
Turkish Journal of Computer and Mathematics Education           Vol.12 No. 7 (2021), 1913-1917 

Research Article 

1913 

The Beckman-Quarles Theorem For Rational Spaces: Mappings Of 𝑸𝟓 To 𝑸𝟓 That 

Preserve Distance 1 
 

By: Wafiq Hibi 
Wafiq. hibi@gmail.com 

The college of sakhnin - math department 

 

Abstract: Let Rd and Qd denote the real and the rational d-dimensional space, respectively, equipped with the usual 

Euclidean metric. For a real number 𝜌 > 0, a mapping 𝑓: 𝐴 ⟶ 𝑋,  where X is either Rd or Qd and 𝐴 ⊆ 𝑋, is called 𝜌- 

distance preserving ║𝑥 − 𝑦║ = ρ implies ║𝑓(𝑥) − 𝑓(𝑦)║ = ρ , for all x,y in 𝐴.  

Let G(Qd,a) denote the graph that has Qd  as its set of vertices, and where two vertices x and y are connected by edge 

if and only if ║𝑥 − 𝑦║ = 𝑎 . Thus, G(Qd,1) is the unit distance graph. Let ω(G) denote the clique number of the 

graph G and let ω(d) denote ω(G(Qd, 1)). 

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from Rd into Rd is an 

isometry, provided d ≥ 2. 

The rational analogues of Beckman- Quarles theorem means that, for certain dimensions d, every unit- distance 

preserving mapping from Qd into Qd is an isometry. 

A few papers [2, 3, 4, 5, 6, 8,9,10 and 11] were written about rational analogues of this theorem, i.e, treating, for 

some values of 𝑑, the property "Every unit- distance preserving mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑 is an isometry". 

The purpose of this thesis is to prove the following Theorem. 

Theorem 1: 

Every unit- distance preserving mapping f: 𝑄5 →𝑄5 is an isometry; moreover, dim(aff(f(L[5])))=5.  

 

1.1 Introduction: 

Let Rd and Qd denote the real and the rational d-dimensional space, respectively. 

Let 𝜌 > 0 be a real number, a mapping : 𝑅𝑑 ⟶ 𝑄𝑑  , is called 𝜌- distance preserving if             ║𝑥 − 𝑦║ = ρ   

implies ║𝑓(𝑥) − 𝑓(𝑦)║ = ρ.  
 

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from Rd into Rd is an 

isometry, provided𝑑 ≥ 2.  

A few papers [4, 5, 6, 8,9,10 and 11] were written about the rational analogues of this theorem, i.e, treating, for 

some values of d, the property "every unit- distance preserving mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑  is isometry". 

 

We shall survey the results from the papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the 

Backman-Quarles theorem, and we will extend them to all the remaining dimensions , 𝑑 ≥ 5 . 

 

History of the rational analogues of the Backman-Quarles theorem: 

We shall survey the results from papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the 

Backman-Quarles theorem. 

 

1.      A mapping of the rational space Qd into itself, for d=2, 3 or 4, which preserves all unit- distance is not 

necessarily an isometry; this is true by W.Bens [2, 3] and H.Lenz [6]. 

 

2.      W.Bens [2, 3] had shown the every mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑  that preserves the distances 1 and 2 is an isometry, 

provided 𝑑 ≥5. 

 

3.      Tyszka [8] proved that every unit- distance preserving mapping 𝑓: 𝑄8 ⟶ 𝑄8 is an isometry; moreover, he 

showed that for every two points x and y in Q8  there exists a finite set Sxy in Q8 containing x and y such that every 

unit- distance preserving mapping 𝑓: 𝑆𝑥𝑦 ⟶ 𝑄8 preserves the distance between x and y. This is a kind of 

compactness argument, that shows that for every two points x and y in Qd there exists a finite set Sxy, that contains x 

and y ("a neighborhood of x and y") for which already every unit- distance preserving mapping from this 

neighborhood of x and y to Qd must preserve the distance from x to y. This implies that every unit preserving 

mapping from Qd to Qd must preserve the distance between every two points of Qd. 
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4.       J.Zaks [8, 9] proved that the rational analogues hold in all the even dimensions 𝑑 of the form d = 4k (k+1), for 

k≥1, and they hold for all the odd dimensions d of the form d = 2n2-1 = m2. For integers n, m≥2, (in [9]), or d = 2n2 -

1, n≥3 (in [10]). 

 

5.      R.Connelly and J.Zaks [5] showed that the rational analogues hold for all even dimensions 𝑑, 𝑑 ≥6. 

 

   We wish to remark that during the preparation of this thesis, it was pointed out to us that an important argument, in 

the proof of the even dimensions 𝑑, 𝑑 ≥6, is missing. Here we propose a valid proof for all the cases of 𝑑, 𝑑 ≥5.  

 

6.      J.Zaks [11] had shown that every mapping 𝑓: 𝑄𝑑 ⟶ 𝑄𝑑  that preserves the distances 1 and √2 is an isometry, 

provided 𝑑 ≥5. 

 

New results: 

Denote by L[d] the set of 4 ∙ (
𝑑
2

) Points in Qd in which precisely two non-zero coordinates are equal to 1/2 or -1/2. 

  A "quadruple" in L[d] means here a set Lij [d], i ≠ j 𝜖 I = {1, 2, …, d}; contains four j points of L[d] in which the 

non- zero coordinates are in some fixed two coordinates i and j; i.e.  

                                                                     i                 j 

Lij [d]= (0,…0, ± ½, 0…0, ±½, 0, …0) 

 

Our main results are the following:  

 

 Theorem 1: 

Every unit- distance preserving mapping 𝑓: 𝑄5 ⟶ 𝑄5is an isometry; moreover, dim (aff(f(L[5])))= 5. 

Hibi prove the following lemma: 

If x and y are two points in 𝑄𝑑 , 𝑑 ≥ 5, so that: 

√2 +
2

𝑚 − 1
− 1 ≤ ║𝑥 − 𝑦║ ≤ √2 +

2

𝑚 − 1
+ 1   

where 𝜔(𝑑) = 𝑚, then there exists a finite set S(x,y), contains x and y such that f(x)≠f(y) holds for every unit- 

distance preserving mapping  f: S(x,y)→ 𝑄𝑑 . 

 

Corollary: 

If x and y are two points in 𝑄𝑑 , 𝑑 ≥ 5, such that ║x-y║=√2 , then every unit- distance preserving mapping  f: 𝑄𝑑 →
𝑄𝑑 satisfies f(x)≠f(y). 

Mappings of 𝑸𝟓 to 𝑸𝟓 that preserve distance 1 

The purpose of this section is to prove the following Theorem. 

 

Theorem 1: 

Every unit- distance preserving mapping f: 𝑄5 →𝑄5 is an isometry; moreover, dim(aff(f(L[5])))=5.  

To prove Theorem 1, we prove first the following Theorem. 

 

Theorem 1*: 

If Z, W are two points in 𝑄5, for which ║𝑍 − 𝑊║ = √2, then there exists a finite set 𝑀5, containing Z and W, such 

that for every unit- distance preserving mapping f: 𝑀5→𝑄5, the following equality holds: 

║f(Z)-f(W)║= ║Z-W║  

 

Proof of Theorem 1*: 

Let Z, W are any two points in 𝑄5, for which ║𝑍 − 𝑊║ = √2. 

Denote by L[5] the set of   4 ∙ (
5
2

) = 40 points in 𝑄𝑑 in which precisely two coordinates are non- zero and are equal 

to 1/2 or  -1/2 . 

A "quadruple" in L[5] means a set 𝐿𝑖𝑗[5], 𝑖 ≠ 𝑗𝜖𝐼 = {1, 2, 3, 4, 5}, containing four points of L[5] in which the non-

zero coordinates are in some fixed two, the i-th and the j-th coordinates; i.e. 
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𝐿𝑖𝑗[5] = {(0, ±
1

2
, 0, ±

1

2
, 0)} 

 

If 𝜌 is a distance between any two points of the set L[5] then  𝜌𝜖 {√0.5, 1, √1.5, √2}. 

 Fix a quadruple 𝐿𝑖𝑗[5] let x, y two points in 𝐿𝑖𝑗[5]  such that ║x-y║=√2. 

By Lemma 1 and based on ║Z-W║=║x-y║, there exists a rational isometry ℎ: 𝑄5 →𝑄5 for which h(x) =:Z=x* and 

h(y)=W:=y* ; denote h(l)=l* for all l𝜖 L[5]. 

 Let L*[5] = {l* = h(l) for all l𝜖 L[5]}; it is clear that Z, W 𝜖 L*[5], and to simplify terminology we will denote 

L*[5] = {𝑙   𝑖
∗ } when i 𝜖{1, 2, …, 40}. 

Define the set 𝑀5 by: 𝑀5 =∪ { 𝑆(𝑙   𝑖
∗ , 𝑙  𝑗

∗ ) ∪ 𝑆(𝑙   𝑛
∗ , 𝑙   𝑚

∗ ) ∪ 𝑆(𝑙   𝑠
∗ , 𝑙   𝑡

∗ )  )};  

for all i, j, n, m, s ,t𝜖{1, 2, …, 40} when  ║𝑙   𝑖
∗ −  𝑙  𝑗

∗ ║ = √0.5, 

║𝑙   𝑛
∗ − 𝑙   𝑛

∗  ║ =  √1.5 and ║𝑙   𝑠
∗ − 𝑙   𝑡

∗  ║ =  √2; where the sets S are given by Lemma 4. 

 

Let f, f: 𝑀5→Q5 be any unit- distance preserving mapping. 

 

Claim 1:  

If x and y are two points in L*[5] for which ║x-y║=1, √2 then f(x) ≠ f(y). 

Proof of Claim 1:   

Clearly, if ║x-y║=1, then ║f(x) - f(y) ║=1, hence f(x) ≠ f(y). 

The distance √2 is between√2 +
2

𝑚−1
− 1 and √2 +

2

𝑚−1
+ 1.  

Where m=ω(d)=4 for d=5. 

Therefore, if ║x-y║=√2, then there exist an i and j, 1≤ i≠j ≤ 40, such that x=𝑙   𝑖
∗ , y=𝑙  𝑗

∗  and   ║𝑙   𝑖
∗ −  𝑙  𝑗

∗ ║ = √2. ( 𝑙   𝑖
∗  

and  𝑙  𝑗
∗   on the same quadruple). 

By Lemma 4, applied to 𝑙   𝑖
∗  𝑎𝑛𝑑 𝑙  𝑗

∗ , there exists a set S(𝑙   𝑖
∗ , 𝑙  𝑗

∗ ), that contains  𝑙   𝑖
∗  𝑎𝑛𝑑 𝑙  𝑗

∗ , for which every unit- 

distance preserving mapping   g: S(𝑙   𝑖
∗ , 𝑙  𝑗

∗ )→ 𝑄5 satisfies 

 g(𝑙   𝑖
∗ )≠ g(, 𝑙  𝑗

∗ ). 

In particular this holds for the mapping g= f / S(𝑙   𝑖
∗ , 𝑙  𝑗

∗ ), therefore f(𝑙   𝑖
∗ )≠ f(, 𝑙  𝑗

∗ ). 

 

Claim 2: 

 The mapping f preserves all the distances√2. In particular ║f(Z)-f(W)║= √2. 
Proof of Claim 2: 

Consider the graph P of unit distances among the points of L*[5]; it is isomorphic to the famous Petersen’s graph, 

by substituting a 4-cycle for each vertex of P. 

(See figure 4). 

 

 

 

 

 

 

 

 

 

 

                         

 

 

 

 

 

Figure 4 
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 We prove that the affine dimension of the f- image of each quadruple, i.e., the image of the four points that 

correspond to one vertex of P must be 2. Indeed, by claim 1 this dimension is at least 2, since f (𝑙   𝑖
∗ ) ≠ f ( 𝑙  𝑗

∗ ) for all 

𝑙   𝑖
∗  and 𝑙  𝑗

∗  on L*[5]  

(In particular, this holds for all 𝑙   𝑖
∗  and 𝑙  𝑗

∗  on the same quadruple). 

Suppose, by contradiction, that dim(aff(f(A))) ≥ 3, for some quadruple A, let the quadruple B, C, D, and E correspond 

to vertices of P so that A, B, C, D and E is a cycle in P. 

All the points of f(B) and f(E) must be at unit distance from those of f(A), so all the points of f(B) and f(E) lie on a 

circle, say circle S with enter O.  

This means that f(B) and f(C) are two squares inscribed in S. it follows that all the points of f(C) and f(D) must lie on 

the 3-flat that is perpendicular to 2-flat determined by S and passes through O.  

But this cannot happen, since the points of f(C) span a flat of dimension at least 2 in this 3-flat, which then forces the 

points of f(D) to lie on a line, which is impossible. 

It follows that the points of any f(F) lie on the intersection of some unit-distance spheres and a 2-flat which is a 

circle; when F={a, b, c, d} is a given block,  

such that ║a-b║= ║b-c║=║c-d║=║d-a║=1 and ║a-c║=║b-d║=√2. 

Thus f(a), f(b), f(c),and f(d) form the vertex set of quadrangle, of edge length one that lies in a circle. (See figure 5).  

 

 

 

 

 

 

 

 

 

 

 

                        

 

 

 

 

 

 

Figure 5 

 

The situations (i) and (ii) are impossible since f (𝑙   𝑖
∗ ) ≠ f ( 𝑙  𝑗

∗ ) for all 𝑙   𝑖
∗ and  𝑙  𝑗

∗  on L*[5]. 

It follows that f(a), f(b), f(c), and f(d) form vertex set of a square in circle of diameter √2, implying: ║f(a)-

f(c)║=║f(b)-f(d)║= √2. 

Hence, the distance√2, within each quadrangle are preserved. In particular 

 ║f(Z)-f(W)║= √2. 

This completes the proof of Theorem 1*. 

 
   Proof of Theorem 1: 

Let f be a unit distance preserving mapping f:Q5 → Q5. By Theorem 1* the unit distance preserving mapping f 

preserves the distance √2  . 

Our result follows by using a Theorem of J. Zaks [8], which states that if a mapping 

 g:Qd → Qd preserves the distances 1 and √2, then g is an isometry, provided d ≥ 5. 

Moreover, dim(aff(f(L[5]))) = 5: 

The mapping f is an isometry, hence it suffices to provide that dim(aff (L[5])) = 5. 

To show this, notice that: 
1

2
(

1

2
,
1

2
, 0,0,0) +

1

2
(

1

2
, −

1

2
, 0,0,0) =

1

2
(1,0,0,0,0) 

𝑓(𝑎) 𝑓(𝑏) 

𝑓(𝑐) 
𝑓(𝑑) 

𝑓(𝑎) 
𝑓(𝑏) 

𝑓(𝑐) 
𝑓(𝑑) 

𝑓(𝑑) = 𝑓(𝑏) 
𝑓(𝑑) = 𝑓(𝑏) 

(𝑖𝑖) (𝑖) 

(𝑖𝑖𝑖) 
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1

2
(

1

2
,
1

2
, 0,0,0) +

1

2
(−

1

2
,
1

2
, 0,0,0) =

1

2
(0,1,0,0,0) 

1

2
(0,0,

1

2
,
1

2
, 0) +

1

2
(0,0,

1

2
, −

1

2
, 0) =

1

2
(0,0,1,0,0) 

1

2
(0,0,

1

2
,
1

2
, 0) +

1

2
(0,0, −

1

2
,
1

2
, 0) =

1

2
(0,0,0,1,0) 

1

2
(0,0,0,

1

2
,
1

2
) +

1

2
(0,0,0, −

1

2
,
1

2
) =

1

2
(0,0,0,0,1) 

Hence all the major unit vectors in R5 when multiplied by 
1

2
, are convex combinations of points in L[5]. 

 This completes the proof of Theorem 1. 
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