The Beckman-Quarles Theorem For Rational Spaces

By: Wafiq Hibi

Wafiq. hibi@gmail.com The college of sakhnin - math department

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 16 April 2021

Abstract: Let \mathbb{R}^d and \mathbb{Q}^d denote the real and the rational d-dimensional space, respectively, equipped with the usual Euclidean metric. For a real number $\rho > 0$, a mapping $f: A \to X$, where X is either \mathbb{R}^d or \mathbb{Q}^d and $A \subseteq X$, is called ρ -distance preserving $||x - y|| = \rho$ implies $||f(x) - f(y)|| = \rho$, for all x,y in A.

Let $G(Q^d, a)$ denote the graph that has Q^d as its set of vertices, and where two vertices *x* and *y* are connected by edge if and only if ||x - y|| = a. Thus, $G(Q^d, 1)$ is the unit distance graph. Let $\omega(G)$ denote the clique number of the graph G and let $\omega(d)$ denote $\omega(G(Q^d, 1))$.

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from R^d into R^d is an isometry, provided $d \ge 2$.

The rational analogues of Beckman- Quarles theorem means that, for certain dimensions d, every unit-distance preserving mapping from Q^d into Q^d is an isometry.

A few papers [2, 3, 4, 5, 6, 8,9,10 and 11] were written about rational analogues of this theorem, i.e, treating, for some values of *d*, the property "Every unit- distance preserving mapping $f: Q^d \to Q^d$ is an isometry".

The purpose of this section is to prove the following Lemma Lemma: If x and y are two points in Q^d , $d \ge 5$, so that:

$$\sqrt{2 + \frac{2}{m-1}} - 1 \le ||x - y|| \le \sqrt{2 + \frac{2}{m-1}} + 1$$

where $\omega(d) = m$, then there exists a finite set S(x, y), contains x and y such that $f(x) \neq f(y)$ holds for every unitdistance preserving mapping $f: S(x, y) \rightarrow Q^d$.

1.1 Introduction:

Let R^d and Q^d denote the real and the rational d-dimensional space, respectively. Let $\rho > 0$ be a real number, a mapping : $R^d \to Q^d$, is called ρ - distance preserving if $||x - y|| = \rho$ implies $||f(x) - f(y)|| = \rho$.

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from R^d into R^d is an isometry, provided $d \ge 2$.

A few papers [4, 5, 6, 8,9,10 and 11] were written about the rational analogues of this theorem, i.e, treating, for some values of d, the property "every unit- distance preserving mapping $f: Q^d \to Q^d$ is isometry".

We shall survey the results from the papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the Backman-Quarles theorem, and we will extend them to all the remaining dimensions, $d \ge 5$.

History of the rational analogues of the Backman-Quarles theorem:

We shall survey the results from papers [2, 3, 4, 5, 6, 8,9,10 and 11] concerning the rational analogues of the Backman-Quarles theorem.

1. A mapping of the rational space Q^d into itself, for d=2, 3 or 4, which preserves all unit-distance is not necessarily an isometry; this is true by W.Bens [2, 3] and H.Lenz [6].

2. W.Bens [2, 3] had shown the every mapping $f: Q^d \to Q^d$ that preserves the distances 1 and 2 is an isometry, provided $d \ge 5$.

3. Tyszka [8] proved that every unit- distance preserving mapping $f: Q^8 \to Q^8$ is an isometry; moreover, he showed that for every two points x and y in Q^8 there exists a finite set S_{xy} in Q^8 containing x and y such that every unit- distance preserving mapping $f: S_{xy} \to Q^8$ preserves the distance between x and y. This is a kind of compactness argument, that shows that for every two points x and y in Q^d there exists a finite set S_{xy} , that contains x and y " ("a neighborhood of x and y") for which already every unit- distance preserving mapping from this neighborhood of x and y to Q^d must preserve the distance from x to y. This implies that every unit preserving mapping from Q^d to Q^d must preserve the distance between every two points of Q^d .

4. J.Zaks [8, 9] proved that the rational analogues hold in all the even dimensions *d* of the form d = 4k (k+1), for $k \ge 1$, and they hold for all the odd dimensions d of the form $d = 2n^2 \cdot 1 = m^2$. For integers *n*, $m \ge 2$, (in [9]), or $d = 2n^2 \cdot 1$, $n \ge 3$ (in [10]).

5. R.Connelly and J.Zaks [5] showed that the rational analogues hold for all even dimensions $d, d \ge 6$.

We wish to remark that during the preparation of this thesis, it was pointed out to us that an important argument, in the proof of the even dimensions d, $d \ge 6$, is missing. Here we propose a valid proof for all the cases of d, $d \ge 5$.

6. J.Zaks [11] had shown that every mapping $f: Q^d \to Q^d$ that preserves the distances 1 and $\sqrt{2}$ is an isometry, provided $d \ge 5$.

New results:

Denote by L[d] the set of $4 \cdot \binom{d}{2}$ Points in Q^d in which precisely two non-zero coordinates are equal to 1/2 or -1/2. A "quadruple" in L[d] means here a set $L_{ij}[d]$, $i \neq j \in I = \{1, 2, ..., d\}$; contains four *j* points of L[d] in which the non-zero coordinates are in some fixed two coordinates *i* and *j*; i.e.

$$L_{ij} \begin{bmatrix} d \end{bmatrix} = (0, \dots, 0, \pm \frac{1}{2}, 0, \dots, 0, \pm \frac{1}{2}, 0, \dots, 0)$$

Our main results are the following:

Lemma: If x and y are two points in Q^d , $d \ge 5$, so that:

$$\sqrt{2 + \frac{2}{m-1} - 1} \le ||x - y|| \le \sqrt{2 + \frac{2}{m-1} + 1}$$

where $\omega(d) = m$, then there exists a finite set S(x, y), contains x and y such that $f(x) \neq f(y)$ holds for every unitdistance preserving mapping $f: S(x, y) \rightarrow Q^d$.

Auxiliary Lemmas:

We need the following Lemmas for our proofs of the Theorems 1 and 2.

Lemma 1: (due J.Zaks [10]).

If $v_1, \ldots, v_n, w_1, \ldots, w_m$ are points in Q^d , $n \le m$ such that $||v_i - v_j|| = ||w_r - w_s|$, for all $1 \le i \le j \le n, l \le r \le s \le m$ then there exists a congruence $f: Q^d \longrightarrow Q^d$, such that $f(v_i) = w_i$ for all $1 \le i \le n$.

Lemma 2: (due to Chilakamarri [4]).

a. For even d, $\omega(d) = d+1$, if d+1 is a complete square; otherwise $\omega(d) = d$.

b. For odd d, $d \ge 5$, the value of $\omega(d)$ is as follows: if $d = 2n^2 - 1$, then $\omega(d) = d + 1$; if $d \ne 2n^2 - 1$ and the Diophantine equation $dx^2 - 2(d - 1)y^2 = z^2$ has a solution in which $x \ne 0$ then $\omega(d) = d$; otherwise $\omega(d) = d - 1$.

Lemma 3:

If a, b, c are three numbers that satisfy the triangle inequality and if a^2 , b^2 , c^2 are rational numbers then: a. , and

b. The space $Q^d (\underline{\beta \geq 8} \underline{a^{\text{ontainse}}})^{\underline{a}}$ riangle *ABC*, having edge length: AB=c, BC=a, AC=b. **Proof of Lemma 3:** $4c^2$

Proof of Lemma 3: $4c^2$ To prove (**a**), its suffices to prove that $4b^2c^2 - (b^2 - a^2 + c^2)^2 > 0$

$$4b^2c^2 - (b^2 - a^2 + c^2)^2 =$$

$$= [2bc + (b^{2} - a^{2} + c^{2})] \cdot [2bc - (b^{2} - a^{2} + c^{2})]$$

= [(b + c)^{2} - a^{2}] \cdot [a^{2} - (b - c)^{2}]
= (a + b + c)(b + c - a)(a + b - c)(a - b + c) > 0

The triangle inequality implies that the expression in the previous line on the left is positive; it appears also in Heron's formula.

To prove (b): Let *a*, *b*, *c* be three numbers that satisfy the triangle inequality, and so that a^2, b^2, c^2 are rational numbers.

The number $c^2/4$ is positive and rational, hence there exist, according to Lagrange Four Squares theorem [8], rational numbers $\alpha, \beta, \gamma, \delta$ such that $c^2/4 = \alpha^2 + \beta^2 + \gamma^2 + \delta^2$.

By part (a), the following holds: $b^2 - \frac{(b^2 - a^2 + c^2)^2}{4c^2} > 0$, therefore there exist by Lagrange Theorem rational numbers: *x*, *y*, *z*, *w*, such that:

$$b^{2} - \frac{\left(b^{2} - a^{2} + c^{2}\right)^{2}}{4c^{2}} = x^{2} + y^{2} + z^{2} + w^{2}.$$

Consider the following points: $A = (-\alpha, -\beta, -\gamma, -\delta, 0, ..., 0)$ $B = (\alpha, \beta, \gamma, \delta, 0, ..., 0)$ $C = (\frac{b^2 - a^2}{c^2} \alpha, \frac{b^2 - a^2}{c^2} \beta, \frac{b^2 - a^2}{c^2} \gamma, \frac{b^2 - a^2}{c^2} \delta, x, y, z, w, 0, ..., 0)$

The points *A*,*B* and *C* satisfy:

$$\begin{split} \|A - B\| &= \sqrt{4(\alpha^2 + \beta^2 + \delta^2 + \gamma^2} = c \\ \|A - C\| &= \sqrt{\left[\frac{b^2 - a^2}{c^2} + 1\right]^2 (\alpha^2 + \beta^2 + \delta^2 + \gamma^2) + x^2 + y^2 + z^2 + w^2} \\ &= \sqrt{\frac{(b^2 - a^2 + c^2)^2}{4c^2} + b^2 - \frac{(b^2 - a^2 + c^2)^2}{4c^2}} = b, \end{split}$$

and:

$$\|B - C\| = \sqrt{\left[\frac{b^2 - a^2}{c^2} - 1\right]^2 (a^2 + \beta^2 + \delta^2 + \gamma^2) + x^2 + y^2 + z^2 + w^2}$$
$$= \sqrt{\frac{(b^2 - a^2 - c^2)^2}{4c^2} - \frac{(b^2 - a^2 + c^2)^2}{4c^2}} + b^2 =$$
$$= \sqrt{\frac{-4(b^2 - a^2)c^2 + 4b^2c^2}{4c^2}} = a$$

This completes the proof of Lemma 3.

Corollary 1:

If a, b, 1 satisfy the triangle inequality and if a^2 , b^2 are rational numbers, then the space Q^5 contains the vertices of a triangle which has edge lengths a, b, 1.

Proof:

Consider the following points:

$$A = (\frac{1}{2}, 0, 0, 0, 0)$$

$$B = (-\frac{1}{2}, 0, 0, 0, 0)$$

$$C = ((b^{2} - a^{2})^{\frac{1}{2}}, \alpha, \beta, \gamma, \delta)$$

Where α , β , γ , δ are the rational numbers that exist according to Lagrange theorem, for which:

From the proof of Lemma 2 the triangle, *ABC* has the edge length *a*, *b*, *1*. **Corollary 2:** $b^2 - \frac{(b^2 - a^2 + 1)^2}{4} = a^2 + \beta^2 + \delta^2 + \gamma^2$

Corollary 2:

If t is a number such that $\sqrt{2 + \frac{2}{m-1}} - 1 \le t \le \sqrt{2 + \frac{2}{m-1}} + 1$, $t^2 \in Q$

Where $m \ge 4$ is a natural number, then the space Q^d , $d \ge 5$, contains a triangle ABC having edge length 1,t, $\sqrt{2 + \frac{2}{m-1}}$

Proof:

According to Lemma 2, the numbers 1,t, $\sqrt{2 + \frac{2}{m-1}}$ satisfy the triangle inequality, and the result follows from Corollary 1.

Lemma 4:

If x and y are two points in Q^d , $d \ge 5$, so that:

$$\sqrt{2 + \frac{2}{m-1}} - 1 \le ||x - y|| \le \sqrt{2 + \frac{2}{m-1}} + 1$$

where $\omega(d) = m$, then there exists a finite set S(x, y), contains x and y such that $f(x) \neq f(y)$ holds for every unitdistance preserving mapping $f: S(x,y) \rightarrow Q^d$.

Proof of Lemma 4:

Let x and y be points in Q^d , $d \ge 5$, for which,

 $\sqrt{2 + \frac{2}{m-1}} - 1 \le ||x - y|| \le \sqrt{2 + \frac{2}{m-1}} + 1$ where $\omega(d) = m$. The real numbers ||x-y||, $\sqrt{2 + \frac{2}{m-1}}$ and *I* satisfy the triangle inequality, hence by Corollary 2 there exist three points A, B, C such that $\| \overset{\mathsf{v}}{A} - B \| = \| x - y \|$, $||A-C|| = \sqrt{2 + \frac{2}{m-1}}$ and ||B-C|| = l. It follows by two rational reflections that there exists a rational point **z** for which ||y-z|| = 1 and $||x-z|| = \sqrt{2 + \frac{2}{m-1}}$, (see Figure 1). Let $\{v_0, \dots, v_{m-1}\}$ be a maximum clique in $G(Q^d, 1)$, and let w_0 be the reflection of v_0 with respect to the rational hyperplane passing through the points $\{v_1, \dots, v_{m-1}\}$ it follows that $||v_0 - w_0|| = \sqrt{2 + \frac{2}{m-1}}$, (see Figure 2).

Based on $||x-z|| = ||v_0 - w_0||$ and lemma 1, there exist a rational translation h for which $h(v_0) = x$ and $h(w_0) = z$. Denote $g(h(v_i)) = V_i$ for all $1 \le i \le m-1$, (see Figure 3).

Denote $S(x, y) = \{x, y, z, v_1, ..., v_{m-1}\}$. Suppose that f(x) = f(y) holds for some unit-distance preserving mapping f: $S(x,y) \rightarrow Q^d$.

The assumption f(x) = f(y) and ||y-z|| = l imply that ||f(y) - f(z)|| = l = ||f(x) = f(z)||, hence the set $\{f(x), f(z), f(v_1), \dots, f(v_{m-1})\}$, forms a clique in $G(Q^d, 1)$ of size m+1, which is a contradiction. It follows that $f(x) \neq f(y)$ holds for every unit- distance preserving mapping $f: S(x,y) \to Q^d$. This completes the proof of Lemma 4.

References

- F.S Beckman and D.A Quarles: On isometries of Euclidean spaces, Proc. Amer. Math. Soc. 4, (1953), 810-815.
- 2. W.Benz, An elementary proof of the Beckman and Quarles, Elem.Math. 42 (1987), 810-815
- 3. W.Benz, Geometrische Transformationen, B.I.Hochltaschenbucher, Manheim 1992.
- 4. Karin B. Chilakamarri: Unit-distance graphs in rational n-spaces Discrete Math. 69 (1988), 213-218.
- 5. R.Connelly and J.Zaks: The Beckman-Quarles theorem for rational d-spaces, d even and d≥6. Discrete Geometry, Marcel Dekker, Inc. New York (2003) 193-199, edited by Andras Bezdek.
- 6. H.Lenz: Der Satz von Beckman-Quarles in rationalen Raum, Arch. Math. 49 (1987), 106-113.
- I.M.Niven, H.S.Zuckerman, H.L.Montgomery: An introduction to the theory of numbers, J. Wiley and Sons, N.Y., (1992).
- A.Tyszka: A discrete form of the Beckman-Quarles theorem for rational eight- space. Aequationes Math. 62 (2001), 85-93.
- 9. J.Zaks: A distcrete form of the Beckman-Quarles theorem for rational spaces. J. of Geom. 72 (2001), 199-205.
- 10. J.Zaks: The Beckman-Quarles theorem for rational spaces. Discrete Math. 265 (2003), 311-320.
- 11. J.Zaks: On mapping of Q^d to Q^d that preserve distances 1 and $\sqrt{2}$. and the Beckman-Quarles theorem. J of Geom. 82 (2005), 195-203.