
Turkish Journal of Computer and Mathematics Education Vol.12 No.9 (2021), 456 - 466

456

Research Article

An Optimized Surrogate Based Technique for Reducing the Mutation Test Cost Using
Satin Bower Bird Algorihm

Shobana R

a, and Dr Maria priscilla G

b

a
Assistant Professor in Department of Computer Applications, Sri Ramakrishna
College Of Arts and Science, (Autonomous), Coimbatore, Tamil Nadu, India.
bDean Professor in Department of Computer Science at Sri Ramakrishna College of Arts and Science, Coimbatore, Tamil Nadu,

India

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 20 April 2021

Abstract: Fault based testing is also known as mutation testing. In this, the faults are voluntarily introduced in the code to

check for the feasibility of the program. If the introduced faults does not produce any variations in the program, it results that

the program need debugging for perfect operations. It is a costly test due to its intensive operations in finding the bugs. In order
to reduce the expense for mutation testing, automated tools and optimization algorithms were introduced. Surrogate based
optimization is also a type of reducing mutation testing cost in all possible ways by using three conditions as objective functions.
It able to minimize the test case and achieve high mutation score, but only for few code snipped. To bridge this gap, here an
enhanced version of surrogate based optimized is proposed. The existing technique is enhanced by using satin bower bird

optimization for efficient test case reduction and kill all the mutants in the snippet. The proposed method is tested on few
snippets like calculator, hash table and stack and so on using EmuJava. The proposed optimized surrogate based optimization
able to outperform the existing technique by having high mutation score of above 80% for all testing Java snippets. It also able
to reduce the computational time and cost by reducing the test cases minimum of 950 for stack snippet and only 50 iterations
for processing the CGPA snippet. Therefore, the proposed satin bower bird based surrogate optimization able to reduce the
computational cost along with high percentage for killing the mutants. Hence, the proposed approach is best for cost

minimization in mutation testing.

Keywords: Fault based testing, Cost minimizationcondition oriented, optimization, surrogate, satin bowerbird, java snippets.

1. Introduction

Fault based testing is also known as mutation testing. In this, the faults are voluntarily introduced in the code

to check for the feasibility of the program. If the introduced faults does not produce any variations in the program,

it results that the program need debugging for perfect operations.

Mutation testing is a type of costlier fault based testing due to its intensive fault analysis and high

computational time. Researchers were proposed different algorithms to reduce the cost and test cases of mutation

testing. Some of the algorithms are discussed in following two sections.

Belli et al., (2016) proposed a model based fault detection testing mechanism [1]. Here, a model is designed

for generating the test cases. This model helps to analyse the program for possible mutants based on the predefined

model. But, it also able to locate the faults in the snipped by block analysis. It is implemented on the graph based

dataset. It used the insertion and omission operations for creating the mutant operator and test cases. Constrained

test resources and tuning of parameter is required for better operations.

Lima et al., (2016) utilized the higher order mutants as the technique for reducing the cost of mutation testing

[2]. Because, in higher order mutant introduces more than one fault at a time and makes difficult for the snippet

to kill the mutant. Due to this, it able to utilize lesser test case and produce a bug free. Four types of higher order

mutants were utilized to perform the cost reduction process. Secure and bug free snippet avail only if has strong

code strength in it.

Jatana et al. (2016) proposed a new approach to reduce the test cases in a test suite [3]. Here, the greedy

algorithm is used for reducing the test cases. This approach is implemented on 21 nondeterministic polynomial

time based hard problem.

Ganesh (2016) also suggested a solution for nondeterministic polynomial time based hard problem called

sequencing problem [4]. Here, the genetic algorithm is applied to find an optimal solution for the problem in

lesser time. It is implemented on a process in repair shop. In that, three process cutting, shaping and painting is

performed in a sequence manner. It able to reduce the time for inferiority by 100 times as compared to the

exhaustive research to reach zero as results. It works effectively for minimal operations.

Gopinath et al. (2016) addressed the short comings of the mutation reduction strategies based on selecting the

number of mutants [5]. Here, it analysed the reduction strategies based on number of mutants, effective mutants

and its results based on killing the mutants. Most of the techniques were able to reduce the number of mutants.

But, it required a proper reduction strategy to produce an effective mutant. Based on that, a theoretical approach

is proposed for reducing the mutant is proposed in [5]. Only the practical implementation determine the effect of

theoretical reduction strategy on real time dataset.

Jabbarvand and Malek (2017) proposed a mutation testing scheme for the android phone [6]. Here, mostly the

mutation testing is performed on a small parts of snippets in an application. Here, the testing is performed with

Turkish Journal of Computer and Mathematics Education Vol.12 No.9 (2021), 456 - 466

457

Research Article

the help of oracle automated tool for testing and it is based on the energy consumption and proper operations of

the applications in android phone. Proper measures has to be taken for uninstall an application based on the energy

factor alone.

Nishta et al., (2017) performed a survey on different techniques in search based mutation testing operations

[7]. It conducted a detailed survey on testing process for fourteen years from 2001 to 2014 and it also include

some of the researches from 2015 and 2016 from various journal and website. Based on the data, it discussed

about the algorithms most frequently used and effects of each algorithm and most of the algorithms employed

genetic algorithm and search based testing for reducing the cost.

Sugave et al., (2017) proposed an optimization approach to perform the white box testing [8]. Here, the

optimization process works on both the factors quality and cost minimization of testing. Due to this, it able to

reduce the mutants along with the qualified mutant for testing. The diversity dragon fly algorithm were used for

this purpose.

Marandi and Khan (2017) proposed a new approach for evaluating the software application [9]. Here, a block

by block process is performed to evaluate the software and also determine the fault and rectify it. This approach

is able to locate the fault in the block easily to avoid major problems. But, all this process were performed a

statically method called defect removal matrices instead of optimization process. It able to produce a perfect bug

free application at high computational time.

Kabir et al. (2017) proposed an optimization approach to reduce the duplicates in the testing process [10].

Here, the modified flower pollination algorithm is performed for this process. It able to reduce the duplicates in

the test cases but it requires some modifications to minimize the cost for generating the test cases.

Based on the analysis of mutation testing in related works in section 2 and 3, an optimized surrogate

optimization using satin bowerbird algorithm is proposed. The explanation of the proposed approach is briefed

in section 4. Section 5 highlighted the merits of proposed method based on the evaluation of proposed method

results with the existing method. Section 6 and 7 summarize the merits of proposed method and its extension for

future works.

2. Related works

In this section, the recent techniques used in the mutation testing cost reduction mechanism is given in table 1.

Table 1. Survey about mutation testing techniques

Author Technique Findings shortcomings

Palomo Lozano et al.,

(2018)

Integer linear

programming

It is mainly focused on

performing the

mutation testing on the

web service oriented

applications

Only web service oriented

mutation testing is only

performed

Ferrari et al., (2018) Review about cost

minimization techniques

Gives ID and paper

information about cost

minimization

techniques

Simple review about cost

minimization techniques

Singh and Kumar

(2018)

Differential Evolution by

Homeostasis Mutation

operator

Able to achieve pareto

optimization with

minimum root mean

square error

Tuning of parameters are

required.

Ahmed (2018) Mutation testing and fault

prediction

Initially the

requirement of testing

is discussed

Role of mutation

testing in developing

better software

Fault prediction is

performed

Complex environment in real

time data has to be checked

Madhukar (2018) Automated mutation

testing tool

Swedish ICT company

data is used for the

observation.

MILU tool is used for

automatic mutation

testing process

Analysed with two

types of mutation

operators: regular and

weak

C programming language is

highly preferred for better

results.

Turkish Journal of Computer and Mathematics Education Vol.12 No.9 (2021), 456 - 466

458

Research Article Pizzoletoet al., (2019) Surveyed about various

mutation testing method

First, it classified the

mutation testing under

seventeen categories.

Then, discussed about

the type of mutant used

in each category

Gives clear information about

the mutation testing methods

and operator

Rani et al., (2019) Elitistic genetic

algorithm

Selective mutation

strategy to introduce

low level of faults and

mutant generation.

It able to identify

maximum fault and

minimum cost for the

test case generation

Redundancy in test cases is the

major drawback

Mishra et al., (2019) Genetic algorithm First, the path coverage

test is performed to

remove the duplicate

data.

Then, the mutation

testing is performed to

remove the mutants.

Due to this, the

mutation score is

improved.

Chances for removing

important information due to

removing duplicate information

Bokaei and Keyvanpur

(2019)

A complete survey about

mutation testing

It classified the

mutation testing in

three categories

automatic testing, cost

reduction testing and

analytical techniques.

Then, the metrics and

its working on test case

or mutant generation is

discussed

It gives an outline about the

techniques. But, the issues in

the technique is not discussed.

Doliashvili (2019) Machine learning

approach to perform the

mutation testing

PIE based analysis for

feature extraction on

mutation testing.

The extracted features

are classified using

random forest to

perform the mutation

testing

For java projects, its accuracy is

similar to the existing technique

named PIE analysis

Gupta et al., (2020) Detecting software faults

in Defects4j repository

Non dominated sorting

genetic algorithm-II is

applied to optimize the

test suite for detecting

and locating the

software faults

Time and cost reduction is not

discussed

Bhatiya (2020) Optimization approach to

reduce the test case

generation

Genetic algorithm is

used for minimizing the

test case generation.

It is applied on the

Component based

system

Cost minimization is not

considered

Mohanty et al., (2020) Optimization technique

to reduce the test cases

Ant colony algorithm

to minimize the test

cases in the suite.

It works like a shortest

path algorithm for

reducing the test cases

in the suite

It requires modification for

processing larger data to

provide reliable results

Taneja et al., (2020) Machine learning

approach for test case

minimization

Security is considered

as an important factor

for reducing the test

cases.

This approach can produce an

effective result if it consider

other parameters also

Turkish Journal of Computer and Mathematics Education Vol.12 No.9 (2021), 456 - 466

459

Research Article

3. Conventional Method

The main purpose of software testing is to provide an end user with bug free application. There are numerous

types of testing like white box, black box and gray box. Among these, the white box testing is a well-known

testing method and expensive method to perform a testing. In this, such a white box testing called Mutation

testing is discussed. Since white box testing is an expensive one due to the long term processing of an application

and completely provide a bug free application. It requires more financial need and time for performing a mutation

testing. In order to compensate the financial and time consumption, the cost minimization concept is introduced

in the mutation testing. In previous works, the optimization process like evolutionary algorithms and swarm based

algorithms were implemented to reduce the processing time of the testing with an optimal number of test cases.

Most of the optimization techniques used the cost for generating the test cases were only considered for the mutant

testing with minimal cost utilization. But, it cannot be assured that the cost of test case only provide the sufficient

test case to kill a mutant. Hence, to overcome this problem, in existing surrogate based optimization utilized the

three parameter to reduce the cost of testing case generation. The three parameters were: 1. whether the case can

be attained 2. The control of the variables in the case 3. Necessary of the test case [26]. Based on these factors,

the surrogate optimization reduces the number of test cases required for the mutation testing. It performed well

in all aspects like reducing overhead, cost and iteration for test case generation. But, it has the following

shortcomings as follows:

• The convergence for the optimal test case selection can be reduced better.

• Not able to kill mutants in all program.

• Test cases are high as compared to the random testing algorithms.

These shortcomings of the existing surrogate based approach is overcome with the proposed optimized

surrogate based mutant test case minimization is performed in this work. A detail explanation of the proposed

method and implementation is given in the further sections.

4. Proposed Method

This section is to describe about the working of the proposed methodology in detail to minimize the mutation

test cost. The proposed methodology is the hybrid approach by combining two evolutionary algorithms named

satin bower bird optimization and surrogate based optimization. The necessity of this hybrid approach is to

achieve the following objectives:

• Able to kill mutants in all programs.

• Reduce the test case and rounds of processing

• Reduce the processing time and cost at minimum level as compared to the existing method.

Generally, the fitness function for mutation testing will be based only on the cost minimization. But, in this it

depends on three parameters. Because, the cost alone based minimization not able to kill all the mutants. To

overcome this drawbacks, in this the three parameters are used to frame the cost and fitness function for the

optimization process.

• Attainable position

• Obligatory position

• Authority position.

The individual role of each position is explained using the square of a bigger number Pseudocode as shown

in figure 1.

Figure 1. Square of a bigger number pseudocode

Linear regression

technique is used for

reducing the test case in

object oriented

software.

Peng et al., (2020) Supervised learning

approach is used

Auto encoder is used

for locating the bugs in

the program.

It is applied on

Defects4j repository

Autoencoder must be combined

with SBFL technique to

produce best results

Turkish Journal of Computer and Mathematics Education Vol.12 No.9 (2021), 456 - 466

460

Research Article

4.1 Attainable position:

This is used for evaluating the condition statements in the program. The conditions statements are like if else,

switch, while and do- while statements. In this, the condition statement is used in terms of if _else model. Here,

the attainable position of variables using if else statement is discussed. This attainable position is also depends

on two factors:

• Behavioural position

• Scope of the position

The Attainable positionin terms of nature and coverage of position is defined in formula 1is given using the

following equation 1.

𝐴𝑃 = { 𝐵𝑃 , 𝑆𝑃} (1)

4.1.1 Behavioural Position:

Here, the behaviour of the loop condition is analysed. For example, if the loop condition is satisfied it executes

its corresponding operations and set the output flag as one otherwise, it set the output flag as zero. The behavioural

position is depends on the distance between the conditions in a program. It is denoted in the formula 2.

𝐵𝑃 = { 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠} (2)

4.1.2 Scope of the Position:

Once, the behaviour of the loop condition is analysed, it check for its validation area based on operations as

well as time. Here, the validation is based on the distance between the conditions in the loop. It is given in formula

3.

𝑆𝑃 = { 𝐶ℎ𝑃 , 𝐵_𝑉𝐷} (3)

Formula 3 comprises of two elements one is the number of choices〖Ch〗_P in the condition loop and the

distance between them as 〖B_V〗_D .

Formula 1 becomes as follows in 4 after substitute the behavioural and scope of the position equations

𝐴𝑃

= { 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 , 𝐶ℎ𝑃, 𝐵_𝑉𝐷}

(4)

From the formula 4, it is observed that, in the proposed system, the test cases will be generated for all the

possible loop conditions in the snippet to analyse its multiple operations.

4.2 Obligatory position:

Here, the mutants are generated for the functional blocks and the operators in the snippet. Because, the

operators and calling a function can change the value of a snippet. Based on this, the formula 5 indicates the

obligatory position calculation.

𝑂𝑃 = { 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠𝑃 , 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑃} (5)

4.2.1 Arithmetic and logical operations:

Turkish Journal of Computer and Mathematics Education Vol.12 No.9 (2021), 456 - 466

461

Research Article

Here, the mutants are formed by modifying the operators used in the snippet to its opposite sign. Because, the

snippet generate different output for different operations. If all the mutant operators produce different output,

then the snippet is able to kill all operator mutant. It is defined in formula 6.

𝑂𝑃 = {𝐴𝐿𝑂

 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑}

(6)

4.2.2 Functional oriented test cases:

Here, the functional blocks in the snippets are analysed by generating dummy mutant for calling the function

in terms of variable names or by passing values. This type of mutants reduce the redundancy of code, if there is

an unwanted functional blocks. Formula 7 to indicate the functional

In this, the parameters used in the calling of a function is changed to generate the test cases. It helps to analyse

the role of parameters in a calling function. It is given in equation 7.

𝐹𝑃

= {𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑛𝑑 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠

𝑖𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑑}

(7)

The overall obligatory position is given in 8 in terms of ALO and functional test cases,

𝑂𝑃 = { 𝐴𝐿𝑂𝑃 , 𝐶𝐹𝑃} (8)

4.3 Authority Position:

This block is to reduce the test case generation for the statements which does not alter its function even after

introducing a fault. Due to this, the test cases will not be generated for such a statements. Because such statements

cannot be mutated as well as and it cannot be killed. Those statements are indicated No Effect Mutant (NEM)

and it is denoted with the help of formula 9.

𝐴𝑢𝑃 = { 𝑁𝐸𝑀} (9)

Based on these three positions, the minimization function for surrogate process is in 10

𝑆𝑂𝐹 = { 𝐴𝑃, 𝑁𝐸𝑃 , 𝐴𝑢𝑃} (10)

4.4 Satin bowerbird based Surrogate optimization implementation using Emujava:

Here, the satin bower bird optimize to minimize the surrogate optimization results. Due to this double

optimization process, it able to minimize the number of test cases and also remove the redundant blocks in snippet

effectively. The objective of the proposed satin bower bird based surrogate optimization is shown in formula 11

𝑆𝐵𝑂𝑂𝐹 = 𝑀𝑖𝑛(𝑆𝑂𝐹) (11)

To minimize the above equation 11, the following steps were performed in the satin bowerbird algorithm.

4.4.1 Parameter Initialization:

It is the basic step for all the optimization process to define the problem, iterations, initial solution, updating

step size and its boundary.

4.4.2 Bower analysis:

After the first iteration, all the bowers are evaluated to denote its effectiveness in reaching the optimal solution.

Here, the analysis is based on attracting the female bower by a male bower. Therefore, the male bowers are only

evaluated for this process. Hence, it is denoted as male bower probability (MBP) and it is given in formula 12

and 13.

MBPi =
𝑆𝐵𝑂i

∑ fn
50
n=1

12

SBOi = {

1

1 + SBO(xi)
, 𝑆𝐵𝑂(xi) ≥ 0

1 + |SBO(xi)|, SBO(xi) < 0

13

4.4.3 Bower evaluation:

Once, the probability of bower is analysed and all the bowers are subjected to finding the optimal solution for

the problem in 11.

4.4.4 New solutions:

The position of bower needs to update regularly for finding better solution, but the updating its position is also

within its limit. Hence, to limit and update position, the roulette wheel and MBP attractions are used as dominant

factor. The following formula 14 and 15 is used for the position of bowers.

Turkish Journal of Computer and Mathematics Education Vol.12 No.9 (2021), 456 - 466

462

Research Article

𝑁𝑃𝑖𝑘
𝑛

= 𝑁𝑃𝑖𝑘
𝑜

+ MBPA𝑘 ((
𝑁𝑃𝑗𝑘 + 𝑁𝑃𝑒𝑙𝑖𝑡𝑒,𝑘

2
) − 𝑁𝑃𝑖𝑘

𝑜)

14

𝑀𝐵𝑃𝐴k =
0.94

1 + 𝑀𝐵𝑃j

15

1.1.1 Reducing bowers:

The bower with lower MBPA (i.e attractiveness) are removed to increase the chance for the other bower and

also to faster the operations. It is given in formula 16 to 18.

σ = z × (minimal test cases −
maximal test cases)

16

NPik
n~S(NPik

o , σ2) 17

S(NPik
old, σ2)=𝑁Pik

o + (σ × S(0,1)) 18

The percentage between the difference of minimal and maximal test cases is given as z.

1.1.2 Minimized Test cases:

The final minimal test cases for the mutation testing is determined by double optimization process satin bower

bird and surrogate optimization after it complete all the iterations.

1.2 Algorithm:

The workflow diagram and steps involved in the proposed methodology is explained below.

Figure 1. proposed SBO-surrogate test case minimization

The working of proposed method is shown in pictorial format in figure 1 and the steps are given below.

Input: snippets, SBO initialization parameter

Output: Minimized test cases

Start

Initialize bower parameter and solutions

Calculate test cases based on equations 1 to 11

Determine best bower

While (iterations< max iterations)

Bower probability based on equation 12 and 13

For all bower

 For all bower elements

Update bower positions using equations 14 to 18

End for

End for

Satin

bower based

Surrogate

optimization

Turkish Journal of Computer and Mathematics Education Vol.12 No.9 (2021), 456 - 466

463

Research Article

Calculate best bowers

Calculate the elite bowers

End while

Return optimal test cases

5. Results & Discussion

This section is to discuss about the performance of the proposed method in minimizing the cost of mutation

testing. For the implementation, the Java software and application called emuJava is used. The application is

modified with our proposed approach and it is denoted as emuJava version 4.0.

The version 4.0 indicates the mutation testing performed with the help of satin bower bird based surrogate

optimization. To verify the proposed method performance, the mutation testing is performed on the following

snippets in table 2.

Table 2. Java snippets

• Auto door

• Hash table

• Stack

• CGPA calculator

• Calculator

• Triangle

• Binary search

tree.

The satin bowerbird based surrogate optimization created all the possible test cases for the snippets in table 2.

An evaluation metric is needed to analyse the performance of a method. Hence, in this work, the following two

metrics were used for the evaluation of the proposed mutation testing method. The evaluation metrics are as

follows:

• Test case generation

• Average Number of kill of mutant

5.1 Test case generation:

Test cases are important for the mutation testing to evaluate the performance of proposed testing method. An

algorithms should use lesser number of test cases and rounds to kill all the mutants in the program. The

comparison of the test case for different approaches is shown in table 3.

Table 3. Test case comparison

Approaches Random testing Improved Genetic

algorithm

Surrogate based

optimization

Satin

bowerbird

based

surrogate

optimization

Program Rounds Test

cases

Rounds Test

cases

Rounds Test

cases

Rounds Test

cases

Autodoor 310 7750 140 3500 135 7751 125 7000

Hash table 1052 15375 289 7225 280 8500 255 8000

stack 91 26300 208 5200 200 1000 190 950

CGPA

calculator

380 2325 74 1850 65 2000 50 1957

calculator 130.93 3250 157 3925 150 4000 135 3896

triangle - 10800 373 9325 370 9400 345 9200

Binary search

tree

263 6575 255 6375 350 6450 325 6250

Table 3 shows the number of test cases required by each algorithm to kill the mutants. Among these

algorithms, the proposed satin bower bird based surrogate optimization is best in terms of using lesser test cases

to kill the mutants as compared to the existing techniques like random testing, improved genetic algorithm and

surrogate based optimization.

Turkish Journal of Computer and Mathematics Education Vol.12 No.9 (2021), 456 - 466

464

Research Article

 Figure 3. Test case comparison

 Figure 3 shows the comparison of the test cases used and rounds involved in each algorithm to kill the mutant.

In this also, the satin bower bird based surrogate optimization utilize minimum number of rounds to kill the

mutants as compared to the conventional approaches

5.2 Average Number of kill of mutant

 The term average number of kill of mutant is to indicate the successful number of

mutants killed in the proposed method. Because, the higher number of kill mutants only provide a bug free

process. It is otherwise called as mutation score. The formula is used to calculate the average number of killed

mutants (ANKM)

𝐴𝑁𝐾𝑀 =
𝑘𝑖𝑙𝑙𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑚𝑢𝑡𝑎𝑛𝑡𝑠

(11)

The comparison of the mutant score with the proposed and existing techniques are shown in the table format

in table 4 and pictorial format in figure

Table 4. ANKM comparison

Program Random

Testing (%)

Improved

genetic

algorithm

(%)

Surrogate

based

optimization

(%)

Satin

bowerbird

based

surrogate

optimization

Autodoor 77 82 90 92

Hash table 68 74 80 85

stack 69 85 89 93

Cgpa

calculator

96 76 82 86

calculator 95 86 91 94

triangle 79 50 52 82

Binary

search tree

87 74 78 91

The comparison of mutation score is shown in the table 4. It is observed that the proposed method has higher

number of mutants killed as compared to the existing methods by having high mutation score. The visualization

of the mutant score comparison is shown in figure

Turkish Journal of Computer and Mathematics Education Vol.12 No.9 (2021), 456 - 466

465

Research Article

Figure 4. ANKM comparison

 It is observed from the above visualization also, the proposed satin bowerbird based surrogate optimization

is having high mutant score in all programs as compared to the existing methods like improved genetic algorithm

and surrogate based optimization. Because, in both the existing methods the higher mutation score is not obtained

for all the cases as like in the proposed approach. Therefore, the proposed approach outperforms the existing

techniques and best for the minimization of mutation testing cost.

Based on the above evaluations, it is observed that the proposed satin bowerbird based surrogate optimization

is having high mutant score in all programs with lesser number of test cases and rounds to kill the mutants. While

in existing approaches, the mutation score is not improved even with the more number of processing and test

cases. Hence, the proposed satin bowerbird based surrogate optimization is best for the mutation test cost

minimization.

6. Conclusion

The main purpose of software testing is to provide an end user with bug free application. There are numerous

types of testing like white box, black box and gray box. Among these, the white box testing is a well-known

testing method and expensive method to perform a testing. In this, such a white box testing called Mutation

testing is discussed. Mutation testing requires more financial need and time to provide a bug free program. In

order to compensate the financial and time consumption, the cost minimization concept is introduced in the

mutation testing using optimization techniques. Most of the optimization techniques used the cost for generating

the test cases were only considered for the mutant testing with minimal cost utilization. This concept is replaced

by using three important aspects in test case generation to perform mutation testing with minimal cost in the

proposed satin bowerbird based surrogate optimization. It outperform the existing techniques like random testing,

improved genetic algorithm and surrogate based optimization due to the following reasons:

• Lesser number of test cases

• Higher mutant score

• Lesser number of iterations to kill all mutant

• Faster computation time.

7. Future work

In future, the proposed method is modified by implementing different optimization algorithm to improve the

mutation score with lesser number of test cases.

References

1. Belli, F., Budnik, C. J., Hollmann, A., Tuglular, T., & Wong, W. E. (2016). Model-based mutation testing—

approach and case studies. Science of Computer Programming, 120, 25-48.

2. Lima, J. A. P., Guizzo, G., Vergilio, S. R., Silva, A. P., Filho, H. L. J., &Ehrenfried, H. V. (2016, September).

Evaluating different strategies for reduction of mutation testing costs. In Proceedings of the 1st Brazilian

Symposium on Systematic and Automated Software Testing (pp. 1-10).

3. Jatana, N., Suri, B., Kumar, P., &Wadhwa, B. (2016, March). Test suite reduction by mutation testing mapped

to set cover problem. In Proceedings of the Second International Conference on Information and

Communication Technology for Competitive Strategies (pp. 1-6).

4. Ganesh, J. (2016). Performance Evaluation of Genetic Algorithm on a Setup Cost Minimization Problem.

5. Gopinath, R., Alipour, M. A., Ahmed, I., Jensen, C., &Groce, A. (2016, May). On the limits of mutation

reduction strategies. In Proceedings of the 38th international conference on software engineering (pp. 511-

522).

Turkish Journal of Computer and Mathematics Education Vol.12 No.9 (2021), 456 - 466

466

Research Article

6. Jabbarvand, R., &Malek, S. (2017, August). µDroid: an energy-aware mutation testing framework for

Android. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (pp. 208-

219).

7. Nishtha, J., Bharti, S., & Shweta, R. (2017). Systematic literature review on search based mutation testing.

e-Informatica Software Engineering Journal, 11(1).

8. Sugave, S. R., Patil, S. H., & Reddy, B. E. (2017, June). DDF: Diversity dragonfly algorithm for cost-aware

test suite minimization approach for software testing. In 2017 International Conference on Intelligent

Computing and Control Systems (ICICCS) (pp. 701-707). IEEE.

9. Marandi, A. K., & Khan, D. A. (2017). An Approach of Statistical Methods for Improve Software Quality

and Cost Minimization. International Journal of Applied Engineering Research, 12(6), 1054-1061.

10. Kabir, M. N., Ali, J., Alsewari, A. A., &Zamli, K. Z. An adaptive flower pollination algorithm for minimizing

software testing redundancy.

11. Palomo-Lozano, F., Estero-Botaro, A., Medina-Bulo, I., &Núñez, M. (2018, July). Test suite minimization

for mutation testing of WS-BPEL compositions. In Proceedings of the Genetic and Evolutionary

Computation Conference (pp. 1427-1434).

12. Ferrari, F. C., Pizzoleto, A. V., & Offutt, J. (2018, April). A systematic review of cost reduction techniques

for mutation testing: preliminary results. In 2018 IEEE International Conference on Software Testing,

Verification and Validation Workshops (ICSTW) (pp. 1-10). IEEE.

13. Singh, S. P., & Kumar, A. (2018). Multiobjective differential evolution using homeostasis based mutation

for application in software cost estimation. Applied Intelligence, 48(3), 628-650.

14. Ahmed, I. (2018). Improving the Quality of Software Using Mutation Testing and Fault Prediction.

15. MADHUKAR, E. (2018). Generate Test Selection Statistics with Automated Mutation Testing.

16. Pizzoleto, A. V., Ferrari, F. C., Offutt, J., Fernandes, L., & Ribeiro, M. (2019). A systematic literature review

of techniques and metrics to reduce the cost of mutation testing. Journal of Systems and Software, 157,

110388.

17. Rani, S., Suri, B., & Goyal, R. (2019). On the effectiveness of using elitist genetic algorithm in mutation

testing. Symmetry, 11(9), 1145.

18. Mishra, D. B., Mishra, R., Acharya, A. A., & Das, K. N. (2019). Test data generation for mutation testing

using genetic algorithm. In Soft Computing for Problem Solving (pp. 857-867). Springer, Singapore.

19. Bokaei, N. N., &Keyvanpour, M. R. A Comparative Study of Whole Issues and Challenges in Mutation

Testing. In 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI) (pp. 745-754).

IEEE.

20. Doliashvili, N. Predicting Survived and Killed Mutants.

21. Gupta, N., Sharma, A., &Pachariya, M. K. (2020). Multi-objective test suite optimization for detection and

localization of software faults. Journal of King Saud University-Computer and Information Sciences.

22. Bhatia, P. K. (2020). Test Case Minimization in COTS Methodology Using Genetic Algorithm: A Modified

Approach. In Proceedings of ICETIT 2019 (pp. 219-228). Springer, Cham.

23. Mohanty, S., Mohapatra, S. K., &Meko, S. F. (2020). Ant Colony Optimization (ACO-Min) Algorithm for

Test Suite Minimization. In Progress in Computing, Analytics and Networking (pp. 55-63). Springer,

Singapore.

24. Taneja, D., Singh, R., Singh, A., & Malik, H. (2020). A Novel technique for test case minimization in object

oriented testing. Procedia Computer Science, 167, 2221-2228.

25. Peng, Z., Xiao, X., Hu, G., Sangaiah, A. K., Atiquzzaman, M., & Xia, S. (2020). ABFL: An autoencoder

based practical approach for software fault localization. Information Sciences, 510, 108-121.

26. Bashir, M. B., & Nadeem, A. (2017). Improved genetic algorithm to reduce mutation testing cost. IEEE

Access, 5, 3657-3674.

27. Moosavi, S. H. S., &Bardsiri, V. K. (2017). Satin bowerbird optimizer: A new optimization algorithm to

optimize ANFIS for software development effort estimation. Engineering Applications of Artificial

Intelligence, 60, 1-15.

28. Han, Z. H., & Zhang, K. S. (2012). Surrogate-based optimization. Real-world applications of genetic

algorithms, 343.

