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Abstract :  Many researches have dealt with analysis of classical canonical correlation based on either covariance 

(heterogeneity) or correlation matrix where the coefficient of correlation used is Pearson which is biased to the 

outlier’s values, because of it depends on mean in the calculation. In our research we find robust canonical correlation 

depend on robust methods which is insensitive towards outliers value. Methods are used Percentage bend correlation 

coefficient (Pe) & Biweight midcorrelation coefficient correlation (Bi) to estimate canonical correlation (CC) instead 

of Pearson correlation. 

The researchers addressed robustness measurement to check the ability of robust methods for contaminated values, 

we used biased and translated estimator of empirical influence function to make the comparison between robust 

methods when we use simulation and choose (Bi) method to apply it on real data. 

Key Words: Canonical Correlation, Outliers, Percentage Bend Correlation, Biweight Midcorrelation Coefficient, 

Influence Function.  

 

Introduction  

       Canonical correlation coefficient is generalization of multiple correlation as it consists of two sets of variables, 

the first are dependent variables (Y1, Y2, , , , , , , YP) and the second is explanatory variables ( X1, X2, , , , , , , Xq) , and both 

groups have a common distribution. 

Canonical correlation analysis contributes to describe two sets of variables, one of which is auxiliary and the other is 

the original variables corresponding to the helpful variables. 

It is worth to say that the concept of the canonical correlation appeared in the period 1935/1936 by the scientist 

(Hotelling), and it became clear that the multiple correlation is a special case of the canonical correlation.in (1940) 

the scientist (Fischer) was the first to use the canonical correlation to analyze harmonic tables with ordered categories. 
[1]   

The most central concept in Hampel’s fundamental contribution to robustness theory (Hampel, 1968, 1971, 1974) is 

the “influence function”. He and his co-researchers used heuristics of influence function and developed a new 

approach to Robust Statistics. [2] .In (1992), the scientist (Mario Romanazzi) presented the derivation of the influence 

function for the square of the correct and multiple correlation coefficient in addition an explanation and detailed 

description of three types of sample transformations of the influence function which are (the influence  function, the 

deleted experimental influence function and the sample effect function) as well as finding influence function of the 

Eigen values and Eigen vectors and the characteristic values, depending on the study of (Hample 1974) in the early 

seventies[3]. The researchers (Nasser And Alam) introduced in (2006) articles about estimators of influence function 

included six estimators have the same process as original influence function [4].In (2013) (Alkenani & Keming) 

represented two types of Estimators divided in to two groups (M-estimators) which includes (Percentage Bend , 
Biweight midcorrelation, Winsor zed, Kendall , Spearman correlation) to estimate correlation matrix instead of 

Pearson correlation, the second group (O-estimators) includes (MVE,MCD,FCH,RFCH breakdown and RMVN 

estimators),the results mentioned the preference for (Biweight) , to estimate correlation matrix and in the second 

groups the preference was to (FMCD) to estimate heterogeneity matrix[5]. In (2016),( Veenstra , Cooper & Phelps) 

introduced A study in analyzing the relationship between the returns of different securities because of its fundamental 

importance in many areas of finance, such as improving the stock market by using the Biweight Midcorrelation (Bicor) 

(instead of the Pearson correlation coefficient) as it is considered one of the more powerful measures. To find out the 

relationship between the returns, and the results showed that the (Bicor) method can be used to improve the method 

of building a financial portfolio based on the chart when dealing with the correlation matrix, thus obtaining better 

performance [6]. 

In many phenomena include data that follow a normal distribution, we find some violations of the distribution 

conditions represented by the presence of outliers, thus the resulting estimates will be inconsistent and inefficient. 

mailto:lekaa.ali.1968@gmail.com


Using Scaled And Translated Measure To Compare Between Robust Estimators In Canonical Correlation 

1575 

Canonical correlation coefficient is one of the most important estimations in describing the nature and strength of the 

relationship between two sets of variables, which in turn is also affected by the outliers if it is estimated by the classical 

methods. Here, the concept of our research was launched in order to address this problem by employing some robust 

methods that can be described as resistance to outlier values. 

In our research, we use empirical influence function of scaled and translated version to check the effect of outliers by 
making a comparison between two robust methods and show the influence function for canonical correlation and 

weights vectors.  

Canonical Correlation Analysis (CCA) 

    Canonical correlation aims to study the relationship between a set of X explanatory variables and a set of Y response 

variables. [7]   

Assuming the study of two sets of variables:  

Xp∗1 is a vector with dimension p ∗ 1 for the first set     

Yq∗1 is a vector with dimension p ∗ 1 for the second set     

P: is the number of variables in the first group (X) and q: represents the number of variables in the second group (Y).  

The variables of both groups follow the normal multivariate distribution as each group has the following 

specifications: 

E(y) = 𝜇𝑦   E(x) = 𝜇𝑥 

Var (y) = Σ𝑦𝑦   Var (x) = Σ𝑥𝑥 

And the homogeneity matrix between the two sets known as: 

(𝑋
𝑌
) ~ MVN[ (𝜇𝑥

𝜇𝑦
) ,   (

Σ𝑥𝑥 Σ𝑥𝑦
Σ𝑦𝑥 Σ𝑦𝑦

)] 

Σ𝑥𝑥 > 0   ، Σ𝑦𝑦 > 0 And assume𝑝 ≤ 𝑞, so we can define number of linear combination equal to number of 𝑀𝑖𝑛(𝑝,𝑞) by 

using this equation: 

ui = a̅i x 
  i = 1,2,… . . , n       ..(1)           = a1ix1 + a2ix2 +⋯+ apixp 

vi = b̅i y 

     = b1iy1 + b2iy2 +⋯+ bpiyq                     i = 1,2,… . . , n    ..(2) 

 

Every linear combination differ in weight values for every variable because of the important variable difference inside 

the set and its effect on canonical variates Ui or Vi 

To calculate the canonical correlation coefficient between two variables: Corr (𝑥
𝑦
) 

And Based on the basis of the variance of each set of variables: 

 Var (�́� 𝑥) = �́� Σ𝑥𝑥 𝑎 = 1…… . . (3) 

Var (�́� 𝑦) = �́� Σ𝑦𝑦 𝑏 = 1……… (4) 

�́� Σ𝑥𝑥 𝑎 =  �́� Σ𝑦𝑦 𝑏 = 1………(5) 

And the cov between linear combination  

Cov (�́� 𝑥 , �́� 𝑦) =  �́� Σ𝑥𝑦 𝑏…………(6) 

So the correlation is : 

Corr(á x , b́ y) =
�́� Σ𝑥𝑦 𝑏

√�́� Σ𝑥𝑥 𝑎  √�́� Σ𝑦𝑦 𝑏
                …(7) 

The main objective of the analysis of the canonical correlation is to explain the structure of the correlation between 

the X and Y variables through the linear compositions (variables) U and V, so it is necessary to find 𝑎 ,  𝑏 and their 

components while maximizing the correlation. 

The first pair of variables (𝑢1, 𝑣1) are chosen in order to maximize the heterogeneity between them, the linear 

compositions of the husband 

𝑢1 = 𝑎1 𝑥     ,  𝑣1 = 𝑏1𝑦   

And since the variation of the variables of the first pair is equal to the one, the canonical correlation: 

ρ(u1,v1) = maxa,b(á x , b́ y)……… . (8) 

The resulting correlation represents the coefficient of the canonical correlation of the first pair  

The second pair of variables (u1,v1) are selected in order to maximize the heterogeneity of cov (u,v) provided that the 

linear compositions of the pair are perpendicular to the first pair (u1,v1) meaning that 
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Cov (�́� 𝑥 , 𝑢1) = 0……… . . (9)  

Cov ( �́� 𝑦 , 𝑣1) = 0……… . . . (10) 

 = 1…. (11) Var ( �́� 𝑦) = Var (�́� 𝑥) 

Maximizing the correlation between �́�2𝑦 𝑎𝑛𝑑 �́�2𝑥  is called the second canonical correlation coefficient and generally 

the pair (Uj,Vj) of the canonical variables is chosen to maximize the heterogeneity of Cov (u1,v1) Thus, the 

coefficients of correlation in the significance of the variables and variance are estimated in the relationship 

  𝑟𝑐 =
�́�𝑆𝑥𝑦𝑉

√�́�𝑆𝑥𝑥𝑈√�́�𝑆𝑦𝑦𝑉
           …….. (12)    

We can calculate the CCA by correlation matrix: 

S= DRD  

Since: 

R: is a correlation matrix for X & Y sets or the homogeneity between them. 

D: is a diagonal matrix its component represents the root of variance for every variables. 

 D=diag(√𝑆𝑖𝑗) 

Thus, the canonical correlation by correlation matrix can describe as: 

𝑟𝑐 =
�́�𝑅𝑥𝑦𝐷

√�́�𝑅𝑥𝑥𝐶√�́�𝑅𝑦𝑦𝐷
     …….. (13) 

Since: 

C&D: is the canonical variables which is chosen to maximize heterogeneity.  

To estimate canonical weight which is maximize canonical correlation, the function: 

𝑔 = �́�𝑅𝑥𝑦𝐷 −
√𝜆1

2
𝐶

́

𝑅𝑥𝑥𝐶 −
√𝜆2

2
�́�𝑅𝑥𝑥𝐷…… . (14) 

And to 𝑚𝑎𝑥𝑐,𝑑(𝑔) through: 
𝜕𝑔

𝜕𝑑
= 0 , 

𝜕𝑔

𝜕𝑐
= 0 

 
𝜕𝑔

𝜕𝑐
= 𝑅𝑥𝑦𝑑 − √𝜆1𝑅𝑥𝑥𝑐……………….. (15) 

𝜕𝑔

𝜕𝑑
= �́�𝑅𝑥𝑦 −√𝜆2�́�𝑅𝑦𝑦………………... (16) 

From equation (17) we will find that the weight canonical: 

𝐶 =
1

√𝜆1
  𝑅𝑥𝑥

−1 𝑅𝑥𝑦 𝑑 …………………(17) 

And by compensating C in the second equation we get the relationship: 

𝑅𝑦𝑦
−1𝑅𝑦𝑥𝑅𝑥𝑥

−1𝑅𝑥𝑦 − 𝜆𝐼) 𝑑 = 0 

It represents the Eigen equations of the𝑅𝑦𝑦
−1𝑅𝑦𝑥𝑅𝑥𝑥

−1𝑅𝑥𝑦 and the roots𝜆𝑖 which not equal to zero  achieved by the 

solution of this equation are equal to q and are called subjective values, and the square coefficient of the coefficient 

of correlation between each pair of variables is equal to the value of the characteristic root according to the following 

formula: 

𝒓𝒄
𝟐= √𝝀    

Biweight Midcorrelation Coefficient (Bi) 

     One of the disadvantages of the Pearson correlation coefficient is that it is easily exposed to the effects of outliers, 

so a number of alternatives have been relied on from the strong correlation coefficients, including the two-weight 
mean correlation coefficient. 

       Let 𝜓 an odd function, 𝜇𝑥  & 𝜇𝑦 location standard for random variable X , Y straightly and let 𝜏𝑦 &  𝜏𝑥 measuring 

scale for random variable X&Y , If K is a constant magnitude, define the variables in terms of the previous features 

with the formula: [5] [6] 

𝑈 =
(𝑋−𝜇𝑥)

𝐾𝜏𝑥
  ,   𝑉 =

(𝑌−𝜇𝑦)

𝐾𝜏𝑦
 

So, the heterogeneity scale between X&Y describe as: 

𝛾𝑥𝑦 =
𝑛𝑘2.𝜏𝑥.𝜏𝑦 𝐸(𝜓(𝑢).𝜓(𝑣))

𝐸(𝜓(𝑢)).𝐸(𝜓(𝑣))
      …………… (18) 

Since correlation scale 𝜌𝑏 calculate as: 

𝜌𝑏=
𝛾𝑥𝑦

√𝛾𝑥𝑥.𝛾𝑦𝑦
              −1 ≤ 𝜌𝑏 ≤ 1     ………… (19) 
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By choosing K = 9 and the function, which represents the biweight function, which is known as the following 

relationship: 

𝜓(𝑥) = {
𝑥(1 − 𝑥2)               𝑖𝑓 |𝑥| < 1                                      

   0                              𝑖𝑓 |𝑥| ≥ 1                                           
 

And let med x & med y ,variable median for X&Y straightly calculate from random sample for observation pairs 

order (X1,Y1(،)X2,Y2(،،،، )Xn,Yn)  From this results in the definition of the variables: 

U𝑖 =
(𝑋𝑖 −𝑚𝑒𝑑𝑥)

9.𝑀𝐴𝐷𝑥
 , 𝑉𝑖 =

(𝑌𝑖 −𝑚𝑒𝑑𝑦)

9.𝑀𝐴𝐷𝑦
     

We note U𝑖 Proportional to the distance between 𝑋𝑖 and the median for X. [6, pp. 4] 
Since Median Absolute Deviation(𝑀𝐴𝐷𝑦& 𝑀𝐴𝐷𝑥) represent: 

𝑀𝐴𝐷𝑥 = 𝑚𝑒𝑑𝑖|𝑥 −𝑚𝑒𝑑𝑥𝑖| = 𝑚𝑒𝑑|𝑥 −𝑚𝑒𝑑𝑥|               
If we define variables 𝑏𝑖  & 𝑎𝑖 about their relationship to the variables Ui & Vi 

𝑎𝑖 = {
1                                  − 1 ≤  𝑈𝑖 ≤ 1                                                         
 0                                                     𝑂.𝑊                                                        

  

𝑏𝑖 = {
1                                  − 1 ≤  𝑉𝑖 ≤ 1                                      
   0                                                 𝑂.𝑊                                           

  

So, we obtain Biweight Midcoveriance between X & Y: 

𝐵𝑖𝑐𝑜𝑣(𝑥, 𝑦) =
nΣai(Xi−medx)(1−Ui

2)²bi(Yi−medy)(1−Vi
2)²

[Σai(1−Ui
2)(1−5Ui

2)][Σbi(1−Vi
2)(1−5Vi

2)]
        …….. (20) 

After apply correlation formula, the estimation Biweight midcorrelation: 

rbi = 
bicov(x, y)

√bicov(x, x). bicov(y, y)
      ………… (21) 

To check 𝑟𝑏𝑖  , we test this assumption  

𝐻0: 𝜌𝑏 = 0 
Which is refer that X&Y independent variables, to calculate statistic test: 

𝑇𝑏 = 𝑟𝑏 . √
𝑛 − 2

1 − 𝑟𝑏
2 

And we reject 𝐻0 if  
|𝑇𝑏| > 𝑡1−𝛼

2
 

𝑡1−𝛼
2
 Table value at T distribution with d.f., V=n-2 and error type I equal α. 

Percentage Bend Correlation Coefficient(Pe) 

Percentage bend correlation consider one of resistance estimators towards outliers, we find correlation value between 

X & Y. 

Let X a random variable with distribution function F and let ψ is non-decreasing odd function, 𝑤𝑥 is a constant measure 

attached with X, then M measure which is related with ψ is 𝜙𝑥 and achieve: [8] [9] 

∫𝜓 (
𝑋 − 𝜙𝑥
𝑤𝑥

) = 0 

If 𝜓(𝑥) = 𝑥 & 𝜙𝑥 = 𝑀 , then the mean represent one of 𝜙𝑥 , called(M-estimator), determine from: 

Σ 𝜓 (
𝑥𝑖 − �̂�𝑥
�̂�𝑥

) = 0 

Since𝑋1,𝑋2,….𝑋𝑛 is random sample & �̂�𝑥 is an estimator to 𝑤𝑥 , the variance measure called (Midvariance) 

𝛾𝑥
2 =

𝑘2𝑤2𝐸(𝜓2(𝑢))

[𝐸(𝜓(𝑢))]²́ ……(22) 

Since: U= 
(𝑋−𝜙𝑥)

𝐾𝑤𝑥
 & k: is a constant. 

Let Y is another variable, then variance measure between X&Y described as : 

𝛾𝑥𝑦 =
𝐾²𝑤𝑥𝑤𝑦𝐸(𝜓(𝑢).𝜓(𝑣))

𝐸(𝜓(𝑢́ ))𝐸(𝜓(𝑣))́
 ………(23) 

Since: V= 
(𝑌−𝜙𝑦)

𝐾𝑤𝑦
 , then  

So, correlation coefficient 𝜌𝑝𝑏 described as: 

    𝜌𝑝𝑏 =
𝐸(𝜓(𝑢).𝜓(𝑣))

[𝐸(𝜓2(𝑢)).𝐸(𝜓2(𝑣))]1/2
  …..(24)    

And to test correlation according to null hypothesis 𝐻0 
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𝐻0: 𝜌𝑝𝑏 = 0 

Which is mentioned that X&Y independent, we calculate: 
 

𝑇𝑝𝑏 = 𝑟𝑝𝑏√
𝑛 − 2

1 − 𝑟𝑝𝑏
2  

Then we reject 𝐻0 if : 
|𝑇𝑝𝑏| > 𝑡1−𝛼 

We compare calculated value for test with table value for t distribution with degree of freedom (n-2) and (α). 

 

Influence Function (IF) 

     The IF basically consider analytic tool, can use it to evaluate the effect of observation on estimator 𝑇𝑛  at distribution 

function F by: [10]   

IFTn,F(x) = limω→0
[Tn(Fω)−Tn(F)]

ω
  ……… (25) 

Since: 

Fω = (1 −ω)F +ωδx……….(26) 

Since: 

ω : Contaminated ratio 0> ω > 1 

δx : Probability scale  

The denominator is a constant amount and the numerator contains the basic information about the IF effect function. 

Therefore, it became necessary to go into some detail on the Estimator of the influence function, which are work the 

same as the IF : 

  

 Biased and Translated Estimators. 

 

       Empirical influence function defined as depending on the (unscaled and untranslated & unscaled and translated 

estimators) [4]   with this formula: 

EIF(x, Fn) = IF(x, Fn) 

                  = Uω→0
T(Fn+ω(δx−Fn))−T(Fn)

ω
 …………   (27)    

Since:  

Fn: distribution function 
(δx − Fn): the difference between contaminated observation distribution and   
original  observation distribution  
Therefore, the magnitude T(Fn +ω(δx − Fn)) is obtained through an estimator (T) with two distributions, most of 

which follow the normal distribution (the original distribution), but contain few observations that follow the 

contaminated distribution (resulting from the addition or substitution of a contaminated observation). 

The expression T (Fn) represents the original estimator resulting from the original distribution function Fn of sample 

size (n). 

It is better to estimate the empirical effect function (influence function) in relation to: 

EIFe(x, Fn) = IFe(x, Fn) 

                       = 
T(Fn+

1

100 n
(δx−Fn))−T(Fn)

1

100 n

        ………… (28) 

Since: 
1

100 𝑛
 : represent the ratio which is taken to contaminate data. 

From this, the empirical influence function can defined as: 

Ij = IF(xj) =  EIF(xj, Fn)   ………….. (29) 

Which can be rounded by choosing different values to 𝝎 (contamination data) as (
1

𝑛
 , 
1

√𝑛
 , 

1

𝑛+1
  , 

1

𝑛−1
 ) and other values 

without take the limit for the amount. [4]   

 

 Simulation 

       Simulation method is an important tool and computer experiments that include creating data by taking random 

samples and generating data in several ways to prove and evaluate the success and efficiency of methods also models 
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used in statistical research. Simulation studies are used to obtain experimental results about the performance of the 

statistical methods that are used in the analysis. Statistician for the research under study [17, pp.2047] 

Simulation experiments included generating multivariate normal distribution data with different sample sizes based 

on means vector  μ and covariance matrix 𝚺 for real data ( Oil Exports and Returns) , as well as generating multivariate 
contaminant normal distribution tracking data by employing mean vectors, co-variance matrices and different 

contamination ratios, The canonical correlation coefficients were also estimated according to these methods : 

Percentage bend correlation coefficient & Biweight Midcorrelation cosfficient , then make a comparison between 

these robust methods based on the empirical influence function standard with the scaled and transformed estimators. 

 Steps of Simulation: 

Generating six variables following the multivariate normal distribution 𝑁𝑝 (𝜇, 𝛴)which are on the 

order𝑥1,𝑥2, 𝑥3, 𝑧1, 𝑧2, 𝑧3 depending on the mean vector μ and the CV matrix ∑ of the real data after converting it to the 

standard form. For the non-conformity of the units of measure for those data, a vector means and a matrix of variance 

and covariance mentioned below were obtained: 

 

𝜇 = 0 ,   𝛴 =  

𝑥1
𝑥2
𝑥3
𝑧1
𝑧2
𝑧3 (

  
 

1 −0.49 −0.14
−0.49 1 −0.05
−0.14 −0.05 1

0.9 −0.51 0.05
−0.51 0.96 −0.17
0.004 −0.04 0.83

0.9 −0.51 0.004
−0.51 0.96 −0.04
0.05 −0.17 0.83

1 −0.45 0.28
−0.45 1 −0.11
0.28 −0.11 1 )

  
 

 

And that the six variables are distributed into two equal groups, namely the set of variables𝑥1,𝑥2, 𝑥3 and the 

corresponding set of variables 𝑧1, 𝑧2, 𝑧3  
Generating contaminated data with ω = 10% , depending on this formula  

(𝟏 − 𝝎) 𝑵𝒑 (𝝁,𝜮) +𝝎 𝑵𝒑 (𝝁𝒋, 𝜮𝒋)  ,   𝒋 = 𝟏, 𝟐, 𝟑 ,   𝝎 ≠ 𝟎   

   Therefore, the data will be obtained according to the following Model: 

    Model II:  𝜇1 = 𝜇, 𝛴1 = 1.5 ∗ 𝛴  Compared with Model I which is uncontaminated data with 𝜔 = 0% 

We use two size samples in generating data , n= 30&60 

After generating data, we estimate canonical correlation according two robust methods also estimate Eigen values and 
Eigen vectors. 

Estimate empirical influence function for scaled and transformed (EIFST) estimators to canonical correlation and 

estimate (EIFST) for weighted canonical for both methods before and after replace the uncontaminated data with 

contaminated data. 

Make a comparison between canonical correlation coefficient and estimated weighted canonical before and after 

outlier values, since the comparison mechanism based on maximum and minimum (IF) for robust methods. 

After apply simulation, we note the following: 

Table (1), the maximum value for (EIFST) was at second observation when 𝛚 = 𝟎% and (Bi) method gave the least 

value of method (Pe), but at the Model II with 𝛚 = 𝟏𝟎% ,the max.value for (EIFST) was at twenty eight obs. , since  

(Bi) method gave the least value of method (Pe). 

Table 1: estimated EIFST for canonical correlation (CC) at 𝛚 = 𝟎% & 𝟏𝟎% when n= 30 

𝛚 = 𝟎% 𝛚 = 𝟏𝟎% 

Meth

. 

Bi Pe Meth

. 

Bi Pe Meth

. 

Bi Pe Met

h. 

Bi Pe 
Obs.   Obs.   Obs.   Obs

. 

  
1 0.1061 0.1067 16 0.149

6 

0.1502 1 0.2468 0.2479 16 0.3178 0.3189 
2 0.1617 0.1633 17 0.113

0 

0.1135 2 0.2971 0.2981 17 0.2477 0.2487 
3 0.1096 0.1102 18 0.144

9 

0.1455 3 0.2514 0.2525 18 0.3056 0.3066 
4 0.1470 0.1476 19 0.113

5 

0.1141 4 0.3193 0.3204 19 0.2424 0.2434 
5 0.1157 0.1162 20 0.141

0 

0.1416 5 0.2486 0.2496 20 0.3163 0.3173 
6 0.1354 0.1360 21 0.112

3 

0.1129 6 0.2903 0.2914 21 0.2427 0.2438 
7 0.1064 0.1069 22 0.141

3 

0.1418 7 0.2303 0.2314 22 0.3115 0.3126 
8 0.1380 0.1386 23 0.110

3 

0.1109 8 0.3188 0.3199 23 0.2371 0.2382 
9 0.1171 0.1177 24 0.147

8 

0.1484 9 0.2404 0.2415 24 0.3029 0.304 
10 0.1437 0.1443 25 0.113

7 

0.1142 10 0.3155 0.3165 25 0.2468 0.2479 
11 0.1108 0.1114 26 0.145

3 

0.1458 11 0.2447 0.2458 26 0.3111 0.3122 
12 0.1436 0.1442 27 0.112

5 

0.1130 12 0.3008 0.3018 27 0.2405 0.2415 
13 0.1142 0.1148 28 0.148

2 

0.1488 13 0.2374 0.2385 28 0.3373 0.3393 
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14 0.1501 0.1507 29 0.104

7 

0.1053 14 0.3257 0.3267 29 0.2481 0.2492 
15 0.1168 0.1173 30 0.144

1 
0.1446 15 0.2477 0.2487 30 0.3354 0.3365 

 

Table (2), the maximum value for (EIFST) was at twenty two observation when 𝛚 = 𝟎% and (Bi) method gave the 

least value of method (Pe), but at the Model II with 𝛚 = 𝟏𝟎% ,the max. value for (EIFST) was at sixty obs. , since  

(Bi) method gave the least value of method (Pe). 

 

Table 1: estimated EIFST for canonical correlation (CC) at 𝛚 = 𝟎% & 𝟏𝟎% when n= 60 
 

We note from table 3 & 4 that estimated Eigen value and CC are so closed in their values and unstable with respect to 
sample sizes and the largest values for Eigen and CC that is estimated by (Bi) followed by (Pe).also we note that the 

differences are not clear except in the case of uncontaminated data, as it is less than its values in the case of 

contaminated data. 

 

       Table 3: Eigen values for (Bi) & (Pe) methods  

Pe Bi n 𝝎 Model 

𝛚 = 𝟎% 𝛚 = 𝟏𝟎% 

Meth Bi Pe Meth Bi Pe Meth Bi Pe Meth Bi Pe 

Obs.   Obs.   Obs.   Obs.   

1 0.0743 0.0776 31 0.0744 0.0778 1 0.1738 0.1779 31 0.1635 0.1676 

2 0.1036 0.107 32 0.1003 0.1036 2 0.2086 0.2128 32 0.2205 0.2246 

3 0.0823 0.0857 33 0.0774 0.0808 3 0.168 0.1721 33 0.1672 0.1713 

4 0.1012 0.1046 34 0.1045 0.1078 4 0.2075 0.2117 34 0.2145 0.2187 

5 0.0773 0.0807 35 0.0792 0.0825 5 0.1671 0.1712 35 0.1586 0.1627 

6 0.0979 0.1012 36 0.0992 0.1025 6 0.2145 0.2186 36 0.2147 0.2189 

7 0.079 0.0823 37 0.0775 0.0808 7 0.1613 0.1654 37 0.1674 0.1715 

8 0.1004 0.1037 38 0.1016 0.1049 8 0.2081 0.2122 38 0.2121 0.2162 

9 0.0782 0.0815 39 0.082 0.0853 9 0.1637 0.1678 39 0.1695 0.1736 

10 0.1012 0.1045 40 0.1088 0.1121 10 0.2165 0.2206 40 0.2153 0.2194 

11 0.0777 0.0811 41 0.0808 0.0842 11 0.1644 0.1685 41 0.1633 0.1674 

12 0.103 0.1064 42 0.0974 0.1007 12 0.2129 0.217 42 0.2083 0.2125 

13 0.0801 0.0834 43 0.0815 0.0848 13 0.1689 0.173 43 0.1658 0.17 

14 0.0984 0.1017 44 0.0974 0.1007 14 0.2141 0.2182 44 0.2076 0.2118 

15 0.0771 0.0804 45 0.0793 0.0827 15 0.1628 0.1669 45 0.164 0.1681 

16 0.0961 0.0995 46 0.1003 0.1037 16 0.2122 0.2163 46 0.2126 0.2167 

17 0.0775 0.0808 47 0.0749 0.0782 17 0.1632 0.1673 47 0.165 0.1691 

18 0.0989 0.1022 48 0.1013 0.1047 18 0.2109 0.215 48 0.2148 0.219 

19 0.0744 0.0778 49 0.0775 0.0808 19 0.1613 0.1654 49 0.1648 0.1689 

20 0.0988 0.1022 50 0.1023 0.1056 20 0.2151 0.2192 50 0.218 0.2221 

21 0.0802 0.0835 51 0.0832 0.0865 21 0.1661 0.1702 51 0.1679 0.172 

22 0.1092 0.1125 52 0.0973 0.1006 22 0.2204 0.2245 52 0.2114 0.2155 

23 0.0709 0.0743 53 0.0763 0.0796 23 0.1648 0.1689 53 0.1677 0.1718 

24 0.09 0.0934 54 0.0999 0.1032 24 0.2106 0.2147 54 0.2062 0.2103 

25 0.0739 0.0773 55 0.0736 0.077 25 0.1614 0.1656 55 0.1874 0.1915 

26 0.0987 0.1021 56 0.0999 0.1032 26 0.2115 0.2156 56 0.2445 0.2486 

27 0.0821 0.0855 57 0.0785 0.0819 27 0.1638 0.1679 57 0.1887 0.1928 

28 0.1084 0.1118 58 0.0999 0.1032 28 0.2143 0.2184 58 0.2387 0.2429 

29 0.0748 0.0782 59 0.0789 0.0822 29 0.1701 0.1742 59 0.1891 0.1932 

30 0.0949 0.0983 60 0.098 0.1014 30 0.214 0.2182 60 0.2530 0.2571 
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0.5525 

 
0.8500 0.9130 0.5448 0.8469 0.9131 30 

0% I 
0.5533 0.8512 0.9091 0.5573 0.8599 0.9160 60 

0.5545 0.8522 0.9160 0.5492 0.8493 0.9167 30 
10% II 

0.5542 

 

 

0.8512 0.9102 0.5585 0.8596 0.9170 60 

 
        

         Table 4: CC for (B) & (P) methods 

Pe Bi n 𝝎 Model 

0.9550 0.9556 30 0% I 
0.9534 0.9571 60 
0.9571 0.9574 30 

10% II 
0.9540 0.9576 60 

The box diagram was also used to analyze the effect of observations in estimating the weights vectors corresponding 

to the coefficient CC of contaminated and uncontaminated data. The (IF) of weights vectors (a) and (b) were estimated 
for two models and two estimation methods, contamination ratios, and different sample size n= 30&60 used in 

simulation experiments. 

Figures 1, 2, 3&4 show estimated EIFST for (a) & (b) vectors, when uncontaminated data, we note that the values of 

EIFST increase at n=60 and became the highest at n=30. Also, a method (Bi) has surpassed a method (Pe) based on 

the lowest values of the (IF),noting that the values of (IF) for vector (b) are slightly higher than the values of the (IF) 

for vector (a) 

 

 
 

 
   

Figure 1: Model I: EIFST for vector (a), n=30 Figure 2: Model I: EIFST for vector (b), n=30 

Figure 3: Model I: EIFST for vector (a), n=60 Figure 4: Model I: EIFST for vector (b), n=60 
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The figures 5, 6, 7 & 8 above show that (Bi) method was better than method (Pe) , also there was a simple difference 

between vectors (a) & (b) in their values 

 

Case Study  

Figure 5: Model II: EIFST for vector (a), n=30 

Figure 6: Model II: EIFST for vector (b), n=30 

Figure 7: Model II: EIFST for vector (a), n=60 Figure 8: Model II: EIFST for vector (b), n=60 
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Our study based on real data consist of two variables groups, first one includes monthly quantities of oil exported for 

three oil-producing countries within OPEC (Saudi 𝑥1 , Iraq 𝑥2, Kuwait 𝑥3 ) Recorded for a period of sixty months in 

the years starting at January 2015 , the second set are(𝑧1 ،𝑧2 ،𝑧3) represents returns for those quantities . 

Estimating Canonical Correlation Eigen Value 
      Table below shows that the result for CC estimated by (Bi) method was (0.9501) at Contaminated data and 

(0.9755) for uncontaminated data, also there were a differences between weights vectors �̂� & �̂� at two cases. 

 

      Table 6: Eigen’s and weights Vectors for CC by using (Bi) method for contaminated and uncontaminated data. 

Uncontaminated data Contaminated data  
0.5909 0.8302 70.951  0.7602 0.8185 0.9028 Eigenvalues 
0.6802 -0.5012 0.5146 -0.6710 0.7082 -0.0988 �̂� 

-0.5083 10.083  -0.9482 0.1848 0.1473 -0.9926 �̂� 
 

 

 

14- Estimation of Influence Function 

       After finding empirical influence function according to scaled and transformed estimator, it is possible to explain 

the influence of the studied data observations on the CC between the variables of two sets. 

Table 7&8 below, show that the highest value of the influence function was (0.7188), which is return to observation 
no. (56), while the lowest value of the influence function was the value return to observation no. (39) and reached 

(0.0766), the highest value of the influence function estimator for CC By using (Bi) method after replacing the 

contaminated observations, it reached (0.4027) when replacing the observation (34), meaning that observation no. 

(34) is highest influence in CC estimation, while the lowest value of the influence function was (0.0039) when 

replacing observation (27), this means that the influence of observation (27) is very poor on the estimated values of 

CC, as well,the values of the estimated influence function in the case of contaminated data are greater than values if 

the contaminated observations are excluded and replaced with uncontaminated values. 

Table 7: IF of CC for contaminated data  

EIFST 

 

obs EIFST obs EIFST obs EIFST Obs 

0.2043 46 0.0196 31 0.0148 16 0.133 1 

0.049 47 0.0164 32 0.0072 17 0.0797 2 

0.0665 48 0.0011 33 0.0124 18 0.0254 3 
0.0105 49 0.4027 34 0.0618 19 0.0126 4 

0.0964 50 0.0032 35 0.0798 20 0.0623 5 

0.0055 51 0.3808 36 0.0048 21 0.0168 6 
0.0092 52 0.0053 37 0.3808 22 0.0768 7 

0.0623 53 0.1862 38 0.0004 23 0.0191 8 
0.0012 54 0.0309 39 0.1043 24 0.2166 9 
0.0102 55 0.0352 40 0.0042 25 0.0151 10 
0.0115 56 0.0201 41 0.0389 26 0.0623 11 
0.0213 57 0.1655 42 0.0039 27 0.0301 12 
0.017 58 0.029 43 0.0221 28 0.0124 13 
0.0077 59 0.0993 44 0.0044 29 0.0123 14 
0.3808 60 0.0623 45 0.3808 30 0.0623 15 

 

Table 8: IF of CC after replace contaminated observations  

EIFST 
 

obs EIFST obs EIFST obs EIFST obs 

0.3616 46 0.1723 31 0.0826 16 0.1807 1 
0.1874 47 0.0985 32 0.0777 17 0.0956 2 
0.2136 48 0.1036 33 0.0766 18 0.118 3 
0.2825 49 0.1493 34 0.0784 19 0.3042 4 
0.1443 50 0.0776 35 0.1394 20 0.0875 5 

0.0796 51 0.0884 36 0.0783 21 0.0853 6 
0.3893 52 0.0937 37 0.079 22 0.0904 7 
0.1723 53 0.1837 38 0.1044 23 0.1026 8 

0.094 54 0.0766 39 0.2706 24 0.0774 9 
0.135 55 0.1376 40 0.077 25 0.1211 10 
0.7188 56 0.0769 41 0.0862 26 0.0924 11 
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0.1113 57 0.1902 42 0.113 27 0.3856 12 

0.0766 58 0.0766 43 0.2238 28 0.2218 13 

0.0888 59 0.1896 44 0.1178 29 0.0812 14 

0.1019 60 0.1542 45 0.0925 30 0.1007 15 

 

Conclusions 

 

 Empirical influence function (EIFST) is an important standard to clarify the effect of each observation for data that 

we studied, as well as its determining the influence of outliers in estimation of canonical correlation coefficient and 

weights vectors in case of contaminated and uncontaminated data. 

(EIFST) values  increase as the sample size decreases. 

Robust estimation methods showed a high convergence at CC estimation and of CC coefficient (EIFST). 

Robust methods are efficient in estimating CC coefficient in case of data contamination. The values of (EIFST) are 

close in case of contaminated distribution and uncontaminated data, (Bi) method are less affected by contaminated 
distribution than (Pe) method. 

Variables of quantities for exported oil and returns obtained from them for three oil-producing countries within OPEC 

organization, Saudi, Iraq and Kuwait, follow the contaminated natural distribution, the nature of the relationship 

between quantities of exported oil and the corresponding returns is strong,  

CC estimated by (Bi) method between the quantities of exported oil and the oil returns of the three countries reached 

(0.9501) before replacing the contaminated observations, while CC estimated in the same way after replacing the 

contaminated observations reached (0.9755), and this indicates to strong relationship between two sets. 
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