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1. Introduction

In 1983. G. Pilz [11] introduced and explained the concept of Near rings. After the introduction of Fuzzy set
by Zadeh L.A[15], many extended the algebraic concept of Near rings to Fuzzy Near rings. In 1996, S. D. KIM
&H. S. KIM [4] extended Fuzzy ldeals of Near rings and also explained their various characteristics by
theorems.K. T. Atanassov [1], in 1986 extended Fuzzy sets to IF sets by introducing IF sets .Later A.Jianming et
al[2] discussed about IF ideals in near rings in 2005,M.G.Karunambigai et al[6] in 2012, explained various
properties of IF graphs with its properties.S.K.Mala et al [7]described IF ideals of MI'groups in Near rings in
2018 and later represented them as graph byS.K.Mala et al[8] by explaining its properties in 2019.In 2019, M.
Sitara et al [10] introduced Fuzzy graph structures with applications in detail . The maximal product of graphs of
IF Ideals of MI"groups in Near rings has been discussed by S.K.Mala et al[ 9] in 2020 .
2. Preliminaries
Definition: 2.1

Near ring is a non-empty set with two binary operation satisfying

i Group with respective to first operation
ii. Semi group with respect to second operation

iii. Second operation is distributive over the first operation.
Definition: 2.2

Fuzzy set is a crisp set with its elements having membership function. If they have non-membership value
along with it satisfying the condition that their sum lies between 0 and 1,is called as anIntuitionistic Fuzzy set.
Definition: 2.3

A Fuzzy set in a near-ring R is called a fuzzy ideal of R if it satisfies:

(1) p (x —y) 2 min{u(x), n(y)}

i) py+x-—y)=zux)

iif) p(xy) = p(y)

iv. p((x+2z)y—xy)>wz) forallx,y,z €R.

Definition: 2.4

An IF set A of a Near ringis said to belntuitionistic fuzzy ringif it obeys

(i) pa (X —y) > Min {pa(x), pua ()}

(ii) pa (xy) > Min {pa (%), pa (¥)}

(iii) ya (X —y) <Max {ya (x), va(y)}

(iv) ya (xy) <Max {ya (X), ya ()}, for all x, y in near ring.
Definition: 2.5

Let Gl1i(Vi1, En, M, yin) and Glo(Viz, Eiz, iz, y12) be 2 graphs of intuitionistic fuzzy ideals of MI'group in
near rings (IFIMI'GNR) I, and I, then Gl1* Gl, = (V, Ey, W, v1) is called maximal product graph of intuitionistic
fuzzy ideal of MI"group in near rings with structure vertices —

Vi=Vn *Vp and, edges -E, = {((Ul,Vl) (Uz,Vz)) / U1=Uz and V1,V2 € El2 (or)

V1=V2 and Ui, Uz € E|1}
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Here W (u,v) = pia(u) Vv iz (v) for all (u,v) € V|
and v, (u,v) =y (u) A yiz (v) for all (u,v) € V.
A|SO, M ((U1,V1) (Uz,Vz)) = {pu(ul) \ ].1|2(V1 Vz) where u; = up& v1 V2 € Epp
Hi2 (Vz) \% ].1|1(U1 Uz) where vi=v>& U1 Uz € Ejq
and ) ((U1,Vv1) (U2,v2)) = {yin (U1) A yi2 (V1 V2) where Us = Up& Vi V2 € Epp
viz (V2) Ay (U U2) where vi=va& Up Uz € Ejg,
Here E,(edges set) has edges only if either the first coordinates are same, or the second coordinates are same
with an edge existing already in Gl or Gls.

3. Intuitionistic Fuzzy Ideals of MI'groups in Near Rings as Maximal Products of Graph

Let Gly(Vi,Eibu,m,) and Glx(Vi, Ei,, Wi, 71,) be two graphs of IFIMI'GNR 1. and I in near ring N*then,
Gl1*Gly = (Wi, Ei, W, ) is called maximal product structure of IFIMI'GNR.

The following theorems explains the degree and total degree of vertices V, of Gl * Gl
Theorem: 3.1

If Gl (Vi,,Ei, by, m,) and Glz (Viy, Ei,, iy, 71,) are the graphs of IFIMI'GNR such that i, (i) < pu, (Uivy) 71,
(ui) = 91, (vivy) therefore, the vertex degree of maximal product
Gli* Gl (V) E, Wi, v1) is given by
D= i bu(Ui, Vi) = Dei,*puy (Ui) K, (V) + Dat, By (V)
Doi* cipyi(Uis Vi) = Dei,*y1, (Ui) y1, (Vi) + Daiyyi, (V)
Proof
Let G1 (Vi,Ei by, 71,) and Gz (Vi By, iy, 71,) are the graphs of IFIMI'GNR such that
i, (Ui) <, (vivg) then g (Uivg) < i, (v) and p1, (Ui) >y, (Vivj) then pi, (i) = g, (V) for Ui€V,, UilEE,
ViEV|2, ViVjEE|2.
Therefore, the vertex degree of Gl:*Gl, maximal product are:
Doi*aibti (Ui Vi) = 3 puy (Uitl) V ji, (V) + 3 J, (Vivy) V iy (Ui) and
Daiyx ey (Ui, Vi) = 2 1 (Uit) Ay, (V) + 31, (Vivi) A iy (W)
= Doaiyx o (Ui, Vj) =X Hi, (V) + X W, (vivj) and
Daiy* e,y (Ui Vi) = X 71,(V) + X 71, (ViVi)
= D=1l (Ui, Vi) = Der*Hiy (U, (Vi) + Db, (Vi) and
Daiy* ei,y1 (Ui V§) = Do, *y1, (Ui, (Vi) + Dat, 11, (Vi)
Example: 3.2
Consider Gl1 (Vi,Ei ;) for 1 = {0} of Zz and Gl (Vi,, Ei,, i, 71,) for 12 = {0} of Z4 therefore, GI = Gl,
* Gly is a maximal product of Gl; and Gl,. This is explained in the following example.

0(0.2,0.5)

1(0.2,0.4) 2(0.3,0.4)

Figure 1: Graph GI1
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0(0.3,0.2)

@)
1(0.4,0.2) 2(0.4,0.3) 3(0.5,0.4)

Figure 2: Graph GI2
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Figure 3: Graph GI1 * GI2

The p, value for Gl1* Gl both by theorem and direct calculation are obtained as follows.

By theorem,

Dot ei,ui(0, 0) = Dai, ™ (0)p, (0)+ Da, ki, (0)
=2(0.3) + (0.3 +0.25 + 0.4) = 1.55

Dot ei,bi(0, 1) = Dai,* (0)p, (1)+ Da, ki, (1)
=2(0.4) + (0.3) = 1.1

Dot e1,bi(0, 2) = Dai,* (0)w, (2) +Da, i, (2)
=2(0.4) + (0.25) = 1.05

Dot e1,bui(0, 3) = Dai,* (0)p, (3)+ D, ki, (3)
=2(0.5) + (0.4) = 1.4
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Doiy*eiptui(1, 0) = Dei,* (1)w, (0)+ De, b, (0)
=1(0.3) + (0.3 +0.25 + 0.4) = 1.25
Doiy<eiphui(l, 1) = Dei,* (1w, (1)+ Deiyhu, (1)
=1(0.4) + (0.3)= 0.7

Doiy<ei,ti(1, 2) = Dei,* (1w, (2)+ De, Wi, (2)
=1(0.4) + (0.25) = 1.65

Doiy<eiptui(1, 3) = Dei,* (1w, (3)+ De, b, (3)
=1(0.5)+(0.4)=0.9

Dai * a1 (2, 0) = Dai,* (2)W, (0)+ Do, b, (0)
=1(0.3)+(0.3+0.25+0.4) =1.25
Dai > a1 (2, 1) = Dai,* (2)W, (1) +Da, b, (1)
=1(0.4)+(0.3)=0.7

Doi*ei,i(2, 2) = Dai,* (2)p, (2)+ Da, b, (2)
=1(0.4) + (0.25) = 1.65

Doty* 61,2, 3) = Dei,* (2)w, (3)+ De, i, (3)
=1(0.5) + (0.4) = 0.9

By direct calculation,

Daiy*al,bu(0, 0) =0.25+ 0.3+ 0.4 +0.3+0.3=1.55
DG|1*G|2H|(O, 1)=03+04+04=0.1

Doi,- b0, 2) =0.4+0.25+0.4 = 1.05
DG|1*G|2H|(0, 3)=05+05+04=14
Doi,-eppui(1, 0) = 0.25+ 0.4+ 0.3+ 0.3 = 1.25
DG|1*G|2H|(1, 1)=03+0.4=0.7

DG|1*G|2L1|(1, 2)=0.25+0.4=0.65
DG|1*G|2L1|(1, 3)=04+05=09

DG|1*G|2L1|(2, 0)=04+025+03+0.3=1.25
DG|1*G|2L1|(2, 1)=04+0.3=0.7

DG|1*G|2L1|(2, 2) =0.4+0.25=0.65
DG|1*G|2L1|(2, 3)=05+0.4=09

Similarly, the y,value forGl{* Gl both by theorem and direct calculation are obtained as follows:
By theorem,

Daiy*c1,71(0, 0) = Der, * (0)y1, (0)+ Da, 11, (0)
=2(0.2) + (0.15+0.2 + 0.3) = 1.05
Daiy*e1,71(0, 1) = Der, * (0)y1, (1)+ Dai, 11, (1)
=2(0.2) + (0.15) = 0.55

Daiy<e1,71(0, 2) = Dei,* (0)y1, (2)+ Dei, 1, (2)
=2(0.3) + (0.2)

=08

Daiy*c1,71(0, 3) = Der, * (0)y1, (3)+ Da, 11, (3)
=2(0.4) + (0.3)= 1.1

Daiy*enyi(1, 0) = Der,* (1)y1, (0)+ Daiyyi, (0)
=1(0.2) + (0.15+0.2 + 0.3) = 0.85

Doiy= 611, 1) = Der* (1, (1)+ Deiyn, (1)
=1(0.2) + (0.15) = 0.35

Doiy* 6111, 2) = Deiy™ (U, (2)+ Dei, 11, (2)
=1(0.3) + (0.2) = 1.5

Doiy* 6111, 3) = D™ (1)1, (3)+ Dai, 11, (3)
= 1(0.4) + (0.3)= 0.7

Doiy* 61,712, 0) = Deiy™ (21, (0)+ Dai, 11, (0)
=1(0.2) + (0.15+0.2 + 0.3) = 0.85
Doi*eyi(2, 1) = dei,* (2)y1, (1)+ dai, 11, (1)
=1(0.2) + (0.15)= 0.35

Do ei(2, 2) = dei,* (2)y1, (2)+ dai, 11, (2)
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=1(0.3) + (0.2) = 0.5
Doi*eipni(2, 3) = dei,* (2)y1, (3)+ dai, 11, (3)
=1(0.4)+(0.3)=0.7

By direct calculation,

Doi~ci,i(0,0) = 0.2+ 0.3+ 0.2 + 0.2 +0.15= 1.05

Doi*eip(0,1)=0.2+0.2+0.15=0.55
Doi+eip(0,2) =0.3+0.3+0.2=0.8
Daici,(0,3) =0.3+ 0.4 +0.4 =11
Doi*eiy(1,0)=0.2+0.2+0.3 +0.15=1.85
Doi*ey(l,1)=0.15+0.2=0.35
Doi*eip(1,2)=02+0.3=05
Deiy*enyi(1,3)=0.4+03=07
Deiy*61yi(2,0)=0.15+ 0.2+ 0.2+ 0.3=0.85
Doi*eip(2,1)=0.2+0.15=0.35
Dei*enyi(2,2)=0.3+0.2=05
Deixci,y(2,3)=0.3+0.4=0.7
Theorem:3.3
If Gli (Vij,Ei,lu,m,) and Glz (Vi,, Ei,, Wi, 71,) are the graphs of IFIMI'GNR such that i, (ui) < p,(Vivj)
71,(Ui) = 1, (vivj) and function p,(vj) is a constant “Cy” and function y, is a constant “Cz”. Therefore, the vertex
degree in Gl * Gl, maximal product graph of IFIMI"GNR is given by Dai * a1l (Ui, Vi) = D*ai i, (Ui) . C1 +
Dai,b, (Vi) and Dei,+ eyt (Ui, Vi) = D*a1y 1y (Ui). C2 + Dy, (Vi)
Proof
If Gly (Vi,Ei, by, 1) and Gl (Viy, Euy, Wy, 71,) are the graphs of IFIMI'GNR in such a way thatpu, (Ui) < i,
(vivi) and i, (Ui) = 71, (viv) for i, j =1 ton. Here p, (vj) = Ciand y, (vj) = C2. Also, i (Ui) < i, (Vivi) =1y,
(uit) < i, (vj) and yi, (Ui) >y, (Viv)) =, (Uit) >, (vj) for i, j=1ton.
Therefore, the vertex degree in Gl1 * Gl, maximal product is
Doty = aipbiUi, Vi) = 3 Hiy (Uit) Vi, (Vi) + X Hi, (Viy Vi) V iy (U7)
=2 My (V) + 2 iy, (Vivy)
= D*ai M1, (Ui).C1 + Dai, i, (Vi)
Also, Daiy* Giyyi(Ui, U)) = 3 71y (Uibl)) Ay, (V) + 371, (Vi Vi) A g (Ui)
=27, (V) + X, (Vivi) =D*ei 1, (U3).C2 + Doy, (Vi)
Theorem :3.4
If Gy (Vi,, EL, puy, 1) and Glz (Vi,, Ey,, Hu, 71,) are the graphs of IFIMI'GNR, 11 and 1. such that pu, (vj) <

wi, (Uivg) and 1, (vj) =y, (vivy) Therefore, the vertex degree in GI1 * Gl maximal product graph is given by
Doty = a1,M(Ui, Vi) = D*a1,H, (Vi) b, (Ui) + Doy by (Ui)
Doty e1y(Ui, Vi) = D* a1y, (Vi) y1,(Ui) + Doy, (Ui)
Proof
If Gly (Vi,,Ei by, 1,) and Glz (Vi,, Ei,, iy, 71,) are the graphs of IFIMI'GNR, 11 and I2 so that pu, (uj) < i,
(Uiti) =, (Vivj) < pu, (ui) for i, j=1ton and
7, (U) =y (Uiti) =, (Vivy) =y (U0).
Therefore, the vertex degree of maximal product Gl1*Gl; is
Daig* b (Uivy) = X puy (Uith) V' Hi, (Vi) + 3 B, (Vivy) V i (W)
= Do il (Ui, Vi) = X Hiy (Uiti) + 3 by (i)
= Doy Wi, (Ui) + D*a, pui, (V) by (Ui)
Similarly, Deiy* e, i (Uivy) = 2 p1y (Uilik) A 1, (V) + 2 71, (Vivy) A g (W)
= Doai=aiyi (Ui, Vi) = X oy (Uit + 2 1y (Ui)
= Daiyyy (Ui) + D*aiyp, (V) 71, (Ui)
4. Conclusion
The degree of maximal product of two graphs of IF Ideals of MI'groups in Near rings are explained by

theorems and verified through an example .This can be further extended in Intuitionistic fuzzy graph which
has wider applications in the modern scientific world.
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