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Abstract: Let Rd and Qd denote the real and the rational d-dimensional space, respectively, equipped with the usual 

Euclidean metric. For a real number 𝜌 > 0, a mapping 𝑓: 𝐴 ⟶ 𝑋,  where X is either Rd or Qd and 𝐴 ⊆ 𝑋, is called 𝜌- 

distance preserving ║𝑥 − 𝑦║ = ρ implies ║𝑓(𝑥) − 𝑓(𝑦)║ = ρ , for all x,y in 𝐴.  

 

Let G(Qd,a) denote the graph that has Qd  as its set of vertices, and where two vertices x and y are connected by edge 

if and only if ║𝑥 − 𝑦║ = 𝑎 . Thus, G(Qd,1) is the unit distance graph. Let ω(G) denote the clique number of the 

graph G and let ω(d) denote ω(G(Qd, 1)). 

 

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from Rd into Rd is an 

isometry, provided d ≥ 2. 

The rational analogues of Beckman- Quarles theorem means that, for certain dimensions d, every unit- distance 

preserving mapping from Qd into Qd is an isometry. 
 

A few papers [2, 3, 4, 5, 6, 8,9,10 and 11] were written about rational analogues of this theorem, i.e, treating, for 

some values of 𝑑, the property "Every unit- distance preserving mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑  is an isometry". 

The propos of this paper is to prove the following: 

 Every unit- distance preserving mapping 𝑓: 𝑄6 ⟶ 𝑄6is an isometry; moreover, dim (aff(f(L[6])))= 6. 

 
 

Mapping of 𝑸𝟔 to 𝑸𝟔 that preserve distance 1 

1.1 Introduction: 

Let Rd and Qd denote the real and the rational d-dimensional space, respectively. 

Let 𝜌 > 0 be a real number, a mapping : 𝑅𝑑 ⟶ 𝑄𝑑 , is called 𝜌- distance preserving if             ║𝑥 − 𝑦║ = ρ   
implies ║𝑓(𝑥) − 𝑓(𝑦)║ = ρ.  
 

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from Rd into Rd is an 

isometry, provided𝑑 ≥ 2.  

A few papers [4, 5, 6, 8,9,10 and 11] were written about the rational analogues of this theorem, i.e, treating, for 

some values of d, the property "every unit- distance preserving mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑   is isometry". 

 

We shall survey the results from the papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the 

Backman-Quarles theorem, and we will extend them to all the remaining dimensions , 𝑑 ≥ 5 . 

 

History of the rational analogues of the Backman-Quarles theorem: 

We shall survey the results from papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the 

Backman-Quarles theorem. 
 

1.      A mapping of the rational space Qd into itself, for d=2, 3 or 4, which preserves all unit- distance is not 

necessarily an isometry; this is true by W.Bens [2, 3] and H.Lenz [6]. 

 

2.      W.Bens [2, 3] had shown the every mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑  that preserves the distances 1 and 2 is an isometry, 

provided 𝑑 ≥5. 
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3.      Tyszka [8] proved that every unit- distance preserving mapping 𝑓: 𝑄8 ⟶ 𝑄8 is an isometry; moreover, he 

showed that for every two points x and y in Q8  there exists a finite set Sxy in Q8 containing x and y such that every 

unit- distance preserving mapping 𝑓: 𝑆𝑥𝑦 ⟶ 𝑄8  preserves the distance between x and y. This is a kind of 

compactness argument, that shows that for every two points x and y in Qd there exists a finite set Sxy, that contains x 

and y ("a neighborhood of x and y") for which already every unit- distance preserving mapping from this 

neighborhood of x and y to Qd must preserve the distance from x to y. This implies that every unit preserving 

mapping from Qd to Qd must preserve the distance between every two points of Qd. 
 

4.       J.Zaks [8, 9] proved that the rational analogues hold in all the even dimensions 𝑑 of the form d = 4k (k+1), for 

k≥1, and they hold for all the odd dimensions d of the form d = 2n2-1 = m2. For integers n, m≥2, (in [9]), or d = 2n2 -

1, n≥3 (in [10]). 

 

5.      R.Connelly and J.Zaks [5] showed that the rational analogues hold for all even dimensions 𝑑, 𝑑 ≥6. 

 

   We wish to remark that during the preparation of this thesis, it was pointed out to us that an important argument, in 

the proof of the even dimensions 𝑑, 𝑑 ≥6, is missing. Here we propose a valid proof for all the cases of 𝑑, 𝑑 ≥5.  
 

6.      J.Zaks [11] had shown that every mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑  that preserves the distances 1 and √2 is an isometry, 

provided 𝑑 ≥5. 

 

New results: 

Denote by L[d] the set of 4 ∙ (𝑑
2

) Points in Qd in which precisely two non-zero coordinates are equal to 1/2 or -1/2. 

  A "quadruple" in L[d] means here a set Lij [d], i ≠ j 𝜖 I = {1, 2, …, d}; contains four j points of L[d] in which the 

non- zero coordinates are in some fixed two coordinates i and j; i.e.  

                                                                     i                 j 

Lij [d]= (0,…0, ± ½, 0…0, ±½, 0, …0) 

Hibi Prove the following results: 
Lemma: 

If x and y are two points in 𝑄𝑑 , 𝑑 ≥ 5, so that: 

√2 +
2

𝑚 − 1
− 1 ≤ ║𝑥 − 𝑦║ ≤ √2 +

2

𝑚 − 1
+ 1   

where 𝜔(𝑑) = 𝑚, then there exists a finite set S(x,y), contains x and y such that f(x)≠f(y) holds for every unit- 

distance preserving mapping  f: S(x,y)→ 𝑄𝑑. 

 

 Theorem 1 

Every unit- distance preserving mapping 𝑓: 𝑄5 ⟶ 𝑄5is an isometry; moreover, dim (aff(f(L[5])))= 5. 

We will prove the following theorem: 

 

Theorem 2: 

Every unit- distance preserving mapping 𝑓: 𝑄6 ⟶ 𝑄6is an isometry; moreover, dim (aff(f(L[6])))= 6. 

 

Mapping of 𝑸𝟔 to 𝑸𝟔 that preserve distance 1 

 

The purpose of this section is to prove the following Theorem: 

Theorem 2: 

Every unit –distance preserving mapping  𝑓: 𝑄6 → 𝑄6 is an isometry; moreover, 

dim (aff(f(L[6]))) = 6.  

     To prove Theorem 2, we prove first the following Theorem. 

 

Theorem 2*: 

if Z,W are any two points in 𝑄6, for which ║Z-W║= √2 , then there exists a finite set M6, containing Z and W, such 

that for every unit –distance preserving mapping f: M6 → 𝑄6, the following equality holds: 

║f(Z)-f(W)║=║Z-W║. 
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Proof of Theorem 2*: 

Consider the 6 points {A1, …, A6}, defined as follows:  

𝐴1 = (
1

2
,     0,     0,     0,     0,      

1

2
) 

𝐴2 = (
1

2
,     0,     0,     0,     0,   −

1

2
) 

𝐴3 = (0,     
1

2
,     0,     0,     

1

2
,     0) 

𝐴4 = (0,     
1

2
,     0,     0,   −

1

2
,    0) 

𝐴5 = (0,     0,      
1

2
,     

1

2
,     0,      0) 

𝐴6 = (0,     0,     
1

2
,   −

1

2
,     0,     0) 

The points {𝐴1, … , 𝐴6} form the vertices of a regular 5- simplex of edge length one in 𝑄6. Let the 6 points 

𝐵1, 𝐵2 , … , 𝐵6 of 𝑄6 be defined by 𝐵𝑖 = −𝐴𝑖 , 1 ≤ 𝑖 ≤ 6, their mutual distances are one, so they form the vertices of 

a regular 5 – simplex of edge length one in 𝑄6. Let 𝑇6 = {𝐴1, … , 𝐴6, 𝐵1, … , 𝐵6}. 

Fix a 𝑘, 1 ≤ 𝑘 ≤ 6, by Lemma 1 and based on ║𝑍 − 𝑊║ = ║𝐴𝑘 − 𝐵𝑘║there exists a rational isometry ℎ: 𝑄6 → 𝑄6  

for which ℎ(𝐴𝑘) = 𝑍: = 𝐴∗
𝑘 and ℎ(𝐵𝑘) = 𝑊: = 𝐵∗

𝑘 ; denote ℎ(𝐴𝑖) = 𝐴∗
𝑖 and ℎ(𝐵𝑖) = 𝐵∗

𝑖 for all 1 ≤ 𝑖 ≤ 6. 

Let 𝑇∗
6 = {𝐴∗

1, … , 𝐴∗
𝑑 , 𝐵∗

1, … , 𝐵∗
6} ; it is clear that 𝑍, 𝑊 ∈  𝑇∗

6.   
Define the set 𝑀6 by: 𝑀6 = 𝑆(𝐴∗

1, 𝐵∗
1) ∪ 𝑆(𝐴∗

2, 𝐵∗
2) ∪ … ∪ 𝑆(𝐴∗

6, 𝐵∗
6), where the sets S are given by Lemma 4. 

Let 𝑓, 𝑓: 𝑀6 → 𝑄6 be any unit-distance preserving mapping. 

 

Claim 3: 

If 𝑥 and 𝑦 are two points in 𝑇∗
6, then 𝑓(𝑥) ≠ 𝑓(𝑦). 

Proof of Claim 3:  

   Computing the mutual distances of the points in 𝑇∗
6 show that:  

║𝐴∗
𝑖 − 𝐴∗

𝑗║ = ║𝐵∗
𝑖 − 𝐵∗

𝑗║ = ║𝐴∗
𝑖 − 𝐵∗

𝑗║ = 1, for all 1 ≤ 𝑖 < 𝑗 ≤ 6, and 

║𝐴∗
𝑖 − 𝐵∗

𝑖║ = √2, for all 1 ≤ 𝑖 ≤ 6. 

All of the distances above are between √2 +
2

𝑚−1
− 1 and √2 +

2

𝑚−1
+ 1. 

where 𝑚 = 𝜔(𝑑) = 6 for 𝑑 = 6. 
Therefore if ║𝑥 − 𝑦║ = 1, then ║f(𝑥) − 𝑓(𝑦)║ = 1, hence 𝑓(𝑥) ≠ 𝑓(𝑦);  

if ║𝑥 − 𝑦║ = √2 there is an 𝑖, 1 ≤ 𝑖 ≤ 6, such that 𝑥 = 𝐴∗
𝑖 , 𝑦 = 𝐵∗

𝑖 and 

 ║𝐴∗
𝑖 − 𝐵∗

𝑖║ = √2. 

By Lemma 4, applied to 𝐴∗
𝑖 and 𝐵∗

𝑖, there exists a set 𝑆(𝐴∗
𝑖 , 𝐵∗

𝑖), that contains 𝐴∗
𝑖 and 𝐵∗

𝑖, for which every unit-

distance preserving mapping 𝑔: 𝑆(𝐴∗
𝑖 , 𝐵∗

𝑖) → 𝑄𝑑satisfies 𝑔(𝐴∗
𝑖) ≠ 𝑔(𝐵∗

𝑖).  
  In particular, this holds for the mapping 𝑔 = 𝑓/𝑆(𝐴∗

𝑖 , 𝐵∗
𝑖), therefore𝑓(𝐴∗

𝑖) ≠ 𝑓(𝐵∗
𝑖). 

 

Claim 4: 

The mapping 𝑓 preserves all the distances√2, between 𝐴∗
𝑖 and 𝐵∗

𝑖 for all 𝑖 = 1,2, … ,6. In particular ║𝑓(𝑍) −

𝑓(𝑤)║ = √2. 
Proof of Claim 4: 

Consider the following (4) points: 

∆1= {𝑓(𝐴3
∗ ), 𝑓(𝐵4

∗), 𝑓(𝐵5
∗), 𝑓(𝐵6

∗)}. 
All of their mutual distances are one, since 𝑓 preserves distance one, so they form the vertices of a regular 3- 

simplex of edge length one in 𝑄6. The intersection of the 4 unit spheres, centered at the vertices of this simplex, is a 

2-sphere of radius𝑡 = √
5

8
, centered at the center 𝑂1  of ∆1; let 𝑆(𝑂1,𝑡)

2  denote this 2-sphere. 

Let ∆2 be defined by:  

∆2= {𝑓(𝐴4
∗ ), 𝑓(𝐵3

∗), 𝑓(𝐵5
∗), 𝑓(𝐵6

∗)}. 
In the similar way we obtain the 2-spheres 𝑆(𝑂2,𝑡)

2 , having her center at 𝑂2 , which is also the center of ∆2. 

The four points 𝑓(𝐴1
∗ ), 𝑓(𝐴2

∗ ), 𝑓(𝐵1
∗) and 𝑓(𝐵2

∗) are in the intersection of the two 2-spheres 𝑆(𝑂𝑗,𝑡)
2 , 𝑗 = 1,2. 

By claim 3, the two simplices ∆1, and ∆2 are different, but they have vertices 𝑓(𝐵5
∗), 𝑎𝑛𝑑 𝑓(𝐵6

∗)  in common. 
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We will prove that 𝑂1 ≠ 𝑂2: 

Assume that 𝑂1 = 𝑂2 = 𝑂. (See figure 6)  

 

 
 

 

 

 

 

                         

 

 

 

 

 
 

 

 

 

 

 

It follows that ║𝑓(𝐵𝑗
∗) − 𝑂║ = ║𝑓(𝐴𝑖

∗) − 𝑂║=t, i=3, 4, and j=3,4, 5, 6. 

In particular, the point O the center of the simplex {𝑓(𝐵3
∗), 𝑓(𝐵4

∗), 𝑓(𝐵5
∗), 𝑓(𝐵6

∗)} , so 

O = 
1

4
 (𝑓(𝐵3

∗) +  𝑓(𝐵4
∗), +𝑓(𝐵5

∗) +  𝑓(𝐵6
∗)), but point O is also the center of the simplex ∆1 so O = 

1

4
 (𝑓(𝐴3

∗ ) +

 𝑓(𝐴4
∗ ), +𝑓(𝐴5

∗ ) +  𝑓(𝐴6
∗ )). 

It follows that 𝑓(𝐴3
∗ ) =  𝑓(𝐵3

∗), a contradiction to Claim 3, thus 𝑂1 ≠ 𝑂2. 

Therefore the 2- spheres 𝑆(𝑂𝑗,𝑡)
2 ,  𝑗 = 1,2, are different. 

They have the same radius 𝑡 = √
5

8
 and they have a non-empty intersection. It follows that there two 2-spheres 

intersect in a one-dimensional sphere, which is a circle. 

   Thus 𝑓(𝐴1
∗ ), 𝑓(𝐴2

∗ ), 𝑓(𝐵1
∗) and 𝑓(𝐵2

∗) form the vartex set of a quadrangle, of edge length one, that lies in a circle. 

(See figure 5). 

  It follows as the previous case that 𝑓(𝐴1
∗ ), 𝑓(𝐴2

∗ ), 𝑓(𝐵1
∗) and 𝑓(𝐵2

∗) form the vartex set of a square in a circle of 

diameter √2, implying: 

║ 𝑓(𝐴1
∗ ) −  𝑓(𝐵1

∗)║ = ║𝑓(𝐴2
∗ ) − 𝑓(𝐵2

∗)║ = √2 since 𝑓(𝐴𝑖
∗) ≠  𝑓(𝐵𝑖

∗) for 𝑖 = 1,2. 

    It follows by Lemma 1 that the mapping 𝑓 preserves the distance √2 between 𝐴𝑖
∗ and 𝐵𝑖

∗ for all 𝑖 = 1,2, … ,6. In 

particular ║ 𝑓(𝑍) −  𝑓(𝑊)║ = √2. 
 

This completes the proof of Theorem 2*. 

 

Proof of Theorem  

Let 𝑓 be a unit distance preserving mapping 𝑓: 𝑄6 → 𝑄6. By Theorem 2* the unit distance preserving mapping 

𝑓preserves the distance √2. 

Our result follows by using a Theorem of J.Zaks [8], which states that if a mapping 

 𝑔: 𝑄𝑑 → 𝑄𝑑  preserves the distance 1 and √2, then 𝑔 is an isometry, provided  𝑑 ≥ 5. 

The proof that dim(aff(L[6])) = 6 is similar to the proof that dim(aff(L[5])) = 5 that appeared in of Theorem 1, hence 

it is omitted. 
 

This completes the proof of Theorem                  
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