The Beckman-Quarles Theorem For Rational Spaces

By: Wafiq Hibi

Wafiq. hibi@gmail.com
The college of sakhnin - math department
Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 16 April 2021

```
Abstract: Let \(R^{d}\) and \(Q^{d}\) denote the real and the rational d-dimensional space, respectively, equipped with the usual Euclidean metric. For a real number \(\rho>0\), a mapping \(f: A \rightarrow X\), where \(X\) is either \(R^{d}\) or \(Q^{d}\) and \(A \subseteq X\), is called \(\rho\) distance preserving \(\|x-y\|=\rho\) implies \(\|f(x)-f(y)\|=\rho\), for all \(x, y\) in \(A\).
```

Let $\mathrm{G}\left(\mathrm{Q}^{\mathrm{d}}, \mathrm{a}\right)$ denote the graph that has Q^{d} as its set of vertices, and where two vertices x and y are connected by edge if and only if $\|x-y\|=a$. Thus, $\mathrm{G}\left(Q^{d}, 1\right)$ is the unit distance graph. Let $\omega(\mathrm{G})$ denote the clique number of the graph G and let $\omega(d)$ denote $\omega\left(\mathrm{G}\left(Q^{d}, 1\right)\right)$.

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from R^{d} into R^{d} is an isometry, provided $d \geq 2$.

The rational analogues of Beckman- Quarles theorem means that, for certain dimensions d, every unit- distance preserving mapping from Q^{d} into Q^{d} is an isometry.

A few papers $[2,3,4,5,6,8,9,10$ and 11] were written about rational analogues of this theorem, i.e, treating, for some values of d, the property "Every unit- distance preserving mapping $f: Q^{d} \rightarrow Q^{d}$ is an isometry".

The purpose of this section is to prove the following Lemma
Lemma: If x and y are two points in $Q^{d}, d \geq 5$, so that:

$$
\sqrt{2+\frac{2}{m-1}}-1 \leq\|x-y\| \leq \sqrt{2+\frac{2}{m-1}}+1
$$

where $\omega(d)=m$, then there exists a finite set $S(x, y)$, contains x and y such that $f(x) \neq f(y)$ holds for every unitdistance preserving mapping $f: S(x, y) \rightarrow Q^{d}$.

1.1 Introduction:

Let R^{d} and Q^{d} denote the real and the rational d-dimensional space, respectively.
Let $\rho>0$ be a real number, a mapping : $R^{d} \rightarrow Q^{d}$, is called ρ-distance preserving if $\quad\|x-y\|=\rho$ implies $\|f(x)-f(y)\|=\rho$.

The Beckman-Quarles theorem [1] states that every unit- distance-preserving mapping from R^{d} into R^{d} is an isometry, provided $d \geq 2$.
A few papers [4, 5, 6, 8,9,10 and 11] were written about the rational analogues of this theorem, i.e, treating, for some values of d, the property "every unit- distance preserving mapping $f: Q^{d} \rightarrow Q^{d}$ is isometry".

We shall survey the results from the papers $[2,3,4,5,6,8,9,10$ and 11$]$ concerning the rational analogues of the Backman-Quarles theorem, and we will extend them to all the remaining dimensions, $d \geq 5$.

History of the rational analogues of the Backman-Quarles theorem:

We shall survey the results from papers [$2,3,4,5,6,8,9,10$ and 11] concerning the rational analogues of the Backman-Quarles theorem.

1. A mapping of the rational space Q^{d} into itself, for $d=2,3$ or 4 , which preserves all unit- distance is not necessarily an isometry; this is true by W.Bens [2, 3] and H.Lenz [6].
2. W.Bens $[2,3]$ had shown the every mapping $f: Q^{d} \rightarrow Q^{d}$ that preserves the distances 1 and 2 is an isometry, provided $d \geq 5$.
3. Tyszka [8] proved that every unit- distance preserving mapping $f: Q^{8} \rightarrow Q^{8}$ is an isometry; moreover, he showed that for every two points x and y in Q^{8} there exists a finite set $S_{x y}$ in Q^{8} containing x and y such that every unit- distance preserving mapping $f: S_{x y} \rightarrow Q^{8}$ preserves the distance between x and y. This is a kind of compactness argument, that shows that for every two points x and y in Q^{d} there exists a finite set $S_{x y}$, that contains x and y ("a neighborhood of x and y ") for which already every unit- distance preserving mapping from this neighborhood of x and y to Q^{d} must preserve the distance from x to y. This implies that every unit preserving mapping from Q^{d} to Q^{d} must preserve the distance between every two points of Q^{d}.
4. J.Zaks [8,9] proved that the rational analogues hold in all the even dimensions d of the form $d=4 k(k+1)$, for $k \geq 1$, and they hold for all the odd dimensions d of the form $d=2 n^{2}-1=m^{2}$. For integers $n, m \geq 2$, (in [9]), or $d=2 n^{2}$ $1, n \geq 3$ (in [10]).
5. R.Connelly and J.Zaks [5] showed that the rational analogues hold for all even dimensions $d, d \geq 6$.

We wish to remark that during the preparation of this thesis, it was pointed out to us that an important argument, in the proof of the even dimensions $d, d \geq 6$, is missing. Here we propose a valid proof for all the cases of $d, d \geq 5$.
6. J.Zaks [11] had shown that every mapping $f: Q^{d} \rightarrow Q^{d}$ that preserves the distances 1 and $\sqrt{2}$ is an isometry, provided $d \geq 5$.

New results:

Denote by $L[d]$ the set of $4 \cdot\binom{d}{2}$ Points in Q^{d} in which precisely two non-zero coordinates are equal to $1 / 2$ or $-1 / 2$. A "quadruple" in $L[d]$ means here a set $L_{i j}[d], i \neq j \in I=\{1,2, \ldots, \mathrm{~d}\}$; contains four j points of $L[d]$ in which the non- zero coordinates are in some fixed two coordinates i and j; i.e.

$$
\stackrel{\mathrm{i}}{\mathrm{~L}_{i j}[d]=(0, \ldots 0, \pm 1 / 2,0 \ldots 0, \pm 1 / 2,0, \ldots 0)}
$$

Our main results are the following:
Lemma: If x and y are two points in $Q^{d}, d \geq 5$, so that:

$$
\sqrt{2+\frac{2}{m-1}}-1 \leq\|x-y\| \leq \sqrt{2+\frac{2}{m-1}}+1
$$

where $\omega(d)=m$, then there exists a finite set $S(x, y)$, contains x and y such that $f(x) \neq f(y)$ holds for every unitdistance preserving mapping $f: S(x, y) \rightarrow Q^{d}$.

Auxiliary Lemmas:

We need the following Lemmas for our proofs of the Theorems 1 and 2.
Lemma 1: (due J.Zaks [10]).
If $v_{l}, \ldots, v_{n}, w_{l}, \ldots, w_{m}$ are points in $Q^{d}, n \leq m$ such that $\left\|v_{i}-v_{j}\right\|=\| w_{r}-w_{s}$, for all $l \leq i \leq j \leq n, l \leq r \leq s \leq m$ then there exists a congruence $f: Q^{d} \rightarrow Q^{d}$, such that $f\left(v_{i}\right)=w_{i}$ for all $l \leq i \leq n$.

Lemma 2: (due to Chilakamarri [4]).
a. For even $d, \omega(d)=d+1$, if $d+1$ is a complete square; otherwise $\omega(d)=d$.
b. For odd $d, d \geq 5$, the value of $\omega(d)$ is as follows: if $d=2 n^{2}-1$, then $\omega(d)=d+1$; if $d \neq 2 n^{2}-1$ and the Diophantine equation $d x^{2}-2(d-1) y^{2}=z^{2}$ has a solution in which $x \neq 0$ then $\omega(d)=d$; otherwise $\omega(d)=d-1$.

Lemma 3:

If a, b, c are three numbers that satisfy the triangle inequality and if a^{2}, b^{2}, c^{2} are rational numbers then:
a.
, and

Proof of Lemma 3: $4 c^{2}$

To prove (a), its suffices to prove that $4 b^{2} c^{2}-\left(b^{2}-a^{2}+c^{2}\right)^{2}>0$

$$
\begin{gathered}
4 b^{2} c^{2}-\left(b^{2}-a^{2}+c^{2}\right)^{2}= \\
=\left[2 b c+\left(b^{2}-a^{2}+c^{2}\right)\right] \cdot\left[2 b c-\left(b^{2}-a^{2}+c^{2}\right)\right] \\
=\left[(b+c)^{2}-a^{2}\right] \cdot\left[a^{2}-(b-c)^{2}\right] \\
=(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{b}+\mathrm{c}-\mathrm{a})(\mathrm{a}+\mathrm{b}-\mathrm{c})(\mathrm{a}-\mathrm{b}+\mathrm{c})>0 .
\end{gathered}
$$

The triangle inequality implies that the expression in the previous line on the left is positive; it appears also in Heron's formula.

To prove (b): Let a, b, c be three numbers that satisfy the triangle inequality, and so that a^{2}, b^{2}, c^{2} are rational numbers.
The number $\mathrm{c}^{2} / 4$ is positive and rational, hence there exist, according to Lagrange Four Squares theorem [8], rational numbers $\alpha, \beta, \gamma, \delta$ such that $\mathrm{c}^{2} / 4=\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$.

By part (a), the following holds: $b^{2}-\frac{\left(b^{2}-a^{2}+c^{2}\right)^{2}}{4 c^{2}}>0$, therefore there exist by Lagrange
Theorem rational numbers: x, y, z, w, such that:

$$
b^{2}-\frac{\left(b^{2}-a^{2}+c^{2}\right)^{2}}{4 c^{2}}=x^{2}+y^{2}+z^{2}+w^{2} .
$$

Consider the following points:
$A=(-\alpha,-\beta,-\gamma,-\delta, 0, \ldots, 0)$
$B=(\alpha, \beta, \gamma, \delta, 0, \ldots, 0)$
$C=\left(\frac{b^{2}-a^{2}}{c^{2}} \alpha, \frac{b^{2}-a^{2}}{c^{2}} \beta, \frac{b^{2}-a^{2}}{c^{2}} \gamma, \frac{b^{2}-a^{2}}{c^{2}} \delta, x, y, z, w, 0, \ldots, 0\right)$
The points A, B and C satisfy:

$$
\begin{aligned}
& \|A-B\|=\sqrt{4\left(\alpha^{2}+\beta^{2}+\delta^{2}+\gamma^{2}\right.}=c \\
& \|A-C\|=\sqrt{\left[\frac{b^{2}-a^{2}}{c^{2}}+1\right]^{2}\left(\alpha^{2}+\beta^{2}+\delta^{2}+\gamma^{2}\right)+x^{2}+y^{2}+z^{2}+w^{2}} \\
& \\
& =\sqrt{\frac{\left(b^{2}-a^{2}+c^{2}\right)^{2}}{4 c^{2}}+b^{2}-\frac{\left(b^{2}-a^{2}+c^{2}\right)^{2}}{4 c^{2}}}=b,
\end{aligned}
$$

and:

$$
\begin{gathered}
\|B-C\|=\sqrt{\left[\frac{b^{2}-a^{2}}{c^{2}}-1\right]^{2}\left(\alpha^{2}+\beta^{2}+\delta^{2}+\gamma^{2}\right)+x^{2}+y^{2}+z^{2}+w^{2}} \\
=\sqrt{\frac{\left(b^{2}-a^{2}-c^{2}\right)^{2}}{4 c^{2}}-\frac{\left(b^{2}-a^{2}+c^{2}\right)^{2}}{4 c^{2}}+b^{2}}= \\
=\sqrt{\frac{-4\left(b^{2}-a^{2}\right) c^{2}+4 b^{2} c^{2}}{4 c^{2}}}=a
\end{gathered}
$$

This completes the proof of Lemma 3.

Corollary 1:

If $a, b, 1$ satisfy the triangle inequality and if a^{2}, b^{2} are rational numbers, then the space Q^{5} contains the vertices of a triangle which has edge lengths a, b, l.

Proof:

Consider the following points:

$$
\begin{aligned}
A & =\left(\frac{1}{2}, 0,0,0,0\right) \\
B & =\left(-\frac{1}{2}, 0,0,0,0\right) \\
C & =\left(\left(b^{2}-a^{2}\right) \frac{1}{2}, \alpha, \beta, \gamma, \delta\right)
\end{aligned}
$$

Where $\alpha, \beta, \gamma, \delta$ are the rational numbers that exist according to Lagrange theorem, for which:

Corollary 2:

$$
\begin{aligned}
& \text { From the proof of Lemma } 2 \text { the triangle, } A B C \text { has the edge length } a, b, l \\
& \text { Corollary 2: } \quad b^{2}-\frac{\left(b^{2}-a^{2}+1\right)^{2}}{4}=\alpha^{2}+\beta^{2}+\delta^{2}+\gamma^{2}
\end{aligned}
$$

If t is a number such that $\sqrt{2+\frac{2}{m-1}}-1 \leq t \leq \sqrt{2+\frac{2}{m-1}}+1, t^{2} \in Q$
Where $m \geq 4$ is a natural number, then the space $Q^{d}, d \geq 5$, contains a triangle $A B C$ having edge length $1, t$, $\sqrt{2+\frac{2}{m-1}}$.

Proof:

According to Lemma 2, the numbers $1, \mathrm{t}, \sqrt{2+\frac{2}{m-1}}$ satisfy the triangle inequality, and the result follows from Corollary 1.

Lemma 4:

If x and y are two points in $Q^{d}, d \geq 5$, so that:

$$
\sqrt{2+\frac{2}{m-1}}-1 \leq\|x-y\| \leq \sqrt{2+\frac{2}{m-1}}+1
$$

where $\omega(d)=m$, then there exists a finite set $S(x, y)$, contains x and y such that $f(x) \neq f(y)$ holds for every unitdistance preserving mapping $f: S(x, y) \rightarrow Q^{d}$.

Proof of Lemma 4:

Let x and y be points in $Q^{d}, d \geq 5$, for which,

$$
\sqrt{2+\frac{2}{m-1}}-1 \leq\|x-y\| \leq \sqrt{2+\frac{2}{m-1}}+1 \quad \text { where } \omega(d)=m
$$

The real numbers $\|x-y\|, \sqrt{2+\frac{2}{m-1}}$ and l satisfy the triangle inequality, hence by Corollary 2 there exist three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ such that $\|A-B\|=\|x-y\|$,
$\|A-C\|=\sqrt{2+\frac{2}{m-1}}$ and $\|B-C\|=1$. It follows by two rational reflections that there exists a rational point \mathbf{z} for which $\|y-z\|=1$ and $\|x-z\|=\sqrt{2+\frac{2}{m-1}}$, (see Figure 1).
Let $\left\{v_{0}, \ldots, v_{m-1}\right\}$ be a maximum clique in $\mathrm{G}\left(Q^{d}, 1\right)$, and let w_{0} be the reflection of v_{0} with respect to the rational hyperplane passing through the points $\left\{v_{1}, \ldots, v_{m-1}\right\}$ it follows that $\left\|v_{0}-w_{0}\right\|=\sqrt{2+\frac{2}{m-1}}$, (see Figure 2).

Based on $\|x-z\|=\left\|v_{0}-w_{0}\right\|$ and lemma 1, there exist a rational translation h for which $h\left(v_{0}\right)=x$ and $h\left(w_{0}\right)=z$. Denote $g\left(h\left(v_{i}\right)\right)=V_{i}$ for all $1 \leq i \leq m-1$, (see Figure 3).

Figure 1

Figure 3

Denote $\mathrm{S}(x, y)=\left\{x, y, z, v_{1}, \ldots, v_{m-1}\right\}$. Suppose that $f(x)=f(y)$ holds for some unit- distance preserving mapping f :
$S(x, y) \rightarrow Q^{d}$.
The assumption $f(x)=f(y)$ and $\|y-z\|=1$ imply that $\|f(y)-f(z)\|=l=\|f(x)=f(z)\|$, hence the set
$\left\{f(x), f(z), f\left(v_{1}\right), \ldots, f\left(v_{m-1}\right)\right\}$, forms a clique in $\mathrm{G}\left(Q^{d}, 1\right)$ of size $m+1$, which is a contradiction. It follows that $f(x)$ $\neq f(y)$ holds for every unit- distance preserving mapping $f: S(x, y) \rightarrow Q^{d}$.
This completes the proof of Lemma 4.

References

1. F.S Beckman and D.A Quarles: On isometries of Euclidean spaces, Proc. Amer. Math. Soc. 4, (1953), 810815.
2. W.Benz, An elementary proof of the Beckman and Quarles, Elem.Math. 42 (1987), 810-815
3. W.Benz, Geometrische Transformationen, B.I.Hochltaschenbucher, Manheim 1992.
4. Karin B. Chilakamarri: Unit-distance graphs in rational n-spaces Discrete Math. 69 (1988), 213-218.
5. R.Connelly and J.Zaks: The Beckman-Quarles theorem for rational d-spaces, d even and $d \geq 6$. Discrete Geometry, Marcel Dekker, Inc. New York (2003) 193-199, edited by Andras Bezdek.
6. H.Lenz: Der Satz von Beckman-Quarles in rationalen Raum, Arch. Math. 49 (1987), 106-113.
7. I.M.Niven, H.S.Zuckerman, H.L.Montgomery: An introduction to the theory of numbers, J. Wiley and Sons, N.Y., (1992).
8. A.Tyszka: A discrete form of the Beckman-Quarles theorem for rational eight- space. Aequationes Math. 62 (2001), 85-93.
9. J.Zaks: A distcrete form of the Beckman-Quarles theorem for rational spaces. J. of Geom. 72 (2001), 199205.
10. J.Zaks: The Beckman-Quarles theorem for rational spaces.Discrete Math. 265 (2003), 311-320.
11. J.Zaks: On mapping of Q^{d} to Q^{d} that preserve distances 1 and $\sqrt{2}$. and the Beckman-Quarles theorem. J of Geom. 82 (2005), 195-203.
