyszka: A discrete form of the Beckman-Quarles theorem for rational eight- space. Aequationes Math. 62 (2001), 85-93.
9. J.Zaks: A distcrete form of the Beckman-Quarles theorem for rational spaces. J. of Geom. 72 (2001), 199205.
10. J.Zaks: The Beckman-Quarles theorem for rational spaces. Discrete Math. 265 (2003), 311-320.
11. J.Zaks: On mapping of Q^{d} to Q^{d} that preserve distances 1 and $\sqrt{2}$. and the Beckman-Quarles theorem. J of Geom. 82 (2005), 195-203.
