
Turkish Journal of Computer and Mathematics Education Vol.12 No. 7 (2021), 1875-1879

Research Article

1875

Experimental Analysis Of Optimization Flags In Gcc

1Ezhil P, 2Ananthi Sheshasaayee

1Research Scholar(Part Time),

PG and Research Department of Computer Science,

Quaid-E-Millath Government College for Women(Autonomous),Chennai.

Email:ezhilsenthil.research@gmail.com

2Research Supervisor,

PG and Research Department of Computer Science,

Quaid-E-Millath Government College for Women (Autonomous),
Chennai.

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 16 April 2021

Abstract: Compiler performance is critical in improving the overall functionality of a system. Evaluating

compiler efficiency is a difficult process because it necessitates the completion of many steps in order to obtain

the best result. In this paper, the performance of the GCC compiler's standard optimization levels is

experimentally analyzed using the Linux perf tool with selected Collective Benchmark (CBench-V1.1)

programs. The analysis is carried out with two parameters, execution time and instruction count which

contributes majorly towards the parameters considered for satisfying the compilers design's objective of

increasing the speed of execution and minimizing utilization of the memory of a program.

Index Terms: performance, compiler optimization, GCC, standard optimization levels

1.Introduction

The compiler is basically a language translator that translates the high-level language to the target language

which is generally machine language or assembly language. For any application built the compiler design plays

a significant role in impacting the performance of the overall system[1]. Compilers are designed with an

objective to enhance the performance of the system by increasing the execution speed and decreasing the

utilization of memory without altering the meaning of the program. Recently modern compiler design also

concentrates on ensuring optimal usage of power. Enhancing the performance of the compiler enhances the

performance of the overall system.
The GCC (GNU Compiler Collection) compiler is a popular compiler that is available for free distributed by

Free Software Foundation(FSF) with multi-language and multi-platform support. The GCC provides more than

200 optimization options for the developer. The GCC also provides different optimization levels comprising of

these optimization options for the user to choose from the standard optimization level based on the requirement

of the application design. Every application is different from one and another and there cannot be a common

optimization level that can be chosen in order to deliver optimal performance. The Standard optimization levels

-O1, -O2, -O3, -Os, -Ofast provided by the GCC compiler are designed to enhance the performance of the

application[2]. There is a big struggle in the design of modern software due to the availability of new resources

like memory, processor, and constraints like parallel programming, power-aware systems.

The number of optimization options available in the GCC compiler creates a challenge for the developer to

choose the optimization options that can enhance the overall performance of the system based on the objective
of the application design. Though the GCC compiler has provided standard optimization levels -O1, -O2, -O3, -

Os, -Ofast with the motive to enhance performance. These optimization levels are not always the optimal ones.

Sometimes the implementation of compiler optimization can even degrade the performance[3]. So care has to be

taken while choosing the right set of optimization options.

This paper discusses the application of standard optimization levels of GCC compiler on CBench programs and

consolidates the results based performance with respect to execution time and instruction count.

2.GCC OPTIMIZATION

Optimizations are used to improve the efficiency of a program without modifying its purpose. The key goal of

optimization is to improve overall performance by increasing processing speed and decreasing memory

consumption of the code.

There are number of compiler optimization techniques that can be applied to the code. Common sub expression
elimination, dead code elimination, constant folding, constant propagation, code movement, strength reduction,

Experimental Analysis Of Optimization Flags In Gcc

1876

loop optimization, peephole optimization etc., are the compiler optimization techniques that can be applied to

the code[1].

The GCC allows the application developers to choose a collection of compiler optimization options provided by

GCC. The GNU Compiler Collection (GCC) is a flexible compiler designed to support a number of languages

across different platforms and instruction set architectures. It is still one of the most widely used compilers
today. The GCC compiler also provides standard optimization levels -O1, -O2, -O3, -Os, -Ofast for the

developer to choose based on the application design.

The standard optimization levels of GCC are as described below:[4][5]

A. -O0 or no -O alternative (default)

The compiler does not optimise the source code instructions until converting them to object code. At this stage,

the program is compiled using the compile command, which has no special optimization switches. This stage

has the advantage of allowing for fast error elimination within the application.

B.-O1 or -O

When a program is compiled according to this standard, the compiler almost ensures that the resulting

executable code takes up less space and time. A lot of simple optimizations are done at this point to minimise

redundancy and hence the amount of data processing.

Therefore the code runs faster than default level.
C.-O2

In addition to the level –O1 optimization achieved, the compiler makes additional changes at this stage. More

advanced methods are used, such as scheduling instructions for faster execution. Compiling the source code

takes longer, and it uses more memory throughout the process.

However in this option, when optimising the executable, it is often necessary to ensure that the optimal size of

the executable is reached.

D.-O3

Each optimization level is a superset of the one before it, adding all of the previous level's optimizations along

with some additional optimizations. Complex methods, such as function inline, are added to the source code in

this optimization level, with the benefit of a fast executable but with the drawback of a larger executable.

There's still no assurance that the program can be executed in a reasonable time.
E. -Os

The key goal of this optimization level is to provide executables for memory-constrained systems. All of the

changes made at this point are aimed at reducing the size of the code without sacrificing performance. Reducing

the executable size, as seen in level -03, can allow for more efficient cache memory use. This will sometimes

speed up the execution process.

F. -Ofast

This includes all -O3 options, as well as -ffast-math, -fallow-store-data-races, and for FORTRAN -fmax-stack-

var-size, -fstack-arrays, and -fno-protect-parens is defined. This alternative is normally not recommended for

use because it violates strict standards enforcement.

3.BENCHMARK PROGRAMS

Benchmark suites are a set of software programs that are used to assess the performance of a system's hardware

and software. In this experimental model, the CBenchbenchmark suite is used for evaluation.
CBench program’s source code was originally derived from Mibenchprograms[6]. To ensure portability, the

derived programs are streamlined. The CBench benchmark suite is a collection of open-source

programs organized into different domains with 20 separate data sets that enable users to conduct experiments.

The CBench benchmark programs are categorized into the following categories automotive, security, telecom,

consumer, network, office, and bzip.

4.EXPERIMENTAL SETUP

The Collective Benchmark (CBench-V1.1) programslisted in Table 1 under each category areused for the

analysis.

CBench Programs

automotive automotive_bitcount

automotive_qsort1

automotive_susan_c

automotive_susan_e
automotive_susan_s

security security_blowfish_d

security_blowfish_e

telecom telecom_adpcm_c

telecom_adpcm_d

1Ezhil P, 2Ananthi Sheshasaayee

1877

consumer consumer_jpeg_c

consumer_jpeg_d

bzip bzip2d

bzip2e

TABLE I. CBENCH PROGRAMS USED FOR ANALYSIS

The GCC 9.3.0 compiler has been used and the performance is studied for the following levels of optimization

listed in Table II.

Optimization Level in

GCC

-O1

-O2

-O3

-Ofast

TABLE II. OPTIMIZATION LEVELS OF GCC APPLIED FOR ANALYSIS
The Linux perf tool is used to measure performance in this experimental setup. The Linux perf tool is a

profiler that is used to evaluate the performance of an application depending on a variety of parameters. The

Linux perf tool is used to measure both hardware and software counters for GNU/Linux programs, such as CPU

cycles, instructions, cache misses, and so on. The perf tool has a wide range of commands for assessing and

monitoring performance[7][8].

In this experiment the execution time and the instruction count are taken into consideration as performance

parameters. The execution time is used to measure the speed of execution of the program and the instruction

count used to measure the memory the program occupies based on code size after the implementation of

optimization. These two parameters are measured and taken into consideration for analysis as the main objective

of the compiler is to maximize the speed of execution and minimize the utilization of memory.

Fig 1. depicts the performance of standard optimization levels of GCC based on execution time and Fig 2.
shows the performance of standard optimization levels of GCC based on instruction count. Fig 3. exhibits the

overall performance of CBench programs based on execution time and Fig 4. expresses the overall performance

of CBench programs based on instruction count.

Figure 1. Performance of standard

optimization levels of GCC based on

execution time

Figure 2. Performance of standard optimization levels

of GCC based on instruction count

Experimental Analysis Of Optimization Flags In Gcc

1878

Figure 3. Overall Performance of CBench Programs based on Execution Time

Figure 4. Overall Performance of CBench Programs based on Instruction Count

Figure 5.

From Fig 3. it is evident that the standard optimization level -O3 of GCC has been the overall best performing

option as far as execution time is considered. Next overall best option is -O2 then -Ofast and the optimization

level -O1 has the least performance with respect to execution time

According to the results of the study in Figure 4, GCC's standard optimization level -O3 has been the overall

best performing alternative in terms of instruction count. The next best choice is -Ofast, followed by -O2, with

the optimization level -O1 providing the lowest results in terms of instruction count.

5. CONCLUSION

In this paper, the GCC 9.3.0 compiler is analyzed for identifying the performance of standard optimization

levels provided by GCC with selected Collective Benchmark (CBench-V1.1) programs. Through the

experimental analysis, it is observed that standard optimization level -O3 to be the overall best option as far as
performance is considered with respect to execution time and instruction count. The standard optimization level

-O1 is recognized to be the least performing option among standard optimization levels with respect to

execution time and instruction count.

References

1. Compilers: Principles, Techniques, And Tools”Alfred V. Aho, Monica S. Lam, Ravi Sethi, And Jeffrey D.

Ullman

2. https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

3. Ashouri, Amir H., William Killian, John Cavazos, Gianluca Palermo, and Cristina Silvano. "A survey on

compiler autotuning using machine learning." ACM Computing Surveys (CSUR) 51, no. 5 (2018): 1-42.

4. “GCC The Complete Reference” Arthur Griffith
5. https://gcc.gnu.org/onlinedocs/gcc-9.3.0/gcc/

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:

1Ezhil P, 2Ananthi Sheshasaayee

1879

6. http://cTuning.org/cbench

7. http://man7.org/linux/man-pages/man1/gcc.1.html

8. Kukunas, Jim. Power and Performance: Software Analysis and Optimization. Netherlands: Elsevier

Science, 2015.

9. A.S. Arunachalam, T.Velmurugan. "A Survey on Educational Data Mining Techniques." International
Journal of Data Mining Techniques and Applications 5.2 (2016): 167-171.

10. Amir Hossein Ashouri, Gianluca Palermo, and Cristina Silvano. An Evaluation of Autotuning Techniques

for the Compiler Optimization Problems. In RES4ANT2016 co-located with DATE 2016. 23 –27.

http://ceur-ws.org/Vol-1643/ #paper-05

11. Amir Hossein Ashouri, Vittorio Zaccaria, Sotirios Xydis, Gianluca Palermo, and Cristina Silvano. 2013. A

framework for Compiler Level statistical analysis over customized VLIW architecture. In VLSI-SoC. 124–

129. DOI:http://dx.doi. org/10.1109/VLSI-SoC.2013.6673262

12. Jose L Ayala, Marisa López-Vallejo, David Atienza, Praveen Raghavan, FranckyCatthoor, and

DiederikVerkest. 2007. Energy-aware compilation and hardware design for VLIW embedded systems.

International Journal of Embedded Systems 3, 1-2 (2007), 73–82.

13. John Aycock. 2003. A brief history of just-in-time. ACM Computing Surveys (CSUR) 35, 2 (2003), 97–

113.
14. R Babuka, PJ Van der Veen, and U Kaymak. 2002. Improved covariance estimation for Gustafson-Kessel

clustering. In Fuzzy Systems, 2002. FUZZ-IEEE’02. Proceedings of the 2002 IEEE International

Conference on, Vol. 2. IEEE, 1081–1085.

15. David F. Bacon, Susan L. Graham, and Oliver J. Sharp. 1994. Compiler transformations for high-

performance computing. Comput. Surveys 26, 4 (dec 1994), 345–420.

DOI:http://dx.doi.org/10.1145/197405.197406

16. Victor R Basil and Albert J Turner. 1975. Iterative enhancement: A practical technique for software

development. IEEE Transactions on Software Engineering 4 (1975), 390–396.

http://man7.org/linux/man-pages/man1/gcc.1.html

	1.Introduction
	This paper discusses the application of standard optimization levels of GCC compiler on CBench programs and consolidates the results based performance with respect to execution time and instruction count.
	2.GCC OPTIMIZATION
	3.BENCHMARK PROGRAMS
	4.EXPERIMENTAL SETUP
	5. CONCLUSION

