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Abstract: Fault based testing is also known as mutation testing. In this, the faults are voluntarily introduced in the code to 

check for the feasibility of the program. If the introduced faults does not produce any variations in the program, it results that 

the program need debugging for perfect operations. It is a costly test due to its intensive operations in finding the bugs.  In order 
to reduce the expense for mutation testing, automated tools and optimization algorithms were introduced. Surrogate based 
optimization is also a type of reducing mutation testing cost in all possible ways by using three conditions as objective functions. 
It able to minimize the test case and achieve high mutation score, but only for few code snipped. To bridge this gap, here an 
enhanced version of surrogate based optimized is proposed. The existing technique is enhanced by using satin bower bird 

optimization for efficient test case reduction and kill all the mutants in the snippet. The proposed method is tested on few 
snippets like calculator, hash table and stack and so on using EmuJava. The proposed optimized surrogate based optimization 
able to outperform the existing technique by having high mutation score of above 80% for all testing Java snippets. It also able 
to reduce the computational time and cost by reducing the test cases minimum of 950 for stack snippet and only 50 iterations 
for processing the CGPA snippet. Therefore, the proposed satin bower bird based surrogate optimization able to reduce the 
computational cost along with high percentage for killing the mutants. Hence, the proposed approach is best for cost 

minimization in mutation testing. 

 

Keywords: Fault based testing, Cost minimizationcondition oriented, optimization, surrogate, satin bowerbird, java snippets. 

 

1. Introduction  

Fault based testing is also known as mutation testing. In this, the faults are voluntarily introduced in the code 

to check for the feasibility of the program. If the introduced faults does not produce any variations in the program, 

it results that the program need debugging for perfect operations. 

Mutation testing is a type of costlier fault based testing due to its intensive fault analysis and high 

computational time. Researchers were proposed different algorithms to reduce the cost and test cases of mutation 

testing. Some of the algorithms are discussed in following two sections.  

Belli et al., (2016) proposed a model based fault detection testing mechanism [1]. Here, a model is designed 

for generating the test cases. This model helps to analyse the program for possible mutants based on the predefined 

model. But, it also able to locate the faults in the snipped by block analysis. It is implemented on the graph based 

dataset. It used the insertion and omission operations for creating the mutant operator and test cases. Constrained 

test resources and tuning of parameter is required for better operations. 

Lima et al., (2016) utilized the higher order mutants as the technique for reducing the cost of mutation testing 

[2]. Because, in higher order mutant introduces more than one fault at a time and makes difficult for the snippet 

to kill the mutant. Due to this, it able to utilize lesser test case and produce a bug free. Four types of higher order 

mutants were utilized to perform the cost reduction process. Secure and bug free snippet avail only if has strong 

code strength in it. 

Jatana et al. (2016) proposed a new approach to reduce the test cases in a test suite [3]. Here, the greedy 

algorithm is used for reducing the test cases. This approach is implemented on 21 nondeterministic polynomial 

time based hard problem. 

Ganesh (2016) also suggested a solution for nondeterministic polynomial time based hard problem called 

sequencing problem [4]. Here, the genetic algorithm is applied to find an optimal solution for the problem in 

lesser time. It is implemented on a process in repair shop. In that, three process cutting, shaping and painting is 

performed in a sequence manner. It able to reduce the time for inferiority by 100 times as compared to the 

exhaustive research to reach zero as results.  It works effectively for minimal operations. 

Gopinath et al. (2016) addressed the short comings of the mutation reduction strategies based on selecting the 

number of mutants [5]. Here, it analysed the reduction strategies based on number of mutants, effective mutants 

and its results based on killing the mutants. Most of the techniques were able to reduce the number of mutants. 

But, it required a proper reduction strategy to produce an effective mutant. Based on that, a theoretical approach 

is proposed for reducing the mutant is proposed in [5]. Only the practical implementation determine the effect of 

theoretical reduction strategy on real time dataset. 

Jabbarvand and Malek (2017) proposed a mutation testing scheme for the android phone [6]. Here, mostly the 

mutation testing is performed on a small parts of snippets in an application. Here, the testing is performed with 
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the help of oracle automated tool for testing and it is based on the energy consumption and proper operations of 

the applications in android phone. Proper measures has to be taken for uninstall an application based on the energy 

factor alone. 

Nishta et al., (2017) performed a survey on different techniques in search based mutation testing operations 

[7]. It conducted a detailed survey on testing process for fourteen years from 2001 to 2014 and it also include 

some of the researches from 2015 and 2016 from various journal and website. Based on the data, it discussed 

about the algorithms most frequently used and effects of each algorithm and most of the algorithms employed 

genetic algorithm and search based testing for reducing the cost. 

Sugave et al., (2017) proposed an optimization approach to perform the white box testing [8]. Here, the 

optimization process works on both the factors quality and cost minimization of testing. Due to this, it able to 

reduce the mutants along with the qualified mutant for testing. The diversity dragon fly algorithm were used for 

this purpose. 

Marandi and Khan (2017) proposed a new approach for evaluating the software application [9]. Here, a block 

by block process is performed to evaluate the software and also determine the fault and rectify it. This approach 

is able to locate the fault in the block easily to avoid major problems. But, all this process were performed a 

statically method called defect removal matrices instead of optimization process. It able to produce a perfect bug 

free application at high computational time. 

Kabir et al. (2017) proposed an optimization approach to reduce the duplicates in the testing process [10]. 

Here, the modified flower pollination algorithm is performed for this process. It able to reduce the duplicates in 

the test cases but it requires some modifications to minimize the cost for generating the test cases. 

Based on the analysis of mutation testing in related works in section 2 and 3, an optimized surrogate 

optimization using satin bowerbird algorithm is proposed. The explanation of the proposed approach is briefed 

in section 4. Section 5 highlighted the merits of proposed method based on the evaluation of proposed method 

results with the existing method. Section 6 and 7 summarize the merits of proposed method and its extension for 

future works. 

2. Related works 

In this section, the recent techniques used in the mutation testing cost reduction mechanism is given in table 1. 

Table 1. Survey about mutation testing techniques 

Author Technique Findings shortcomings 

Palomo Lozano et al., 

(2018)  

Integer linear 

programming 

It is mainly focused on 

performing the 

mutation testing on the 

web service oriented 

applications 

Only web service oriented 

mutation testing is only 

performed 

Ferrari et al., (2018) Review about cost 

minimization techniques 

Gives ID and paper 

information about cost 

minimization 

techniques 

Simple review about cost 

minimization techniques 

Singh and Kumar 

(2018) 

Differential Evolution by 

Homeostasis Mutation 

operator 

Able to achieve pareto 

optimization with 

minimum root mean 

square error 

Tuning of parameters are 

required. 

Ahmed (2018) Mutation testing and fault 

prediction 

Initially the 

requirement of testing 

is discussed 

Role of mutation 

testing in developing 

better software 

Fault prediction is 

performed  

Complex environment in real 

time data has to be checked 

Madhukar (2018)  Automated mutation 

testing tool 

Swedish ICT company 

data is used for the 

observation. 

MILU tool is used for 

automatic mutation 

testing process 

Analysed with two 

types of mutation 

operators: regular and 

weak 

C programming language is 

highly preferred for better 

results. 
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mutation testing method 

First, it classified the 

mutation testing under 

seventeen categories. 

Then, discussed about 

the type of mutant used 

in each category 

Gives clear information about 

the mutation testing methods 

and operator 

Rani et al., (2019) Elitistic genetic 

algorithm 

Selective mutation 

strategy to introduce 

low level of faults and 

mutant generation. 

It able to identify 

maximum fault and 

minimum cost for the 

test case generation 

Redundancy in test cases is the 

major drawback 

Mishra et al., (2019)  Genetic algorithm First, the path coverage 

test is performed to 

remove the duplicate 

data. 

Then, the mutation 

testing is performed to 

remove the mutants. 

Due to this, the 

mutation score is 

improved. 

Chances for removing 

important information due to 

removing duplicate information 

Bokaei and Keyvanpur 

(2019) 

A complete survey about 

mutation testing  

It classified the 

mutation testing in 

three categories 

automatic testing, cost 

reduction testing and 

analytical techniques. 

Then, the metrics and 

its working on test case 

or mutant generation is 

discussed 

It gives an outline about the 

techniques. But, the issues in 

the technique is not discussed. 

Doliashvili (2019) Machine learning 

approach to perform the 

mutation testing 

PIE based analysis for 

feature extraction on 

mutation testing. 

The extracted features 

are classified using 

random forest to 

perform the mutation 

testing 

For java projects, its accuracy is 

similar to the existing technique 

named PIE analysis 

Gupta et al., (2020) Detecting software faults 

in Defects4j repository 

Non dominated sorting 

genetic algorithm-II is 

applied to optimize the 

test suite for detecting 

and locating the 

software faults 

Time and cost reduction is not 

discussed  

Bhatiya (2020) Optimization approach to 

reduce the test case 

generation 

Genetic algorithm is 

used for minimizing the 

test case generation. 

It is applied on the 

Component based 

system 

Cost minimization is not 

considered 

Mohanty et al., (2020) Optimization technique 

to reduce the test cases 

Ant colony algorithm 

to minimize the test 

cases in the suite. 

It works like a shortest 

path algorithm for 

reducing the test cases 

in the suite 

It requires modification for 

processing larger data to 

provide reliable results 

Taneja et al., (2020) Machine learning 

approach for test case 

minimization 

Security is considered 

as an important factor 

for reducing the test 

cases. 

This approach can produce an 

effective result if it consider 

other parameters also  
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3. Conventional Method 

The main purpose of software testing is to provide an end user with bug free application. There are numerous 

types of testing like white box, black box and gray box. Among these, the white box testing is a well-known 

testing method and expensive method to perform a testing.  In this, such a white box testing called Mutation 

testing is discussed. Since white box testing is an expensive one due to the long term processing of an application 

and completely provide a bug free application. It requires more financial need and time for performing a mutation 

testing. In order to compensate the financial and time consumption, the cost minimization concept is introduced 

in the mutation testing. In previous works, the optimization process like evolutionary algorithms and swarm based 

algorithms were implemented to reduce the processing time of the testing with an optimal number of test cases. 

Most of the optimization techniques used the cost for generating the test cases were only considered for the mutant 

testing with minimal cost utilization. But, it cannot be assured that the cost of test case only provide the sufficient 

test case to kill a mutant. Hence, to overcome this problem, in existing surrogate based optimization utilized the 

three parameter to reduce the cost of testing case generation. The three parameters were: 1. whether the case can 

be attained 2. The control of the variables in the case 3. Necessary of the test case [26]. Based on these factors, 

the surrogate optimization reduces the number of test cases required for the mutation testing. It performed well 

in all aspects like reducing overhead, cost and iteration for test case generation. But, it has the following 

shortcomings as follows: 

• The convergence for the optimal test case selection can be reduced better. 

• Not able to kill mutants in all program. 

• Test cases are high as compared to the random testing algorithms. 

These shortcomings of the existing surrogate based approach is overcome with the proposed optimized 

surrogate based mutant test case minimization is performed in this work. A detail explanation of the proposed 

method and implementation is given in the further sections. 

4. Proposed Method 

This section is to describe about the working of the proposed methodology in detail to minimize the mutation 

test cost. The proposed methodology is the hybrid approach by combining two evolutionary algorithms named 

satin bower bird optimization and surrogate based optimization. The necessity of this hybrid approach is to 

achieve the following objectives: 

• Able to kill mutants in all programs. 

• Reduce the test case and rounds of processing 

• Reduce the processing time and cost at minimum level as compared to the existing method. 

Generally, the fitness function for mutation testing will be based only on the cost minimization. But, in this it 

depends on three parameters. Because, the cost alone based minimization not able to kill all the mutants. To 

overcome this drawbacks, in this the three parameters are used to frame the cost and fitness function for the 

optimization process. 

• Attainable position 

• Obligatory position 

• Authority position. 

The individual role of each position is explained using the square of a bigger number Pseudocode as shown 

in figure 1. 

Figure 1. Square of a bigger number pseudocode 

Linear regression 

technique is used for 

reducing the test case in 

object oriented 

software. 

Peng et al., (2020) Supervised learning 

approach is used  

Auto encoder is used 

for locating the bugs in 

the program. 

It is applied on 

Defects4j repository 

Autoencoder must be combined 

with SBFL technique to 

produce best results 
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4.1 Attainable position: 

This is used for evaluating the condition statements in the program. The conditions statements are like if else, 

switch, while and do- while statements. In this, the condition statement is used in terms of if _else model. Here, 

the attainable position of variables using if else statement is discussed. This attainable position is also depends 

on two factors:  

• Behavioural position 

• Scope of the position 

The Attainable positionin terms of nature and coverage of position is defined in formula 1is given using the 

following equation 1. 

𝐴𝑃 = { 𝐵𝑃 , 𝑆𝑃} (1) 

4.1.1 Behavioural Position: 

Here, the behaviour of the loop condition is analysed. For example, if the loop condition is satisfied it executes 

its corresponding operations and set the output flag as one otherwise, it set the output flag as zero. The behavioural 

position is depends on the distance between the conditions in a program. It is denoted in the formula 2. 

𝐵𝑃 = { 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠} (2) 

4.1.2 Scope of the Position: 

Once, the behaviour of the loop condition is analysed, it check for its validation area based on operations as 

well as time. Here, the validation is based on the distance between the conditions in the loop. It is given in formula 

3. 

𝑆𝑃 = { 𝐶ℎ𝑃 , 𝐵_𝑉𝐷} (3) 

Formula 3 comprises of two elements one is the number of choices〖Ch〗_P in the condition loop and the 

distance between them as 〖B_V〗_D . 

Formula 1 becomes as follows in 4 after substitute the behavioural and scope of the position equations 

𝐴𝑃

= { 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 , 𝐶ℎ𝑃, 𝐵_𝑉𝐷} 

(4) 

From the formula 4, it is observed that, in the proposed system, the test cases will be generated for all the 

possible loop conditions in the snippet to analyse its multiple operations. 

4.2 Obligatory position: 

Here, the mutants are generated for the functional blocks and the operators in the snippet. Because, the 

operators and calling a function can change the value of a snippet. Based on this, the formula 5 indicates the 

obligatory position calculation.  

𝑂𝑃 = { 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠𝑃 , 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑃} (5) 

4.2.1 Arithmetic and logical operations: 
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Here, the mutants are formed by modifying the operators used in the snippet to its opposite sign. Because, the 

snippet generate different output for different operations. If all the mutant operators produce different output, 

then the snippet is able to kill all operator mutant. It is defined in formula 6. 

𝑂𝑃 = {𝐴𝐿𝑂 

 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑} 

 

 

(6) 

4.2.2 Functional oriented test cases: 

Here, the functional blocks in the snippets are analysed by generating dummy mutant for calling the function 

in terms of variable names or by passing values. This type of mutants reduce the redundancy of code, if there is 

an unwanted functional blocks. Formula 7 to indicate the functional  

In this, the parameters used in the calling of a function is changed to generate the test cases. It helps to analyse 

the role of parameters in a calling function. It is given in equation 7. 

𝐹𝑃

= {𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑛𝑑 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠 

𝑖𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑑} 

(7) 

The overall obligatory position is given in 8 in terms of ALO and functional test cases, 

𝑂𝑃 = { 𝐴𝐿𝑂𝑃 , 𝐶𝐹𝑃} (8) 

4.3 Authority Position: 

This block is to reduce the test case generation for the statements which does not alter its function even after 

introducing a fault.  Due to this, the test cases will not be generated for such a statements. Because such statements 

cannot be mutated as well as and it cannot be killed. Those statements are indicated No Effect Mutant (NEM) 

and it is denoted with the help of formula 9. 

𝐴𝑢𝑃 = { 𝑁𝐸𝑀} (9) 

Based on these three positions, the minimization function for surrogate process is in 10 

𝑆𝑂𝐹 = { 𝐴𝑃, 𝑁𝐸𝑃 , 𝐴𝑢𝑃} (10) 

4.4 Satin bowerbird based Surrogate optimization implementation using Emujava: 

Here, the satin bower bird optimize to minimize the surrogate optimization results. Due to this double 

optimization process, it able to minimize the number of test cases and also remove the redundant blocks in snippet 

effectively. The objective of the proposed satin bower bird based surrogate optimization is shown in formula 11 

𝑆𝐵𝑂𝑂𝐹 = 𝑀𝑖𝑛(𝑆𝑂𝐹) (11) 

To minimize the above equation 11, the following steps were performed in the satin bowerbird algorithm. 

4.4.1 Parameter Initialization: 

It is the basic step for all the optimization process to define the problem, iterations, initial solution, updating 

step size and its boundary.  

4.4.2 Bower analysis: 

After the first iteration, all the bowers are evaluated to denote its effectiveness in reaching the optimal solution. 

Here, the analysis is based on attracting the female bower by a male bower. Therefore, the male bowers are only 

evaluated for this process. Hence, it is denoted as male bower probability (MBP) and it is given in formula 12 

and 13. 

MBPi =  
𝑆𝐵𝑂i

∑ fn
50
n=1

 
12 

SBOi = {

1

1 + SBO(xi)
, 𝑆𝐵𝑂(xi) ≥ 0

1 + |SBO(xi)|, SBO(xi) < 0

 

13 

4.4.3 Bower evaluation: 

Once, the probability of bower is analysed and all the bowers are subjected to finding the optimal solution for 

the problem in 11.  

4.4.4 New solutions: 

The position of bower needs to update regularly for finding better solution, but the updating its position is also 

within its limit. Hence, to limit and update position, the roulette wheel and MBP attractions are used as dominant 

factor. The following formula 14 and 15 is used for the position of bowers. 
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𝑁𝑃𝑖𝑘
𝑛

= 𝑁𝑃𝑖𝑘
𝑜

+ MBPA𝑘 ((
𝑁𝑃𝑗𝑘 + 𝑁𝑃𝑒𝑙𝑖𝑡𝑒,𝑘

2
) − 𝑁𝑃𝑖𝑘

𝑜 ) 

14 

𝑀𝐵𝑃𝐴k =
0.94

1 + 𝑀𝐵𝑃j

 
15 

1.1.1 Reducing bowers: 

The bower with lower MBPA (i.e attractiveness) are removed to increase the chance for the other bower and 

also to faster the operations. It is given in formula 16 to 18. 

σ = z × (minimal test cases −
maximal test cases) 

16 

NPik
n~S(NPik

o , σ2) 17 

S(NPik
old, σ2)=𝑁Pik

o + (σ × S(0,1)) 18 

The percentage between the difference of minimal and maximal test cases is given as z. 

1.1.2 Minimized Test cases: 

The final minimal test cases for the mutation testing is determined by double optimization process satin bower 

bird and surrogate optimization after it complete all the iterations. 

1.2 Algorithm: 

The workflow diagram and steps involved in the proposed methodology is explained below. 

 

 

Figure 1. proposed SBO-surrogate test case minimization 

The working of proposed method is shown in pictorial format in figure 1 and the steps are given below. 

Input: snippets, SBO initialization parameter 

Output: Minimized test cases 

Start 

Initialize bower parameter and solutions 

Calculate test cases based on equations 1 to 11 

Determine best bower 

While (iterations< max iterations) 

Bower probability based on equation 12 and 13 

For all bower 

 For all bower elements 

Update bower positions using equations 14 to 18 

End for 

End for 

Satin 

bower based 

Surrogate 

optimization 
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Calculate best bowers 

Calculate the elite bowers 

End while 

Return optimal test cases 

5. Results & Discussion 

This section is to discuss about the performance of the proposed method in minimizing the cost of mutation 

testing. For the implementation, the Java software and application called emuJava is used. The application is 

modified with our proposed approach and it is denoted as emuJava version 4.0. 

The version 4.0 indicates the mutation testing performed with the help of satin bower bird based surrogate 

optimization. To verify the proposed method performance, the mutation testing is performed on the following 

snippets in table 2. 

Table 2. Java snippets 

• Auto door 

• Hash table 

• Stack 

• CGPA calculator 

 

• Calculator 

• Triangle 

• Binary search 

tree. 

 

The satin bowerbird based surrogate optimization created all the possible test cases for the snippets in table 2. 

An evaluation metric is needed to analyse the performance of a method. Hence, in this work, the following two 

metrics were used for the evaluation of the proposed mutation testing method. The evaluation metrics are as 

follows: 

• Test case generation 

• Average Number of  kill of mutant 

5.1 Test case generation: 

Test cases are important for the mutation testing to evaluate the performance of proposed testing method.    An 

algorithms should use lesser number of test cases and rounds to kill all the mutants in the program. The 

comparison of the test case for different approaches is shown in table 3. 

Table 3. Test case comparison 

Approaches Random testing Improved Genetic 

algorithm 

Surrogate based 

optimization 

Satin 

bowerbird 

based 

surrogate 

optimization 

Program Rounds Test 

cases 

Rounds Test 

cases 

Rounds Test 

cases 

Rounds Test 

cases 

Autodoor 310 7750 140 3500 135 7751 125 7000 

Hash table 1052 15375 289 7225 280 8500 255 8000 

stack 91 26300 208 5200 200 1000 190 950 

CGPA 

calculator 

380 2325 74 1850 65 2000 50 1957 

calculator 130.93 3250 157 3925 150 4000 135 3896 

triangle - 10800 373 9325 370 9400 345 9200 

Binary search 

tree 

263 6575 255 6375 350 6450 325 6250 

Table 3 shows the number of test cases required by each algorithm to kill the mutants. Among these 

algorithms, the proposed satin bower bird based surrogate optimization is best in terms of using lesser test cases 

to kill the mutants as compared to the existing techniques like random testing, improved genetic algorithm and 

surrogate based optimization. 
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 Figure 3. Test case comparison 

 Figure 3 shows the comparison of the test cases used and rounds involved in each algorithm to kill the mutant. 

In this also, the satin bower bird based surrogate optimization utilize minimum number of rounds to kill the 

mutants as compared to the conventional approaches 

5.2 Average Number of kill of mutant 

 The term average number of kill of mutant is to indicate the successful number of 

mutants killed in the proposed method. Because, the higher number of kill mutants only provide a bug free 

process. It is otherwise called as mutation score. The formula is used to calculate the average number of killed 

mutants (ANKM) 

𝐴𝑁𝐾𝑀 =
𝑘𝑖𝑙𝑙𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑚𝑢𝑡𝑎𝑛𝑡𝑠
 

 

(11) 

The comparison of the   mutant score with the proposed and existing techniques are shown in the table format 

in table 4 and pictorial format in figure   

Table 4. ANKM comparison 

Program Random 

Testing (%) 

Improved 

genetic 

algorithm 

(%) 

Surrogate 

based 

optimization 

(%) 

Satin 

bowerbird 

based 

surrogate 

optimization 

Autodoor 77 82 90 92 

Hash table 68 74 80 85 

stack 69 85 89 93 

Cgpa 

calculator 

96 76 82 86 

calculator 95 86 91 94 

triangle 79 50 52 82 

Binary 

search tree 

87 74 78 91 

The comparison of mutation score is shown in the table 4. It is observed that the proposed method has higher 

number of mutants killed as compared to the existing methods by having high mutation score. The visualization 

of the mutant score comparison is shown in figure  



Turkish Journal of Computer and Mathematics Education                  Vol.12 No.9 (2021), 456 - 466 

465 

Research Article 

 

Figure 4. ANKM comparison 

 It is observed from the above visualization also, the proposed satin bowerbird based surrogate optimization 

is having high mutant score in all programs as compared to the existing methods like improved genetic algorithm 

and surrogate based optimization. Because, in both the existing methods the higher mutation score is not obtained 

for all the cases as like in the proposed approach. Therefore, the proposed approach outperforms the existing 

techniques and best for the minimization of mutation testing cost. 

Based on the above evaluations, it is observed that the proposed satin bowerbird based surrogate optimization 

is having high mutant score in all programs with lesser number of test cases and rounds to kill the mutants. While 

in existing approaches, the mutation score is not improved even with the more number of processing and test 

cases. Hence, the proposed satin bowerbird based surrogate optimization is best for the mutation test cost 

minimization. 

6. Conclusion 

The main purpose of software testing is to provide an end user with bug free application. There are numerous 

types of testing like white box, black box and gray box. Among these, the white box testing is a well-known 

testing method and expensive method to perform a testing.  In this, such a white box testing called Mutation 

testing is discussed. Mutation testing requires more financial need and time to provide a bug free program. In 

order to compensate the financial and time consumption, the cost minimization concept is introduced in the 

mutation testing using optimization techniques. Most of the optimization techniques used the cost for generating 

the test cases were only considered for the mutant testing with minimal cost utilization. This concept is replaced 

by using three important aspects in test case generation to perform mutation testing with minimal cost in the 

proposed satin bowerbird based surrogate optimization. It outperform the existing techniques like random testing, 

improved genetic algorithm and surrogate based optimization due to the following reasons: 

• Lesser number of test cases 

• Higher mutant score 

• Lesser number of iterations to kill all mutant 

• Faster computation time. 

7. Future work 

In future, the proposed method is modified by implementing different optimization algorithm to improve the 

mutation score with lesser number of test cases. 
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