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Abstract: This manuscript is concerned with reflected and refracted elastic waves when transverse waves are incident at the 
interface between two fluid-saturated porous solid half-spaces. Perfect and imperfect both types of contact of the interfaces are 
discussed. It has observed that for a specific model the behaviour of different reflected, refracted waves and the ratio of their 
amplitudes depend on the physical properties of the medium, angle of emergence, the porosity of the fluid, the porosity of fluid 
drenched incompressible porous medium and stiffness of imperfect boundary. The computer numerically results for this model 
have been presented graphically by taking a particular case of empty porous solid.  
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1. Introduction  

The reflection and refraction characteristics of seismic waves are significant in predicting the underground 

deformations elastic and porous parameters. Bowen [1] applied the mixture theory principles on incompressible 

porous media models and developed a theory for determining the pore pressure of each pore fluid and stress 

equation for the mixture. Reflection and refraction of seismic waves incident obliquely at the boundary of a 

liquid-saturated porous solid has been discussed by Hajra and Mukhopadhayay [2]. In soil mechanics, Boer and 

Ethlers [3] historical reviewed the development and foundation of effective stress concept via mixture theory. In 

continuation, Boer et al. [4] analyzed the transient wave motion in fluid-saturated porous media and using 

Laplace transform technique derived the one-dimensional analytical solution. In a micropolar elastic layer, 

Kumar and Gogna [5] investigated the propagation of waves with stretch immersed in an infinite liquid and 

frequency equation for different types of vibrations.  

One-dimensional transient wave propagation in fluid-saturated incompressible porous media has been studied by 

Kumar and Hundal [6] with the relation of discontinuities across the wavefronts and characteristic equation. An 

interface linking a micropolar liquid-saturated porous solid and homogenous inviscid liquid half-spaces 

refraction and reflection of seismic waves by Kumar and Barak [7]. Based on the theory of invariants, for a 

hyperelastic transversely isotropic solid, Ogden and Singh [8] derived the general constitutive equation. In a 

poroelastic solid saturated with three-phase viscous fluid, Santos and Gabriela [9] parametrically analyzed the 

waves propagation. Barak and Kaliraman [10], investigated the behaviour of elastic waves propagation at the 

interface of fluid-saturated incompressible porous solid and  micropolar viscoelastic solid with different 

boundary conditions. 

Recently, Reflection and Transmission of the plane wave at the surface and boundary of an elastic solid of dual 

permeability double-porosity materials have been obtained by Kumar et al.  [11], [12]. At an imperfect interface, 

Barak and Kaliraman [13] studied the reflection and refraction of plane waves separating fluid saturated porous 

solid and micropolar elastic solid half-spaces.  Barak et al. [14] analyzed the propagation of waves in partially 

saturated inhomogeneous soils. Kumar et al. [15] investigated the seismic waves reflection and refraction at the 

interface of a partially saturated soils and elastic solid in context of model developed by the Ghasemzadeh and 

Abounouri [16]. Keeping the above research in mind, in this manuscript we confine our attention towards 

characteristics of amplitude ratios of elastic waves at the perfect and imperfect interface of contact between two 

dissimilar porous solid half-spaces saturated with liquid, in which at the interface transverse waves are incident 

and amplitude ratios for a mixture of reflected and transmitted waves are computed numerically and depicted 

graphically for a specific model to understand the behavior of amplitude ratios that depends upon the angle of 

emergence, material properties of the medium, porosity of fluid drenched incompressible porous medium and 

stiffness of imperfect boundary.  

 

Constructing the problem 

Construct the problem in two-dimensional in which the interface z=0 separates fluid-saturated porous solid 

media 
]0[2 zM

 and 
]0[1 zM

 as shown in figure 2.1. The longitudinal or transverse wave propagates 

through the medium 1M
 and incidents at the plane z=0 at an angle 0  with normal to the surface. The angle 

1 and 2  be made by the two  
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reflected waves P-wave and S-wave, respectively, with a positive direction of the z-axis in the medium 1M
. 

Also, 1  and 2  be the angle made by the two transmitted waves P-wave and SV-wave respectively with the 

negative direction of z-axis in the medium 2M
 , as shown in figure 2.1. 1A

, 1B
, 1A

and 1B
indicated the 

amplitude ratios of reflected and refracted waves in the medium 1M
and medium 2M

, respectively. 

3.1 Basic Equations and Constitutive Relations for Medium 1M
  

Governing equations for deformed incompressible porous medium drenched in the company of non-viscous fluid 

in the non-existence of body forces as discussed by [3] as follows 

  0.  F

F

s

s uu  
                                                                                                 (3.1.1) 

          
      0. 2  SFvS

SSS

S

SS uuSupu 
                                   (3.1.2) 

           
  0 SFvF

FF uuSup 
                                                                             (3.1.3) 

            
IIEET S

S

S

SS

E ).(2  
                                                                                       (3.1.4) 

           

 S

T

SS ugradugradE 
2

1

                                                                                    (3.1.5) 

where, iu
represents the displacement, iu

velocity, iu
 acceleration, 


 density; (

SFi ,
) F for fluid and S 

for solid parts respectively and for incompressible pore fluid p denote effective pore pressure. Also, 
S

ET
represents stress and SE

 the Langrangian strain tensor in the solid segment. 
S  and 

S
 indicate the 

macroscopic Lame's parameters of porous solid and 
S

,
F

 the volume fractions satisfying the relation 

respectively  

            
1 FS 

                                                                                                             (3.1.6) 

The tensor VS
 relating the coupled interaction flanked by solid and fluid, in case of isotropic permeability 

written as  

 
I

K
S

F

FRF

V


2


                                                                                                     (3.1.7) 
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where 
FR

and 
FK are fluid's specific weight, and Darcy's permeability coefficient respectively. The 

displacement vector iu
(i = F, S for fluid and solid respectively) in two-dimensional problems can be taken as  

 ii

i wuu ,0,
    where    

.,SFi 
                                                                          (3.1.8) 

Using equation (3.1.8) in equations (3.1.1) to (3.1.3), the following equations become 
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Also, 

S

zxt
and 

S

zzt
 are tangential and normal stresses in solid part respectively may be written as  
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where  

   
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and 
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                                                                                                    (3.1.17) 

In fluid and solid phase, displacement components (i.e.
ju and

jw ) are associated with dimensional potential 

(i.e. 
j
and

j
) as  
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Using equation (3.1.18), equations (3.1.9) to (3.1.13) can be written as 
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 Consider the solutions (3.1.19) to (3.1.23) in the form 

     tipp FSFSFSFS  exp,,,,,,,, 11111
                                                            (3.1.25)  

where   represent complex circular frequency. 

Using (3.1.25) in equations (3.1.19) to (3.1.23), we obtain 
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Equation (3.1.26) corresponds to a longitudinal wave propagating with velocity 1V
, given by 
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From equation (3.1.27) and (3.1.28), we obtain 
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Equation (3.1.33) for the propagation of transverse wave with velocity 2V
, given by 
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3.2 Constitutive Relations and Basic Equations for 2M
 

The governing equations of the deformed medium 2M
 in without body forces obtained by [3] as follows 
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SFiuuu iii ,;,, 
 Symbolize displacement, velocities and acceleration of fluid and solid parts respectively, 

and for incompressible pore fluid 
p

 is effective pore pressure.
S

and 
F

represent densities of solid and fluid. 
S

ET
Denote stress in solid part and SE

 is linearized Langrangian strain tensor. 
S and 

S
 are macroscopic 

Lame's parameters of porous solid and 
S

and 
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are volume fractions fulfilling the relation.  
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In isotropic permeability case, tensors VS
relating coupled interaction between fluid and solid have been 

specified by    
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Using equation (3.2.8) in equations (3.2.1) to (3.2.3), the following equations obtained as 
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Also, 
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Using equation (3.2.18), equations (3.2.9) to (3.2.13) becomes 
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                                                                                (3.2.24) 

Considering the solution of the system of equations (3.2.19) to (3.2.23) in the form 

     tipp FSFSFSFS  exp,,,,,,,, 11111
                                                        (3.2.25)  

where   is the complex circular frequency. Making use of (3.2.25) in equations (3.2.19) to (3.2.23), we obtain 
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                                                                (3.2.26) 
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                                                                     (3.2.28) 
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                                                                                                       (3.2.30) 

Equation (3.2.26) corresponds to a longitudinal wave propagating with velocity 1V
, given by 
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                                                                        (3.2.32) 

From equation (3.2.27) and (3.2.28), we obtain 
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                                                                                                (3.2.33) 

Equation (3.1.33) corresponds to a transverse wave propagating with velocity 2V
, given by 
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                            (3.2.34)  

4.1 The velocity Potentials and Pore Pressure for Medium 1M
  

The potential function satisfying equations (3.1.19) to (3.1.23) written as  

     tizxikAtizxikAS
11111100101 cossinexpcossinexp  

  

 
     tizxikAtizxikAmF

111111001011 cossinexpcossinexp  
 

     tizxikAtizxikAmp 111111001012 cossinexpcossinexp  
             (4.1.1) 
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                                        (4.1.3) 

and 11 , BA 0101, BA
  are amplitudes of reflected P-wave and SV-wave, incident P-wave and SV-wave, 

respectively and their wave numbers of reflected waves are denoted by 1k
 and 2k

 respectively. 

4.2 The Velocity Potentials and Pore Pressure for Medium 2M
  

The potential function satisfying equations (3.2.19) to (3.2.23) can be written as  

       tizxkiAmmpFS

1111121 cossinexp,,1,,  
                                             (4.2.1) 

       tizxkiBmFS
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                                                     (4.2.2) 

where, 1k
, 1A

 are the wave number and amplitude of transmitted P wave and 2k
, 2A

 are the wave number and 

amplitude of transmitted SV- wave ) 
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                                     (4.2.3) 

5.1. Case I: When the contact of the media is perfect 

At the interface z=0, the suitable boundary conditions in this case for the model under consideration are taken in 

mathematical form as  

           
sSsSS
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zz uuwwttptpt  ;;;
                                                             (5.1.1) 

In order to gratify above said boundary conditions, the Snell's law extension written as  
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                                                                (5.1.2) 

Also,  
 22112211 VkVkVkVk

 at 0Z                                                                   (5.1.3) 

where, 1V
 and  2V

 are velocities of the transmitted P and SV-wave respectively. For emergent P-wave 

1010 ,  VV
                                                                                                       (5.1.4) 

For emergent SV-wave 

2020 ,  VV
                                                                                                     (5.1.5) 

At boundary z=0, put 
001 B

 for incident P wave in equation (4.1.2) and 
001 A

for incident SV-wave in 

equation (4.1.1). Using the potentials from (4.1.1 and 4.1.2) and (4.2.1 and 4.2.2) in relations (3.1.14, 15, 18) and 
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(3.2.14, 15, 18) respectively and using the relations (5.1.1 to 5), for obtaining four non-homogeneous equations 

system 
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                                                                                   (5.1.6) 
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The components ija
 and iY

 in equation (5.1.6) in the dimensionless form are as under  
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                               (5.1.8) 

For incident P-wave; 01* AA 
, 111 aY 

, 212 aY 
, 313 aY 

and 414 aY 
                             (5.1.9) 

For incident SV-wave; 01* BA 
, 121 aY 

, 222 aY 
, 323 aY 

 and 424 aY 
                      (5.1.10) 

Special Case: Either gas is filled in pores or there is no pores  of medium 1M
 , and 2M

 then both the mediums 

reduce to empty porous solids. In this case 
F

and 
F

are very small in comparison to 
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 and 
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respectively and so, these can be neglected. So the relations (3.1.24) and (3.2.24) give us  
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and the coefficients 11a
and 13a

in (5.1.8) changes to  
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whereas, all the rest coefficients in (5.1.8) are the same.  

5.2. Case II: When the contact of the media is imperfect 

The values of boundary parameters depend on microstructure and also on bi-material properties of medium 

under consideration. The interface z=0 separated the two liquid with different density within the liquid saturated 

porous solid, the possible boundary conditions for such type of  model are taken in the mathematical form as 

follows;  

ptpt
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                (5.2.1) 

At the interface z=0, put 
001 B

 for incident P wave in equation (3.1.33) and 
001 A

for incident SV-wave in 

equation (4.1.1), and using the potential functions from (4.2.1,2), (3.1.14,15,18) and (3.2.14,15,18) respectively 

and using the equations (6.2) and (5.1.2-5), for obtaining four non-homogeneous equations system   
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                                                                         (5.2.3) 

The components ija
 and iY

 in equation (5.2.2) in the dimensionless form are the same component as in (5.1.8) 

only the following component are different, 
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 For incident P-wave; 01* AA 
, 111 aY 

, 212 aY 
, 313 aY 

and 414 aY 
                              (5.2.5) 

For incident SV-wave; 01* BA 
, 121 aY 

, 222 aY 
, 323 aY 

and 424 aY 
                       (5.2.6) 

5.3. Particular Cases 

Case I: 
  tn kk ,0

 Normal force stiffness  

A system of four non homogeneous equations is obtained in this case, as in equation (5.2.2), where all ija
 are 

same except values of 33a
and 34a

are as 
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Case II: 
),0(  nt kk

 Transverse force stiffness  

A system of four non homogeneous equations is obtained in this case,  as in equation (5.2.2), where all ija
 are 

same except values of 43a
and 44a

are as  
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                                                                                  (5.2.8) 

Case III: when contact is welded 
  tn kk ,

 

Again for obtaining four non-homogeneous equations system (5.2.2), where all ija
 are same except values of 

44433433 ,, aandaaa
 are as 
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                                      (5.2.9) 

6 Numerical Results and Discussion 

In order to understand the behavior of different amplitude ratios, in detail, these ratios are computed numerically 

for this model by considering the values of applicable different elastic parameters for medium 1M
 are given [3] 

as 

67.0S
,

33.0F
,

3/34.1 mMgS 
,

2/5833.5 mMNS  , s/10* , smk F /01.0 ,
2/3750.8 mNS 

,
3/00.10 mKNFR 

and 
3/33.0 mmgF 

                                         (6.1) 

In medium 2M
 

6.0S
, 

4.0F
,

3/0.2 mMgS 
,

2/2368.4 mMNS  , s/10*  

smk F /02.0 , 
2/3272.3 mNS 
, 

3/00.9 mKNFR 
, 

3/33.0 mmgF 
, 

5.0nk
, 

25.0tk
         (6.2) 

For this model to represent different reflected and refracted waves amplitude ratios graphically a MATLAB 

program is constructed. The amplitude ratios of waves are determined for incidence angle which varies 

from
0

0 0
 to 

0

0 90
 

 4,3,2,1iZi . The magnitudes of amplitude ratios corresponding to reflected P, 

reflected SV-wave, transmitted P, and transmitted SV-wave respectively. The variations in iZ
 with emergence 
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angle 0  of P or SV-wave have been revealed in figures (1 to 8) and figures (9 to 40) for perfect and imperfect 

contact of the media at interface 0z respectively.  

 
The solid curve indicated by 'Gen' represents the case when media welded in contact. 'TFS' describe the 

particular case of transverse force stiffness interface and 'NFS' represent the case of normal force stiffness 

interface. Dotted lines' EPS' indicated when media 1M
& 2M

, reduces to empty porous solid. 

'Welded’/‘Imperfect' represents the particular case when interface between the mediums is welded/imperfect in 

contact respectively. Figures (1) to (4), (5) to (20) and (5) to (8), (21) to (40) corresponding to P-waves and SV-

waves are incident respectively. 

The variation in amplitude ratios 
)4,3,2,1( iZ i  w.r.t. emergence angles

0
0

0 900 
, to study the effect 

of porosity on amplitude ratios when P-wave strikes at the interface have depicted in the figures (1) to (4). Effect 

of fluid is clearly visible on the modulus of amplitude ratios of reflected and refracted waves. 
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Now, from figures (5) to (8) the effect of porosity has drawn in the case when SV-wave strikes at the boundary 

of the perfect interface between the mediums. In this case, also, a significant part for the saturated porous 

medium is the effect of pores filled with fluid. To investigate the effect of nature of the emergent wave, compare 

the figures (2) to (4) with the figures (5) to (8) simultaneously. It established that the effect of the incident wave 

is computable on the modulus of the amplitude ratio.  
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The effect of the boundary between the mediums on the modulus of amplitude ratio 1z
 investigated from 

figures (9) to (12), which conclude that the consequences of the interface are considerable on the modulus of 
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amplitude ratio. In addition, the value of amplitude ratio in Gen case is large than value of the ratio in EPS case 

and the porosity as well as boundary interface plays a momentous role on modulus of amplitude ratios.  

 

Similarly, the effects of boundary considered and conclude in figures (13) to (16), which shows the effect of 

bonding parameter as well as effect of porosity of the medium on the modulus of amplitude ratios 2z
. 

 

 
 

 In continuous observations of behavior of amplitude ratios of 3z
 from the figures (17) to (20) that depends 

upon the effect of porosity, boundary interface, fluid filled in the porous media, and effect of bonding parameter 

has significant effect on the amplitude ratios. 
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 Figures (21)-(24) and (25)-(28) concluded that the effect of bonding parameter and fluid filled in the porous 

media is considered as a momentous on the modulus of amplitude  
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ratios 4Z
and 1Z

respectively. It can be stated that the effect of emergent wave (i.e. either P-wave is incident 

or SV-wave is incident at the interface) is noteworthy on the ratios. Characteristics of amplitude ratios 

2Z
, 3Z

,and 4Z
 in case of fluid filled in porous media can  observed from the figures (29)-(32), (33)-(36), 

and (37)-(40) respectively.  
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From these figures, It is found that the effect of bonding parameter, fluid filled in the porous media are 

significant on the modulus of amplitude ratio 2Z
, 3Z

, and 4Z
respectively.  

Conclusion  

The stresses, displacements and pore pressures of both media are obtained with help of potential functions. The 

amplitudes ratios of different reflected and refracted waves have been observed graphically with help of physical 

parameters and found that amplitude ratios of different reflected and transmitted waves depend on the incidence 

angle of emergent wave. Hence, we conclude that the amplitude ratios depend on emergence angle of emergent 

wave, material properties of medium, on incident wave, porosity of fluid drenched incompressible porous 

medium and stiffness of imperfect boundary. 

 

7 Highlight The characteristic of amplitude ratios of various reflected and refracted wave  

has been analyzed which depend upon the emergence of angle of emergent waves, material properties of media, 

porosity of fluid saturated medium, and stiffness of the perfect/imperfect boundary. 
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