Analysis of the Technical Efficiency, Malmquist Productivity Index, and TOBIT Regression of the eleven Islamic Commercial Banks in Indonesia between 2010 and 2019

R. A. E. Virgana Targa Sapanji¹, Anton Athoillah², Ending Solehudin³, Nurrohman Syarif Mohamad⁴

¹ IS Department, University of Widyatama

²Postgraduate Program, State Islamic University of Sunan Gunung Djati

³Postgraduate Program, State Islamic University of Sunan Gunung Djati

⁴Postgraduate Program, State Islamic University of Sunan Gunung Djati

rae.virgana@widyatama.ac.id 1 , anton_athoillah@uinsgd.ac.id 2 ,endingsolehudin@uinsgd.ac.id 3 , nurrohman@uinsgd.ac.id 4

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021

Abstract: This paper is about research on the efficiency of eleven Islamic commercial banks, data from an annual report from 2010 to 2019, the method used is DEA (data envelopment analysis) with RTS using a combination of CRS and VRS, with input-output orientation, and processed as well using Malmquist Index, DEA processing using R Programming with deaR library, the average technical efficiency or CRS is 0.95 or 95%, this indicates that the technical efficiency or CRS of Islamic commercial banks in Indonesia between 2010 and 2019 is quite efficient. The value of VRS has a value of 0.98, almost efficient. Scale Efficiency (SE), A bank with type BUKU 3 has the same value for PT. Bank Syariah Mandiri, PT. Bank BRI Syariah Tbk, has the same value, namely 0.99. And in this SE column, none of them has a value of 1 which means efficient. The Malmquist Index, indicates that in 2018 it was the highest value of MI (Malmquist index) with a value of more than 2.3, it can be concluded that 2018 was the best performance of Islamic commercial banks, note that the unemployment rate in 2018 was very small of 5.3 compared to before in 2017 and before again, and the inflation rate of 2.72 is a reasonable inflation rate for Indonesia with an ideal inflation value of around 3% as a developing country, so that the production factors can run optimally. The last results of this research are about TOBIT regression, using GRETL econometric tools, fixed assets, in this case, the natural logarithm of fixed assets, does not affect the efficiency value of Islamic commercial banks, other results are ROA influences the efficiency, CAR does not really affect the efficiency, FDR is concluded to influence the efficiency, NPF does not affect the efficiency. It is concluded that inflation rate, real GDP, unemployment rate, USD to IDR exchange, affect the efficiency of Islamic commercial banks.

Keywords : Islamic Commercial Banks, DEA, Malmquist Index, R Programming, deaR Library, TOBIT Regression, Gretl

1. Introduction

SAHIH INTERNATIONAL

SAHIH INTERNATIONAL

Sharia Commercial Bank has a noble task of facilitating the public to be able to transact with banks in ways that are blessed by Allah Subhanahu wa ta'ala, which has justified the sale and prohibition of usury, as stated in His Word Al Qur ' an Surah Al-Baqarah verse 275:

ٱلَّذِينَ يَأْكُلُونَ ٱلرِّبُواْ لَا يَقُومُونَ إِلَّا كَمَا يَقُومُ ٱلَّذِبِ يَتَخَبَّطُهُ ٱلشَّيْطَنُ مِنَ ٱلْمَسِّ ذَلِكَ بِأَنَّهُمُ قَالُوَ أَ إِنَّمَا ٱلْبَيْعُ مِثْلُ الرِّبُوا سَلَفَ وَأَمْرُهُ وَإِلَى ٱللَّهِ وَمَنْ عَادَ فَأُوْلَتَهِكَ أَصْحَبُ ٱلنَّارِ هُمْ فِيهَا خَلِدُونَ (٢٠)

Those who consume interest cannot stand [on the Day of Resurrection] except as one stands who is being beaten by Satan into insanity. That is because they say, "Trade is [just] like interest." But Allah has permitted trade and has forbidden interest. So whoever has received an admonition from his Lord and desists may have what is past, and his affair rests with Allah . But whoever returns to [dealing in interest or usury] - those are the companions of the Fire; they will abide eternally therein.

The Sharia Commercial Bank financial statements are a very important component in realizing the proper and good governance of Sharia Commercial Banks, to realize openness to the public and the government. Allah Subhnahu wa ta'ala instructs all of us to pay attention to what is right and good for what he has done, as in his words Al-Qur'an Surah Al-Hasyr verse 18:

يَتَأَيُّهَا ٱلَّذِينَ ءَامَنُوا ٱنَّقُوا ٱللَّهَ وَلْتَنْظُرْ نَفْشُ مَّا قَدَمَتْ لِغَدٍ وَٱتَّقُوا ٱللَّهَ أَإِنَّ ٱللَّهَ خَبِيرُ بِمَا تَعْمَلُونَ

O you who have believed, fear Allah . And let every soul look to what it has put forth for tomorrow - and fear Allah . Indeed, Allah is Acquainted with what you do.

In this study, a comparison of Islamic Commercial Banks in Indonesia will be carried out. The increasingly tight competition between banks and the presence of foreign banks in Indonesia, has made national banking in economic theory more efficient and effective in its banking operations.

This research in the early stages will use operational data on 11 Islamic Commercial Banks, so that the comparative process of efficiency and economic performance, especially efficiency and operational performance between Islamic commercial banks is fairer, it will use the "BUKU" classification (Commercial Banks for Business Activities) issued by the Financial Services Authority (OJK) of the Republic of Indonesia, so that Islamic commercial banks that will be compared have the same classification closeness.

2. Literature review

The study examines and compares the efficiency of conventional banks and Islamic banks in Indonesia for the period 2011-2015. (Mulyany et al., 2019). Bank efficiency is an important thing in assessing the health of a bank. Data Envelopment Analysis is a bank efficiency assessment model (Mulyadi, 2015; Bae & Han, 2019).

Efficiency as one of the benchmarks for the assessment of the intermediation function and banking performance is the ratio of the ratio between the output and input values used in its operational activities. The difference in the level of achievement of the input and output variables at each bank will provide different efficiency values. Likewise, banking in Indonesia which is divided into several groups according to Law RI N0.10 of 1998 also has various levels of achievement of input and output variables so that the level of efficiency achieved by each bank is also different. (MUHARAM, 2007).

Islamic banks can maintain their efficiency while improving their performance. Using the output-oriented DEA VRS model (Pradiknas & Faturohman, 2015).

When a bank is inefficient in using costs, there will be inputs that are used incorrectly, preventing the bank from realizing its role, function and purpose. Therefore, a bank efficiency analysis is needed (Agustina et al., 2019). Determinants of efficiency on panel data from 116 banks, including 109 conventional banks and 7 Islamic banks very important characteristics of a bank to improve bank efficiency. (Anwar, 2016).

Efficiency of banks in theory and practice in Poland. An empirical efficiency analysis was carried out for Polish banks during the period 1997-2007. The ratio analysis between commercial banks and cooperatives uses several financial ratios. Statistical analysis using parametric methods (multiple regression models). The results of the comparative analysis at the EU level show that Poland belongs to countries with relatively high levels of ROA and bank ROE. In Poland, the performance of commercial banks as measured by these indicators is currently better than cooperative banks. Overall, the findings of multiple regression analysis provide evidence that in the years covered by the study, the efficiency of Polish banks, return on assets as well as return on equity, were shaped by internal bank performance factors and the macroeconomic environment. (Siudek, 2008).

The results of the Data Envelopment Analysis (DEA), a non-parametric technique, show a general trend of decreasing technical efficiency (Gordo, 2013). The level of technical efficiency and relate it to the specific characteristics of the company and industry (Badunenko et al., 2006). Mexican banks experienced average inefficiencies, the main determinants are loan intensity, GDP growth (Garza-Garcia, 2012).

Efficiency of sample banks from 11 Central and Eastern European Countries (CEEC) during the period 2005-2008 (Pančurová & Lyócsa, 2013). Bank efficiency has become an important issue in the recovery process of Indonesian banking (Kurnia, 2004).

The technical efficiency (technical efficiency) of commercial banks in Indonesia took data for the years 2004-2009 using the intermediation approach. Research results indicate that commercial banks in Indonesia have experienced improvements in technical efficiency, an average of 10.5%. Furthermore, the study results also confirm that the national banking system experiences a scale inefficiency that is greater than that of pure technical efficiency. In terms of ownership, state banks showed perfect efficiency during the study period compared to private banks. The latest results obtained from the Tobit regression indicate that the scale of assets and liquidity risk can help increase bank efficiency, while the opposite condition occurs profitability (Soetanto & ., 2012).

The performance of banking in Indonesia is still not optimal due to the wasteful use of fees on several input variables used by banks in their economic activities. (Rubeda, Kalis et al., 2014). Efficiency in the banking industry in Indonesia during the period 2012-2014 using the Data Envelopment Analysis (DEA) method and to determine determinants using the Tobit regression model (Sari & Saraswati, 2017).

In this study the statistical tool used is the R Programming with deaR library to do DEA analysis and the version used in this statistical analysis is R Programming version 3.6 and GRETL open sources Econometric Tools 2019a Linux x86_64 version for TOBIT Regression analysis.

3. Research methodology

The research instrument, Analysis of the Technical Efficiency, Malmquist Productivity Index, and TOBIT Regression of the eleven Islamic Commercial Banks in Indonesia between 2010 and 2019, as follows:

The method used is DEA (data envelopment analysis) with RTS using a combination of CRS and VRS, with input-output orientation, and processed as well using Malmquist Index, DEA processing using R Programming with deaR library. The last results of this research are about TOBIT regression, using GRETL econometric tools.

This study uses data, eleven Islamic commercial banks, taken from the banking year report from 2010 to 2019, the total of all decision making units (DMU) is 110 DMU, the data variables used are:

- # Variables used in reports:
- the bank's annual report
- total capital
- Commercial Bank Business Activities (abbreviation BUKU)

Variables used for the DEA process:

The first input - Deposits, consists of:

- Wadiah's savings
- Non-profit sharing investment funds or Mudharabah Muthlaqah

Second input - Labor load or personnel costs or wages, consisting of:

- Other operational costs
- Wadiah bonus
- Impairment of financial assets
- Promotion expenses
- Other expenses for general administration

The first output, Financing, consists of:

- Receivables consist of:
- * Murabaha accounts
- * Murabahah receivables are deferred
- * Istishna accounts
- * Istishna receivables are deferred
- * Qardh receivables
- Profit sharing financing consists of:
- * Mudaraba financing
- * Musharaka financing
- * Other financing
- Ijarah lease financing consists of:
- * Ijarah asset lease financing
- * Accumulated depreciation lease financing

Second output - Income consists of:

- Fund distribution income
- Other operating income
- # Variables are used for the TOBIT Regression process:
- Natural logarithm of asset {LN (asset)}
- ROA (return on asset ratio)
- CAR (capital adequacy ratio)
- FDR (financing to deposit ratio)
- NPF (non performing financing ratio)
- Indonesia's annual inflation
- Indonesia annual Real GDP
- Indonesia annual Unemployement
- USD exchange to IDR

4. Results

In table 1. The Average Efficiency per Year of Islamic Commercial Banks in Indonesia Data for 2010-2019, concerning technical efficiency or CRS (constant return to scale), for the type of commercial bank business activity (abbreviation BUKU 3): CRS (constant return to scale) achieved by PT. Bank Syariah Mandiri, PT Bank BRI Syariah Tbk, and PT Bank BNI Syariah with a value of 0.98 or 98%. For the lowest achieved by PT Bank Jabar Banten Syariah of 0.9 or 90%. And the average technical efficiency or CRS from 2010 to 2019 is 0.95 or 95%, this indicates that the technical efficiency or CRS of Islamic commercial banks in Indonesia between 2010 and 2019 is quite efficient, it can be said that it is not efficient. And no value of 1 means efficient in the CRS column, and most values less than 1 are inefficient.

	in Ind	lonesia Da	ta for 201	0-2019	
Bank	C RS	VR S	SE	Last Capital 2019	Typ e
PT. Bank Syariah Mandiri	0,	0,9	0,9	IDR	BU
(PT.BSM)	98	9	9	9.611.534.000.000,00	KU 3
PT. Bank BRI Syariah Tbk	0,	0,9	0,9	IDR	BU
(PT.BRIS)	98	8	9	5.812.183.000.000,00	KU 3
PT. Bank BNI Syariah	0,	1,0	0,9	IDR	BU
(PT.BNIS)	98	0	9	4.726.908.000.000,00	KU 2
PT Bank Muamalat	0,	0,9	0,9	IDR	BU
Indonesia Tbk (PT.BMI)	95	6	9	3.871.341.000.000,00	KU 2
PT. Bank BCA Syariah	0,	0,9	0,9	IDR	BU
(PT.BCAS)	94	9	5	2.367.723.000.000,00	KU 2
PT Bank Panin Dubai	0,	0,9	0,9	IDR	BU
Syariah Tbk (PT.BPDBS)	92	8	4	1.248.263.000.000,00	KU 2
PT BANK MEGA	0,	0,9	0,9	IDR	BU
SYARIAH (PT.BMS)	96	9	7	1.228.122.000.000,00	KU 2
PT. Bank Syariah Bukopin	0,	0,9	0,9	IDR	BU
(PT.BSB)	97	9	8	814.080.000.000,00	KU 1
PT. Bank Jabar Banten	0,	0,9	0,9	IDR	BU
Syariah (PT.BJBS)	90	4	6	687.797.000.000,00	KU 1
PT Bank Net Indonesia	0,	0,9	0,9	IDR	BU
Syariah Tbk (PT.BNetIS)	95	8	7	592.939.000.000,00	KU 1
PT. Bank Victoria Syariah	0,	0,9	0,9	IDR	BU
(PT.BVS)	96	8	9	225.037.000.000,00	KU 1
A.v.orro.c.o	0,	0,9	0,9		
Average	95	8	7		

Still in table 1, the value of VRS (variable return to scale) or BBC model (Banker, Charnes and Cooper), is related to the optimal scale of efficiency, if we look at the VRS column, it is found that PT Bank BNI Syariah has a value of 1 which means efficient, and the others have a value which is very thin, such as the value of 0.99 which is owned by PT. Bank Syariah Mandiri, PT. Bank BCA Syariah, PT. Bank Mega Syariah, and PT. Bank Syariah Bukopin, the lowest in the VRS column is owned by PT. Bank Jabar Syariah with a value of 0.94. The average VRS value for 2010 to 2019 has a value of 0.98, almost efficient, but it can be stated that it is not efficient or inefficient.

In column SE table 1 or the so-called efficiency scale, where the value is the division between CRS / VRS, each has a size and level of production, indicating that the size of the bank determines its relative efficiency or inefficiency. A bank with type BUKU 3 (BUKU means the type of commercial bank with business activities) has the same value for the 2 banks at the BUKU 3 level, namely PT. Bank Syariah Mandiri, PT. Bank BRI Syariah Tbk, has the same value, namely 0.99. With type BUKU 2 only 1 bank with a value of 0.99, namely bank PT. Bank Muamalat Indonesia Tbk, the rest is less than 0.99. At the BUKU 1 level only PT. Victoria Syariah Bank which has a value of 0.99, the rest is less than that value. And in this SE column, none of them has a value of 1 which means efficient, beyond that value, in theory from DEA, it can be said that it is not efficient.

Research Article

	Table2. Malmquis	st Index, means by DMU	
DMU	MI (Malmquist Index)	EC (Efficiency Change)	TC (Technological Change)
PT.BNETIS	1,313581575	1	1,313581575
PT.BVS	1,02547074	0,980864381	1,045476581
PT.BSM	1,004117804	0,999499289	1,004620828
PT.BCAS	0,981318329	1,019000329	0,963020621
PT.BMI	0,975818784	0,973138123	1,002754656
PT.BSB	0,973395821	0,999472028	0,973910018
PT.BRIS	0,957729158	0,989181589	0,968203582
PT.BMS	0,954510223	1,013016798	0,942245207
PT.BNIS	0,952822283	1,00658051	0,946593217
PT.BJBS	0,931070739	0,997421702	0,933477522
PT.BPDBS	0,904622807	1	0,904622807

In this study, the DEA process was carried out with the Malmquist Index model as well, because it was used with 110 DMUs, consisting of 11 Islamic commercial banks, with data ranges from 2010 to 2019, a form of time series panel data, so the data processing was carried out with the Malmquist Index. which is the concept of measuring productivity.

In Table2. Malmquist Index (MI), means by DMU, is a summary of data from 2010 to 2019, which is averaged by the DMU, in this case the names of banks, we can see that the MI (Malmquist Index) value of more than 1 is held by PT Bank Net Indonesia Syariah, PT. Bank Victoria Syariah, PT. Bank Syariah Mandiri, the value of MI which is greater than one, indicates an increase in total productivity (TP). On the other hand, there are several MI values from DMU that are less than 1, such as the lowest MI value is owned by PT. Bank Muamalat Indonesia with a value of 0.97, with an MI value of less than 1, it can be stated that the DMU has decreased in total productivity (TP).

Perio			
d	MI (Malmquist Index)	EC (Efficiency Change)	TC (Technological Change)
2018	2,382222417	1,003834182	2,373123431
2013	1,132039534	1,058573034	1,069401447
2015	1,09103459	0,914203557	1,193426324
2014	1,071626719	0,977306118	1,096510806
2011	0,989347628	0,905144725	1,093027005
2016	0,951704373	1,097819467	0,86690426
2019	0,79580245	0,950605141	0,837153531
2017	0,772785984	1,003061267	0,7704275
2012	0,51385159	1,091169928	0,470918028

Table 3. Malmquist Index, Means by Period of 11 Islamic Banking

In Table 3.Malmquist Index, Means by Period of 11 Islamic Banking, indicates that in 2018 it was the highest value of MI (malmquist index) with a value of more than 2.3, it can be concluded that 2018 was the best performance of Islamic commercial banks between 2010 and With 2019, what made it the best year, when seen from Table 4. Reports of Average 11 Islamic Banking Ratio and Economic Ratio in Indonesia Data Between 2010-2019, we can note that the unemployment rate in 2018 was very small of 5.3 compared to before in 2017 and before again, and the inflation rate of 2.72 is a reasonable inflation rate for Indonesia with an ideal inflation value of around 3% as a developing country, so that the production factors can run optimally.

 Table 4. Reports of Average 11 Islamic Banking Ratio and Economic Ratio in Indonesia Data Between

 2010-2019

	Bank	LN	ROA	CAR	FDR	NPF	In	Re	Unemp	USD
--	------	----	-----	-----	-----	-----	----	----	-------	-----

						~ .			
and Years	Fix					flatio	al	loyement	Exchange
	Asset					n	GDP		
2010	10,8	1,064	52,6	83,4	2,35	6,	6,2	7.1	0046
2010	1103974	545455	3727273	8956105	3636364	96	24	/,1	8946
	11.1	1 949	31.4	97.1	1 90	3	61		
2011	8063762	090909	6909091	690068	9090909	79	7	7,48	9023
	11.5	1.811	23.1	94.0	2.46	4.	6.0		
2012	8001684	818182	3636364	5914327	5454545	3	3	6,13	9622
	11.7	1 341	20.4	94.6	2.56	8	5 5		
2013	8915587	818182	6909091	4076811	5454545	38	57	6,17	12128
	12.0	0.678	21.2	03.3	5151515	8	50		
2014	2175979	101010	21,2 1101010	0070599	4,12	26	5,0	5,94	12378
	51/38/8	101010	1101010	9270388		50	07		
	12.1		20.1	94.4	7.54	3.	4.8		
2015	807976	1,46545	2272727	4181818	7272727	35	76	6,18	13726
	007770	4545	2272727	1101010	1212121	55	70		
	12.2	-	22.4	04.5	8 17	3	5.0		
2016	1625296	1,06381	22,4	74,J	2659192	<i>S</i> , 02	5,0	5,61	13369
	1025580	8182	0109304	429/182	3038182	02	33		
	10.2	-	22.0	82.0	6.00	2	5.0		
2017	12,3	0,48454	23,9	83,9	6,23	3,	5,0	5,5	13480
	7834446	5455	6363636	6727273	1818182	61	1	- ,-	
2018	12,5	0.07362	33,3	121,	3,49	3,	5,1	53	14400
2016	036207	0,07302	1588091	8422018	0924545	13	7	5,5	14409
	10.5	0102	20.7	100	2.24	2	5.0		
2019	12,5	1,640	39,7	123,	3,24	2,	5,0	5.23	13901
	2468653	909091	1272727	5245455	4545455	72	25	0,20	10701
Avera	11,9	0,539	28,8	98,1	4,24	4,	5,4	6.064	12098
ge	196312	891727	4997018	0699951	0185545	762	162	0,004	,2

In Table 4. Reports of Average 11 Islamic Banking Ratio and Economic Ratio in Indonesia Data, is a conclusion for all Islamic commercial banks between 2010 and 2019, this determinant data will be used in the TOBIT reggression process in this study.

Standards are set by The Indonesia Financial Services Authority (OJK) and the Indonesian central bank, such as the best ROA value at 1.5%, or the best value between 1% - 2% with a score of 100, if you pay attention to the ROA column, almost all of them are in the range 1% - 2%, except in 2014, 2017, 2018, it can be concluded that the ROA of Islamic commercial banks from 2010 to 2019 is good.

In the CAR column, the authority determines that it must have a minimum CAR of 8% with a score of 80, if 12% - 20% of the score is 90, if more than 20% of the score is 100, if you pay attention to the CAR column, the average is above 20%, It can be concluded that the CAR value of Islamic commercial banks between 2010 and 2019 is very good.

The FDR (Financing to Deposit Ratio) column is the average FDR value of Islamic commercial banks in the year concerned, if the reference is determined by the authority, the best LDR is between 78% - 100%, and a value of 85% - 110%, a score of 100 and almost all FDR values are in this range, except for 2010 with a value of 83.4 (the score for 50% - 85% is 80), and also in 2018 the average FDR value is 121.84 and in 2019 the average FDR value is 123 , 52 (more than 110% with a score of 90), it can be concluded that the FDR of Islamic commercial banks between 2010 and 2019 is very good, it can be concluded that the liquidity of Islamic commercial banks is very good.

Still in Table 4., the NPF (non performing financing) column, the standards set by the authorities, the best NPF if below 5%, almost all years below 5%, so it can be concluded that all Islamic commercial banks have the best NPF ratio, even in 2010, 2011, 2012, 2013 below 3% (the score below 3% is 100). Except in 2015, the NPF in that year was 7.54 (NPF 5% - 8% = score of 80), even in 2016 the NPF was 8.47 (NPF more than 8% = score of 0).

The average inflation rate between 2010 and 2019 is 5.41, the most reasonable value for Indonesia as a middle developing country is around 3%, but in the inflation column it can be seen that there are periods of inflation around 3% such as in 2018, 2017, 2016, 2015 and if we pay attention to Table 3. Malmquist Index,

Means by Period of 11 Islamic Banking, there is a period in 2018 that the MI (Malmquist Index) has a value of 2.38, above the value of 1 then the productivity factor (TP) is very good, where at in 2018, the inflation rate was 2.72.

Determinant factors of the bank / bank ratio (ROA, CAR, FDR, and NPF), together with the natural logarithm of fix assets (LN (fix asset)), and economic factors such as inflation, real GDP, unemployment, USD to IDR exchange will be used. as independent variables in the TOBIT regression process, the results will be seen in Table 5. Tobit, using observations 1-110, and for Dependent variables used: CRS (technical efficiency), Standard errors based on Hessian.

Table 5 Tobit using observations 1-110

	14010 01	10010, 451116 0000111			
	Γ	Dependent variable:	CRS		
	Stand	dard errors based on	Hessian	1	
	Coefficient	Std. Error	Z	p-value	
LNTA	-0.00178118	0.00492488	-0.3617	0.7176	
ROA	0.00657934	0.00334971	1.964	0.0495	*
CAR	-0.00080897 8	0.000312958	-2.585	0.0097	* **
FDR	0.000394302	0.000158654	2.485	0.0129	*
NPF	-5.05659e- 05	0.00183294	-0.02759	0.9780	
inflation	0.000259726	0.00343499	0.07561	0.9397	
realgdp	0.0407788	0.0204198	1.997	0.0458	*
unemployment	0.0517161	0.0167422	3.089	0.0020	* **
usdexchange	3.47726e-05	3.58964e-06	9.687	<0.0001	* **
Log-likelihood Schwarz criterio	n –22	84.3254 Aka 21.6460 Har	aike criterion	-248.6508 -237.6975	

sigma = 0.0713557 (0.0048108) Left-censored observations: 0 Right-censored observations: 0 Test for normality of residual -Null hypothesis: error is normally distributed Test statistic: Chi-square(2) = 76.8663 with p-value = 2.0356e-17

In Table 5.Tobit, using observations 1-110, Dependent variable: CRS, Standard errors based on Hessian, with p-value = 2.0356e-17 less than 5% significance, you can see the coefficient value:

- 1. LNTA with a coefficient value is -0.00178118, it can be concluded that the value of fixed assets, in this case the natural logarithm of fixed assets, has no effect on the efficiency value of Islamic commercial banks.
- 2. ROA with a coefficient value is 0.00657934, having a positive value, it can be concluded that ROA has an influence on the efficiency of Islamic commercial banks.
- 3. CAR with a coefficient value is -0.000808978, with a negative value, in this case it can be concluded that CAR does not really affect the efficiency of Islamic commercial banks.
- 4. FDR with a coefficient value is 0.000394302, has a positive value, and is concluded to have an influence on the efficiency of Islamic commercial banks.
- 5. NPF with a coefficient value is -5.05659e-05, has a negative value, it is concluded that NPF has no effect on the efficiency of Islamic commercial banks.
- 6. And finally, inflation with a value of 0.000259726, realgdp with a value of 0.0407788, unemployment with a value of 0.0517161, usdexchange with a value of 3.47726e-05, has a positive value, so it is concluded that inflation rate, real GDP, unemployment rate, USD to IDR exchange, have an effect on efficiency Islamic commercial banks.

Vol.12 No.8 (2021),505-522

Research Article

Table 6. Equation Results : Tobit, using observations 1-110 Dependent variable: CRS Standard errors based on Hessian							
$^{CRS} = -0.001$ (0.00492)	178*LNTA + ((0.00335)).00658*ROA (0.000313)	A - 0.000809* (0.000159)	*CAR + 0.000394*FDR - 5.06e-05*N (0.00183)	PF		
+ 0.000260*inflation + 0.0408*realgdp + 0.0517*unemployment + 3.48e-05*usdexchange (0.00343) (0.0204) (0.0167) (3.59e-06)							
n = 110, loglike (standard error	lihood = 134 rs in parenthe	ses)	 	· · · · · · · · · · · · · · · · · · ·			

Table 6 shows the results of Equation: Tobit Regression, using observations 1-110 data, Dependent variable: CRS, Standard errors based on Hessian, using data from eleven Islamic commercial banks in Indonesia, between 2010 and 2019.

And in Table 7. The Average Efficiency of Islamic Commercial Banks in Indonesia Data for 2010-2019, is a complete table of the efficiency of eleven Islamic commercial banks in Indonesia, with data years between 2010 and 2019.

R ow Labe Is	A verag e of CRS	A verag e of VRS	Ave rage of Scale Eff	Aver age of Total Capital	Aver age of Input 1 Saving	Avera ge of Input 2 Fix Asset	Aver age of Input 3 Wages	Averag e of Output 1 Financing	Avera ge of Output Earnings
2 010	0, 9038 6636 4	1	0,9 038663 64	8056 86,3636	60503 64,455	13385 8,7273	14221 8,0909	469360 2,727	73516 0,1818
B UK U 1	0, 8678 1625	1	0,8 678162 5	4373 65,875	17670 12,375	54236, 125	76397 ,125	151682 0,625	28834 5
P T.B MS	0, 9828 1	1	0,9 8281	3784 52	40409 81	12391 0	29334 0	307785 0	97149 7
P T.B NET IS	0, 7495 4	1	0,7 4954	8605 62	35537 4	15976	17554	612167	11004 5
P T.BP DBS	0, 4787 5	1	0,4 7875	1414 05	30976 3	36060	8390	216096	22629
P T.BC AS	0, 8297 9	1	0,8 2979	3009 24	55677 6	20392	20076	417087	91664
P T.BR IS	0, 9748 3	1	0,9 7483	9953 22	57629 52	15877 8	18999 9	474629 7	73430 1
P T.BJ BS	1	1	1	5155 91	13217 58	1794	34987	143931 1	12900 6
P T.BS B	1	1	1	1854 11	16219 14	63754	41843	159756 1	22315 6
P T.B VS	0, 9268 1	1	0,9 2681	1212 60	16658 1	13225	4988	28196	24462

В				1505	1 = 4 = 0	24(10	21554	101(50	100((
UK U 2	1	1	1	1787 874,333	17472 636,67	34618 5,6667	31774 0,6667	131650 21,67	19266 67,333
P T.B MI	1	1	1	2127 277	18574 217	36279 8	25326 3	146734 93	18857 07
P T.B NIS	1	1	1	1057 469	51627 28	56466	77280	334108 0	44791 3
P T.BS M	1	1	1	2178 877	28680 965	61929 3	62267 9	214804 92	34463 82
2 011	0, 9410 2363 6	0, 9889 7909 1	0,9 513848 87	1034 817,364	90418 61,818	18235 7,7273	21425 1,8182	648603 6,727	10714 04,364
B UK U 1	0, 9271 7285 7	0, 9942 9571 4	0,9 322094 34	4383 41,1429	16482 14,857	45619, 71429	70756 ,28571	133453 7,857	27191 1,8571
P T.B MS	0, 8476 9	0, 9600 7	0,8 829460 35	4414 69	49284 42	13228 4	31073 5	348740 1	98260 7
P T.B NET IS	1	1	1	8945 11	34984 8	22032	18786	998893	11747 4
P T.BP DBS	1	1	1	4528 67	41977 2	36680	14956	684118	74894
P T.BC AS	0, 8703 3	1	0,8 7033	3084 58	86413 5	21373	32755	680837	14438 1
P T.BJ BS	0, 9183 5	1	0,9 1835	5333 79	22185 33	9518	64417	136799 0	26503 9
P T.BS B	0, 8538 4	1	0,8 5384	3018 59	22917 38	80837	44229	190824 5	24530 6
P T.B VS	1	1	1	1358 45	46503 6	16614	9416	214281	73682
B UK U 2	0, 9652 625	0, 9796 75	0,9 849419 32	2078 650,75	21980 744	42164 9,25	46536 9	155011 59,75	24705 16,25
P T.B MI	0, 9715 3	1	0,9 7153	2462 443	29126 650	52964 2	41035 5	204243 49	26745 27
P T.B NIS	1	1	1	1097 119	67562 61	88098	18376 4	446389 1	10095 50
P T.BR IS	0, 8895 2	0, 9187	0,9 682377 27	1034 367	99064 12	22478 5	30247 5	719107 1	11417 70
P T.BS M	1	1	1	3720 674	42133 653	84407 2	96488 2	299253 28	50562 18
2 012	0, 9434	0, 9708	0,9 722556	1273 497,818	11289 513	25520 4,5455	24742 8,6364	922068 5	13393 23

	6181 8	6909 1	02						
B UK U 1	0, 9193 3	0, 9597 1285 7	0,9 591217 26	4926 00,8571	24493 49	66854, 85714	80174 ,85714	212456 0,429	36106 1,2857
P T.B MS	0, 8670 4	1	0,8 6704	5788 63	70904 22	13631 5	32483 4	539646 3	13023 40
P T.B NET IS	1	1	1	9418 44	71072 6	21688	23895	137777 8	13560 7
P T.BP DBS	1	1	1	4833 69	12232 90	39463	19907	151542 0	15246 8
P T.BC AS	0, 8746 9	1	0,8 7469	3085 89	12618 24	20894	39039	100827 9	17138 1
P T.BJ BS	0, 7841 3	0, 7924 2	0,9 895383 76	6500 23	33620 73	14370 5	78073	248155 4	37092 3
P T.BS B	1	1	1	3311 99	28507 84	86224	51390	261561 5	31122 0
P T.B VS	0, 9094 5	0, 9255 7	0,9 825837 05	1543 19	64632 4	19695	24086	476814	83490
B UK U 2	0, 9856 925	0, 9903 925	0,9 952398 84	2640 067,5	26759 800	58481 6,5	54012 2,75	216389 03	30512 81
P T.B MI	1	1	1	3682 215	39422 307	71084 6	54687 5	315485 36	33828 35
P T.B NIS	0, 9678 8	0, 9709 4	0,9 968484 15	1198 018	89800 35	15316 9	31707 3	686897 9	12595 39
P T.BR IS	0, 9748 9	0, 9906 3	0,9 841111 21	1112 727	11948 889	26736 8	32338 3	994688 6	15074 72
P T.BS M	1	1	1	4567 310	46687 969	12078 83	97316 0	381912 11	60552 78
2 013	0, 9544 4909 1	0, 9683 6727 3	0,9 851828 2	1660 769,545	13445 471,45	34320 1,6364	31591 6,5455	117819 08,55	16787 06,545
B UK U 1	0, 9218 2166 7	0, 9420 0666 7	0,9 781668 38	4641 06,8333	33824 72,333	89140, 33333	10673 5,1667	308174 4	53333 8,8333
P T.B MS	1	1	1	7469 69	77307 38	14890 0	36235 2	691528 8	16738 42
P T.BP DBS	0, 8843 2	0, 9344 7	0,9 463332 16	5374 02	28703 10	46237	35375	259482 5	28375 9
P T.BC	0, 9130	0, 9472	0,9 639467	3214 36	17030 49	29438	40683	142138 9	20095 6

AS	6	1	49						
P T.BJ BS	0, 8593 1	0, 8696 7	0,9 880874 35	6558 36	37026 83	16865 8	10872 1	343022 8	52819 7
P T.BS B	1	1	1	3589 19	32722 62	11897 2	62577	326879 0	40150 3
P T.B VS	0, 8742 4	0, 9006 9	0,9 706336 25	1640 79	10157 92	22637	30703	859944	11177 6
B UK U 2	0, 9961 2	1	0,9 9612	1385 406,667	89381 79,667	18687 1,3333	29606 9,6667	839924 7,333	12317 73,333
P T.B NET IS	0, 9883 6	1	0,9 8836	1025 691	97661 8	19323	26430	141277 6	20747 8
P T.B NIS	1	1	1	1365 396	11488 209	18376 4	46151 2	105908 96	16122 22
P T.BR IS	1	1	1	1765 133	14349 712	35752 7	40026 7	131940 70	18756 20
B UK U 3	0, 9898 25	1	0,9 89825	5663 802	50395 406,5	13398 81	97323 1	429563 94	57852 09,5
P T.B MI	1	1	1	5982 703	45022 858	12441 90	75405 9	413364 40	47942 13
P T.BS M	0, 9796 5	1	0,9 7965	5344 901	55767 955	14355 72	11924 03	445763 48	67762 06
2 014	0, 9694 6636 4	0, 9772 0454 5	0,9 919513 08	1837 875,636	15515 578,64	52804 7,1818	36517 9,9091	127636 77,91	18719 27
B UK U 1	0, 9559 9	0, 9599 98	0,9 954907 23	5673 96,4	37155 93,4	15067 9,4	12399 7,4	331399 0,8	61188 0,8
P T.B MS	0, 9683 8	0, 9706 7	0,9 976408 05	8126 83	58213 19	39523 2	34399 2	536494 7	13803 66
P T.BC AS	1	1	1	6378 54	23387 09	33140	51596	213145 4	28098 3
P T.BJ BS	0, 8584 2	0, 8751 7	0,9 808608 61	6813 37	52372 96	17574 7	12426 9	429970 4	74220 9
P T.BS B	1	1	1	5673 08	39949 57	12247 7	68565	369696 8	50283 3
P T.B VS	0, 9531 5	0, 9541 5	0,9 989519 47	1378 00	11856 86	26801	31565	107688 1	15301 3
B UK U 2	0, 9982 05	1	0,9 98205	1470 250,25	98282 30,25	17173 1,25	29420 6	895455 4,25	12879 88,75

NET IS									
P T.BP DBS	1	1	1	1077 568	50760 82	50765	54735	477355 4	55978 9
P T.B NIS	1	1	1	2004 358	16246 405	21964 4	64445 8	143838 04	21764 38
P T.BR IS	0, 9928 2	1	0,9 9282	1767 087	16947 388	39597 7	44703 0	150891 98	21400 56
B UK U 3	0, 9456 8	0, 9746 3	0,9 705953 89	5749 324,5	56390 238,5	21840 98,5	11100 84	440061 43	61899 19
P T.B MI	0, 9591 1	1	0,9 5911	5876 558	53496 985	27983 46	86039 2	427961 91	55283 77
P T.BS M	0, 9322 5	0, 9492 6	0,9 820807 79	5622 091	59283 492	15698 51	13597 76	452160 95	68514 61
2 015	1	1	1	1967 497,364	15601 449,64	60770 7,3636	40231 1,6364	137161 78,82	20914 82,909
B UK U 1	1	1	1	5974 91,5	27732 56,75	16163 6	98460	279396 9	74555 4,75
P T.B MS	1	1	1	8829 92	42688 34	44170 3	26550 9	421147 4	18101 50
P T.B NET IS	1	1	1	6695 84	93898 2	20509	28953	155252 0	46125 1
P T.BS B	1	1	1	6905 93	47563 03	16064 8	73145	433620 1	55795 7
P T.B VS	1	1	1	1467 97	11289 08	23684	26233	107568 1	15286 1
B UK U 2	1	1	1	1578 554,2	10666 477,4	19094 3,6	28437 1,8	962048 5,8	15484 59
P T.BP DBS	1	1	1	1176 549	59283 45	73100	76656	571672 0	73423 8
P T.BC AS	1	1	1	1070 282	32551 54	55858	63314	297547 4	55104 5
P T.B NIS	1	1	1	2254 181	19322 756	27494 6	64636 4	177650 96	25731 88
P T.BR IS	1	1	1	2343 249	20123 658	37924 5	50909 8	166602 66	25678 70
P T.BJ BS	1	1	1	1048 510	47024 74	17156 9	12642 7	498487 3	13159 54
B UK U 3	1	1	1	5679 867	53595 266	25417 59,5	13048 64,5	457998 31	61408 99

P T.B MI	1	1	1	5172 344	45077 653	30901 02	92452 1	407061 51	53840 26
P T.BS M	1	1	1	6187 390	62112 879	19934 17	16852 08	508935 11	68977 72
2 016	0, 9651 5545 5	0, 9761 6818 2	0,9 876995 74	2167 581,818	16963 569,45	67058 6,0909	42105 7,0909	146259 66,18	21445 40
B UK U 1	0, 9366 875	0, 9513 75	0,9 820370 28	5636 11,5	32038 48,75	10139 8	75617	309840 8,75	86567 8,5
P T.B NET IS	0, 7512 4	0, 8055	0,9 326381 13	5106 20	71471 6	23408	33790	962919	27070 1
P T.BJ BS	1	1	1	7421 92	54533 90	17575 1	15058 7	541413 0	23969 16
P T.BS B	0, 9955 1	1	0,9 9551	8386 96	54426 08	19597 0	91294	480389 5	67186 4
P T.B VS	1	1	1	1629 38	12046 81	10463	26797	121269 1	12323 3
B UK U 2	0, 9805 7	0, 9890 42	0,9 913676 28	1885 364,2	12382 817,6	26901 9,4	32073 2,4	106106 59,8	17266 73,8
P T.B MS	1	1	1	1057 437	49207 33	43260 8	16089 7	471481 1	13981 54
P T.BP DBS	0, 9420 2	0, 9532 3	0,9 882399 84	1288 029	68990 07	87627	10092 8	634692 9	71768 2
P T.BC AS	1	1	1	1127 355	38422 72	68548	79112	346282 6	77740 4
P T.B NIS	0, 9608 3	0, 9919 8	0,9 685981 57	2486 598	24233 009	35796 2	72449 8	204936 09	29607 24
P T.BR IS	1	1	1	3467 402	22019 067	39835 2	53822 7	180351 24	27794 05
B UK U 3	0, 9835 55	0, 9935 7	0,9 898545 29	6081 066,5	55934 890,5	28128 79	13627 49	477193 47	57469 28,5
P T.B MI	1	1	1	5220 131	41919 920	35767 87	88081 2	400504 48	41442 22
P T.BS M	0, 9671 1	0, 9871 4	0,9 797090 58	6942 002	69949 861	20489 71	18446 86	553882 46	73496 35
2 017	0, 9401 4636 4	0, 9735 2181 8	0,9 659189 01	2441 985,182	19381 259,82	71698 5,8182	42993 2	155924 87,82	21967 95,909
B UK	0, 9187	0, 9678	0,9 495254	6213 43,4	42148 31,8	14226 0,6	96863 ,8	365455 9,4	65285 0

U 1	56	78	62						
P T.B NET IS	1	1	1	5867 35	56151 0	23366	45474	485353	44464 8
P T.BP DBS	0, 8802 5	0, 9240 3	0,9 526205 86	6912 37	75252 32	10553 0	14431 6	654290 1	81950 4
P T.BJ BS	0, 8546 2	1	0,8 5462	6444 60	59778 34	28087 7	16499 6	544752 5	12282 12
P T.BS B	0, 8811 5	0, 9153 6	0,9 626267 26	9463 89	54984 24	29093 7	10007 3	453409 1	61509 3
P T.B VS	0, 9777 6	1	0,9 7776	2378 96	15111 59	10593	29460	126292 7	15679 3
B UK U 2	0, 9645 15	0, 9835 825	0,9 807903 47	2445 895,75	16382 553,5	35193 8,75	37989 7,75	128602 86,75	20241 99
P T.B MS	0, 9623	1	0,9 623	1179 097	50554 36	43772 0	14487 4	464153 9	12130 44
P T.BC AS	0, 9695 2	1	0,9 6952	1179 154	47364 03	10351 1	86068	419110 1	49349 7
P T.B NIS	1	1	1	3814 099	29379 291	41042 1	67338 1	235967 19	33995 86
P T.BR IS	0, 9262 4	0, 9343 3	0,9 913413 89	3611 233	26359 084	45610 3	61526 8	190117 88	29906 69
B UK U 3	0, 9448 85	0, 9675 1	0,9 771596 05	6985 768,5	63294 742,5	28838 93	13626 71	509017 11	64018 54,5
P T.B MI	0, 9357 4	0, 9395 2	0,9 959766 69	6127 412	48686 342	37733 83	80249 3	413318 22	41859 53
P T.BS M	0, 9540 3	0, 9955	0,9 583425 41	7844 125	77903 143	19944 03	19228 49	604716 00	86177 56
2 018	0, 9555 4818 2	0, 9667 1272 7	0,9 883547 3	2678 765,545	20615 259,27	83963 0,4545	46707 4,8182	161575 01,82	22499 37,091
B UK U 1	0, 951	0, 9618 675	0,9 885120 09	6083 47,5	28043 17,75	17687 1,25	76128	255246 3,25	38056 8,5
P T.B NET IS	1	1	1	5291 77	17	22502	33658	72237	92346
P T.BJ BS	0, 8336 8	0, 8474 7	0,9 837280 38	6852 67	51821 47	28940 7	15985 2	465896 2	70882 6
P T.BS B	0, 9703 2	1	0,9 7032	9461 86	45436 65	38369 1	80903	424408 3	53789 6
Р	1	1	1	2727	14914	11885	30099	123457	18320

T.B VS				60	42			1	б
B UK U 2	0, 9476 98	0, 9572 74	0,9 898627 99	2508 795,4	19843 242,8	11735 92,8	42016 0,2	156329 43,8	21517 26
P T.B MS	1	1	1	1174 083	56722 07	42098 6	14761 9	517861 8	14301 05
P T.B MI	0, 7971 3	0, 8090 1	0,9 853153 85	4255 006	45635 574	46721 44	84563 2	335661 80	39215 33
P T.BP DBS	1	1	1	1541 192	69058 06	10504 8	12005 9	613398 0	95604 8
P T.BC AS	0, 9773	0, 9773 6	0,9 999386 1	1285 880	55061 07	15560 9	89234	489974 4	58008 3
P T.B NIS	0, 9640 6	1	0,9 6406	4287 816	35496 520	51417 7	89825 7	283861 97	38708 61
B UK U 3	0, 9842 7	1	0,9 8427	7244 527	58167 183,5	13302 43	13662 55	446789 74	62342 02
P T.BR IS	1	1	1	5922 283	28862 524	51255 1	58876 6	218550 82	36487 51
P T.BS M	0, 9685 4	1	0,9 6854	8566 771	87471 843	21479 35	21437 44	675028 66	88196 53
	0,	0,	0.0						
2 019	9681 5727 3	9858 9727 3	822155 99	2835 084,273	22889 480,45	86497 7	49458 8,7273	178788 16,09	25172 07,909
2 019 B UK U 1	9681 5727 3 0, 9743 4	9858 9727 3	0,9 822155 99 0,9 7434	2835 084,273 5799 63,25	22889 480,45 31012 32,75	86497 7 18150 0,5	49458 8,7273 67245 ,75	178788 16,09 285190 8	25172 07,909 36724 4,75
2 019 B UK U1 P T.B NET IS	9681 5727 3 0, 9743 4	9858 9727 3 1	0,9 822155 99 0,9 7434	2835 084,273 5799 63,25 5929 39	22889 480,45 31012 32,75	86497 7 18150 0,5 19737	49458 8,7273 67245 ,75 19950	178788 16,09 285190 8 5066	25172 07,909 36724 4,75 56370
2 019 B UK U1 P T.B NET IS P T.BJ BS	9681 5727 3 0 , 9743 4 1 1 0, 8973 6	9858 9727 3 1 1	0,9 822155 99 0,9 7434 1 1 0,8 9736	2835 084,273 5799 63,25 5929 39 6877 97	22889 480,45 31012 32,75 1 1 57881 50	86497 7 18150 0,5 19737 35930 1	49458 8,7273 67245 ,75 19950 14825 1	178788 16,09 285190 8 5066 541536 4	25172 07,909 36724 4,75 56370 71657 2
2 019 B UK U1 P T.B NET IS P T.BJ BS P T.BS B	9681 5727 3 0, 9743 4 1 1 0, 8973 6 1	9858 9727 3 1 1 1	0,9 822155 99 7434 1 0,8 9736 1	2835 084,273 5799 63,25 5929 39 6877 97 8140 80	22889 480,45 31012 32,75 1 1 57881 50 50872 95	86497 7 18150 0,5 19737 35930 1 33733 2	49458 8,7273 67245 ,75 19950 14825 1 71978	178788 16,09 285190 8 5066 541536 4 475558 9	25172 07,909 36724 4,75 56370 71657 2 52051 5
2 019B UK U 1P T.B NET ISP T.BJ BSP T.BS BP T.BS BP VS	9681 5727 3 0, 9743 4 1 1 0, 8973 6 1 1	9858 9727 3 1 1 1 1 1	0,9 822155 99 7434 1 0,8 9736 1 1	2835 084,273 5799 63,25 5929 39 6877 97 8140 80 2250 37	22889 480,45 31012 32,75 1 1 57881 50 50872 95 15294 85	86497 7 18150 0,5 19737 35930 1 33733 2 9632	49458 8,7273 67245 ,75 19950 14825 1 71978 28804	178788 16,09 285190 8 5066 541536 4 475558 9 123161 3	25172 07,909 36724 4,75 56370 71657 2 52051 5 17552 2
2 019 B UK U1 P T.B NET IS P T.BJ BS P T.BS B VS B VS B UK U2	9681 5727 3 0, 9743 4 1 1 0, 8973 6 1 1 1 0, 9530 14	9858 9727 3 1 1 1 1 1 1 1 0, 9689 74	0,9 822155 99 7434 1 1 0,8 9736 1 1 1 1 0,9 839423 17	2835 084,273 5799 63,25 5929 39 6877 97 8140 80 2250 37 2688 471,4	22889 480,45 31012 32,75 1 57881 50 50872 95 15294 85 21088 946	86497 7 18150 0,5 19737 35930 1 33733 2 9632 9632 12031 25,4	49458 8,7273 67245 ,75 19950 14825 1 71978 28804 42660 9,4	178788 16,09 285190 8 5066 541536 4 475558 9 123161 3 165174 66,6	25172 07,909 36724 4,75 56370 71657 2 52051 5 17552 2 2 22958 42
2 019 B UK U1 P T.B NET IS P T.BJ BS P T.BJ BS P T.BS B P T.B VS B UK U2 P T.B MS	9681 5727 3 0, 9743 4 1 1 0, 8973 6 1 1 1 0, 9530 14 1	9858 9727 3 1 1 1 1 1 1 1 0, 9689 74 1	0,9 822155 99 0,9 7434 1 1 0,8 9736 1 1 1 1 0,9 839423 17 1	2835 084,273 5799 63,25 5929 39 6877 97 8140 80 2250 37 2688 471,4 1228 122	22889 480,45 31012 32,75 1 57881 50 50872 95 15294 85 21088 946 64030 49	86497 7 18150 0,5 19737 35930 1 33733 2 9632 12031 25,4 42116 5	49458 8,7273 67245 ,75 19950 14825 1 71978 28804 42660 9,4 15484 1	178788 16,09 285190 8 5066 541536 4 475558 9 123161 3 165174 66,6 608045 3	25172 07,909 36724 4,75 56370 71657 2 52051 5 17552 2 2 22958 42 15439 50
2 019 B UK U1 P T.B NET IS P T.BJ BS P T.BJ BS P T.BJ B S B UK UZ P T.B MS P T.B MI	9681 5727 3 0, 9743 4 1 1 0, 8973 6 1 1 1 0, 9530 14 1 1 0, 8422 1	9858 9727 3 1 1 1 1 1 1 1 1 0, 9689 74 1 1 0, 8448 7	0,9 822155 99 7434 1 1 0,8 9736 1 1 1 0,9 839423 17 1 1 0,9 839423 17 1 1 0,9 968515 87	2835 084,273 5799 63,25 5929 39 6877 97 8140 80 2250 37 2688 471,4 1228 122 3871 341	22889 480,45 31012 32,75 1 57881 50 50872 95 15294 85 21088 946 64030 49 40357 214	86497 7 18150 0,5 19737 35930 1 33733 2 9632 12031 25,4 42116 5 46120 14	49458 8,7273 67245 ,75 19950 14825 1 71978 28804 42660 9,4 15484 1 77073 9	178788 16,09 285190 8 5066 541536 541536 4 475558 9 123161 3 165174 66,6 608045 3 298772 17	25172 07,909 36724 4,75 56370 71657 2 52051 5 17552 2 2 22958 42 15439 50 39345 85

T.BP DBS	9967 6		9676	263	57	0		1	6
P T.BC AS	1	1	1	2367 723	62049 31	18498 1	96516	564541 9	68692 2
P T.B NIS	0, 9261	1	0,9 261	4726 908	43771 879	69743 7	10121 35	326490 73	44919 67
B UK U 3	0, 9936 5	1	0,9 9365	7711 858,5	66967 312	13865 59	15192 23	513360 06	73705 49
P T.BR IS	1	1	1	5812 183	34124 895	52472 8	66277 9	273830 17	37034 21
P T.BS M	0, 9873	1	0,9 873	9611 534	99809 729	22483 90	23756 67	752889 95	11037 677
A vera ge Tota l	0, 9541 2745 5	0, 9807 72	0,9 728829 79	1870 356,091	15079 380,8	51425 5,6545	34999 5,9273	122916 86,16	17896 48,491

5. Conclusion

This study uses data, eleven Islamic commercial banks, taken from the banking year report from 2010 to 2019, the total of all decision making units (DMU) is 110 DMU. The Average Efficiency per Year of Islamic Commercial Banks in Indonesia Data for 2010-2019, concerning technical efficiency or CRS (constant return to scale), for the type of commercial bank business activity (abbreviation BUKU 3): CRS (constant return to scale) achieved by PT. Bank Syariah Mandiri, PT Bank BRI Syariah Tbk, and PT Bank BNI Syariah with a value of 0.98 or 98%. And the average technical efficiency or CRS from 2010 to 2019 is 0.95 or 95%, this indicates that the technical efficiency or CRS of Islamic commercial banks in Indonesia between 2010 and 2019 is quite efficient, it can be said that it is not efficient. And no value of 1 means efficient in the CRS column, and most values less than 1 are inefficient.

The value of VRS (variable return to scale) or BBC model (Banker, Charnes and Cooper), is related to the optimal scale of efficiency, it is found that PT Bank BNI Syariah has a value of 1 which means efficient, and the others have a value which is very thin, such as the value of 0.99 which is owned by PT. Bank Syariah Mandiri, PT. Bank BCA Syariah, PT. Bank Mega Syariah, and PT. Bank Syariah Bukopin. The average VRS value for 2010 to 2019 has a value of 0.98, almost efficient, but it can be stated that it is not efficient.

Scala Efficieny (SE), A bank with type BUKU 3 (BUKU means the type of commercial bank with business activities) has the same value for the 2 banks at the BUKU 3 level, namely PT. Bank Syariah Mandiri, PT. Bank BRI Syariah Tbk, has the same value, namely 0.99. With type BUKU 2 only 1 bank with a value of 0.99, namely bank PT. Bank Muamalat Indonesia Tbk, the rest is less than 0.99. At the BUKU 1 level only PT. Victoria Syariah Bank which has a value of 0.99, the rest is less than that value. And in this SE column, none of them has a value of 1 which means efficient, beyond that value, in theory from DEA, it can be said that it is not efficient.

The Malmquist Index model, used with 110 DMUs, consisting of 11 Islamic commercial banks, with data ranges from 2010 to 2019, the MI (Malmquist Index) value of more than 1 is held by PT Bank Net Indonesia Syariah, PT. Bank Victoria Syariah, PT. Bank Syariah Mandiri, the value of MI which is greater than one, indicates an increase in total productivity (TP). On the other hand, there are several MI values from DMU that are less than 1, such as the lowest MI value is owned by PT. Bank Muamalat Indonesia with a value of 0.97, with an MI value of less than 1, it can be stated that the DMU has decreased in total productivity (TP), indicates that in 2018 it was the highest value of MI (malmquist index) with a value of more than 2.3, it can be concluded that 2018 was the best performance of Islamic commercial banks between 2010 and With 2019, what made it the best year, we can note that the unemployment rate in 2018 was very small of 5.3 compared to before in 2017 and before again, and the inflation rate of 2.72 is a reasonable inflation rate for Indonesia with an ideal inflation value of around 3% as a developing country, so that the production factors can run optimally.

Determinant factors of the bank / bank ratio (ROA, CAR, FDR, and NPF), together with the natural logarithm of fix assets (LN (fix asset)), and economic factors such as inflation, real GDP, unemployment, USD to IDR exchange will be used. as independent variables in the TOBIT regression process, the results of this Tobit regression, using observations 1-110, and for Dependent variables used: CRS (technical efficiency), Standard errors based on Hessian, the coefficient value:

1. LNTA with a coefficient value is -0.00178118, it can be concluded that the value of fixed assets, in this case the natural logarithm of fixed assets, has no effect on the efficiency value of Islamic commercial banks.

2. ROA with a coefficient value is 0.00657934, having a positive value, it can be concluded that ROA has an influence on the efficiency of Islamic commercial banks.

3. CAR with a coefficient value is -0.000808978, with a negative value, in this case it can be concluded that CAR does not really affect the efficiency of Islamic commercial banks.

4. FDR with a coefficient value is 0.000394302, has a positive value, and is concluded to have an influence on the efficiency of Islamic commercial banks.

5. NPF with a coefficient value is -5.05659e-05, has a negative value, it is concluded that NPF has no effect on the efficiency of Islamic commercial banks.

6. And finally, inflation with a value of 0.000259726, realgdp with a value of 0.0407788, unemployment with a value of 0.0517161, usdexchange with a value of 3.47726e-05, has a positive value, so it is concluded that inflation rate, real GDP, unemployment rate, USD to IDR exchange, have an effect on efficiency Islamic commercial banks.

Refernces

- Agustina, D., Sholihin, M., & Fithria, A. (2019). The Efficiency of Indonesian Islamic Rural Banks: A Stochastic Frontier Analysis. *International Journal of Islamic Economics and Finance (IJIEF)*, 1(2), 229–248. https://doi.org/10.18196/ijief.1212
- 2. Ali HT, H., Aziz, R. M., & Sagantha, F. (2018). The Efficiency Analysis of Sharia Banking with DEA and Islamic Value. *KnE Social Sciences*, *3*(8), 516. https://doi.org/10.18502/kss.v3i8.2530
- 3. Anwar, M. (2016). The Efficiency of Banks in Indonesia: Sharia Vs. Conventional Banks. *Buletin Ekonomi Moneter Dan Perbankan*, 18(3), 307–332. https://doi.org/10.21098/bemp.v18i3.552
- 4. Badunenko, O., Fritsch, M., & Stephan, A. (2006). What Determines the Technical Efficiency of a Firm? The Importance of Industry, Location, and Size. December, 34.
- 5. Bahrini, R. (2017). Efficiency Analysis of Islamic Banks in the Middle East and North Africa Region: A Bootstrap DEA Approach. *International Journal of Financial Studies*, 5(1), 7. https://doi.org/10.3390/ijfs5010007
- 6. Berger, A. N., & DeYoung, R. (1997). Problem loans and cost efficiency in commercial banks. *Journal of Banking and Finance*, 21(6), 849–870. https://doi.org/10.1016/S0378-4266(97)00003-4
- Bae, Y., & Han, S. (2019). Academic Engagement and Learning Outcomes of the Student Experience in the Research University: Construct Validation of the Instrument. Educational Sciences: Theory & Practice, 19(3).
- 8. Berger, A. N., & Humphrey, D. B. (2005). Efficiency of Financial Institutions: International Survey and Directions for Future Research. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.2140
- 9. Garza-Garcia, J. G. (2012). Determinants of bank efficiency in Mexico: A two-stage analysis. *Centre for Global Finance Bristol Business School University of the West of England*, 06/11.
- 10. Ghozali, I. (2014). An Efficiency Determinant of Banking Industry in Indonesia. *Research Journal of Finance and Accounting*, 5(3), 18–26.
- 11. Gordo, G. M. (2013). Estimating Philippine Bank Efficiencies Using Frontier Analysis. *Philippine Management Review*, 20, 17–36.
- 12. Hussain, H.I., Kot, S., Kamarudin, F. & Yee, L.H. (2021) Impact of Rule of Law and Government Size to the Microfinance Efficiency, *Economic Research*, doi:10.1080/1331677X.2020.1858921
- 13. Hauner, D., & Peiris, S. J. (2005). Bank Efficiency and Competition in Low-Income Countries: The Case of Uganda. *IMF Working Papers*, 05(240), 1. https://doi.org/10.5089/9781451862591.001
- Kurnia, A. S. (2004). Mengukur Efisiensi Intermediasi Sebelas Bank Terbesar Indonesia Dengan Pendekatan Data Envelopment Analysis (Dea). Mengukur Efisiensi Intermediasi Sebelas Bank Terbesar Indonesia Dengan Pendekatan Data Envelopment Analysis (Dea), 13(2), 126–140. https://doi.org/10.14710/jbs.13.2.126-140
- 15. Laila, N., & Widihadnanto, F. (2017). Financial distress prediction using Bankometer model on Islamic and conventional banks: Evidence from Indonesia. *International Journal of Economics and Management*, 11(SpecialIssue1), 169–181.
- 16. Matthews, K., & Ismail, M. (2005). Efficiency and Productivity Growth of Domestic and Foreign Commercial Banks in Malaysia. *Cardiff Economics Working Papers Working*, E2006/2(August).

- 17. Mongid, A. (2011). Cost Efficiency Level of Rural Banks in East Java, Indonesia. SSRN Electronic Journal, 13(2), 337–345. https://doi.org/10.2139/ssrn.1448544
- Mongid, A., & Tahir, I. M. (2010). Technical and scale efficiency of Indonesian rural banks. *Banks and Bank Systems*, 5(3), 80–86. https://doi.org/10.31227/osf.io/w9j54
- 19. MUHARAM, H. (2007). Analisis Perbandingan Efisiensi Bank Syariah di Indonesia Dengan Metode Data Envelopment Analysis (periode Tahun 2005). *Jurnal Ekonomi Dan Bisnis Islam, II*(3), 80–166.
- 20. Mulyadi, J. M. V. (2015). Penilaian Efisiensi Bank dengan Data Envelopment Analysis pada 10 Bank Berperingkat Besar Di Indonesia. *Jurnal Riset Akuntansi Dan Perpajakan*, 2(2), 113–126.
- Mulyany, R., Indriani, M., Fahlevi, H., & Maidari, S. Z. (2019). Efficiency of Conventional Banks and Islamic Windows in Indonesia: A Comparative Analysis. 292(Agc), 460–471. https://doi.org/10.2991/agc-18.2019.69
- 22. Pančurová, D., & Lyócsa, Š. (2013). Determinants of commercial banks' efficiency: Evidence from 11 CEE countries. *Finance a Uver Czech Journal of Economics and Finance*, 63(2), 152–179.
- 23. Pradiknas, T. Y., & Faturohman, T. (2015). Efficiency of Islamic Banking Compared To Conventional Banking: Eveidence From Indoensian Banking Sector. *Journal of Business and Management*, 4(5), 540–551.
- 24. Rubeda, Kalis, Pujiati, Amin, & Prasetyo, P. Eko. (2014). Tingkat Efisiensi Bank Persero di Indonesia. *Ilmiah Manajemen Bisnis*, 14(1), 35–44.
- 25. Sari, P. Z., & Saraswati, E. (2017). The Determinant of Banking Efficiency in Indonesia (DEA Approach). *Journal of Accounting and Business Education*, 1(2), 208. https://doi.org/10.26675/jabe.v1i2.8489
- 26. Siudek, T. (2008). Theoritical Foundations of Banks Effeciency and Empirical Evidence from Poland. *Social Research*, *13*(3), 150–158.
- Soetanto, T. V., & R. (2012). Technical Efficiency of Indonesian Commercial Banks: An Application of Two-Stage DEA. Jurnal Manajemen Dan Kewirausahaan, 13(2), 107–116.
- 28. Sufian, F., & Kamarudin, F. (2017). Forced mergers on bank efficiency and productivity: Evidence from semi-parametric Malmquist Productivity Index. Global Business Review, 18(1), 19-44.