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Abstract – Multimodal Medical Image Sensor Fusion provides better visualization by integrating the image 

information from different medical image modalities. It plays a vital role in the precise diagnosis of very critical 

diseases in medical field. Generally, images acquired from different imaging modalities are downgraded due to 

noise interference that leads to false diagnosis in medical images. This paper presents a fusion framework for 

MRI-PET images, that captures the subtle details of an input images. First, the input images are decomposed by 
Non-Sampled Shearlet Transform (NSST) into low frequency (LF) and high frequency (HF) components to 

separate the basic and edge details. Second, the sparse representation-based model is used to merge the 

LFcomponents and HFcomponents are fused with Gradient-Domain Guided filtering approach. Finally, the 

reconstruction of fused images is employed using inverse NSST. The experimental results based on MRI and PET 

images database shows that the proposed approach produces good visually fused medical images with better 

computation measures. 

 

1. Introduction 

 Nowadays, the image fusion technology is preferred to convey the image information received from 

various sensors [1]. Therefore, a fused single image is the outcome of this technique. The ultimate aim of image 

fusion technique is to combine the information of acquired images from a multi-sensor system. Here, the provided 

by a single camera is for a single scene alone. But, the fused image provides comprehensive information about 

the entire scene. In medical field, different images are taken from X-ray, Computed Tomography (CT), Magnetic 

Resonance Imaging (MRI), etc. In case of patients with critical diseases, none of the images is able to deliver the 
redundant information in accurate. This leads to more time consumption, high cost, and manual errors. Hence, the 

authors are initiated to develop a decision support system to diagnose the critical system using image fusion [2]. 

Normally, the modality of medical imaging is separated into anatomical and functional imaging. Initially, Non-

Sampled Shearlet Transform is implemented to decompose the input image into approximate and detailed 

components [3]. Later, the sparse representation-based model is used to merge the LF and HF components is 

employed [4]. In the further step, optimization is proposed inorder to generate the weighted maps. Finally, the 

reconstruction of fused images is achieved using inverse NSST[5]. The results are analyzed using current image 

fusion methods.  

2. Literature Review 

In  previous literatures, medical image fusion models are developed according to the pixel and feature 

characters. Under pixel type, to categories like spatial and transform based approaches are followed [6]. Initially, 

spatial method is presented by taking the average of the image regions and reference image pixels. There are few 
advantages like, quick processing, low complexity and clear information makes the spatial method quit superior. 

But, there exist some disadvantages like, poor contrast and spectral distortion. Besides, under transform based 

approach, the overall information is preserved, thus the transform based approach has dominated over the spatial 

method. Still, the limitations such as spatial inconsistency and luminance difference made the researchers to 

emerge new techniques. 

 Paisson et al.[7]  presented a model using wavelet transform and principal component analysis, here, 

different fusion rules are applied based on the visibility and variance. The limitations of wavelet transform is 

overcome by multi-scale decomposition in WT [8] and wavelet packets are also adopted in [9]. This 

decomposition provides better image quality and localization. Though, it is superior over WT, a number of 

diagnostic information is missing which leads to a redundant statistics. Srinivasa et al. [10] enumerated a 

contourlet decomposition in image fusion based on the local energy which can produce high dimensionality curve 
shapes and contourlet transform (CNT). Commonly, CVT and CNT methods may face shift invariance problems 

that may further cause a ringing effect in the obtained fused image.  

 Yang et al. [11]introduced a NSCT based approach using fuzzy pulse coupled neural network. 

This method will suppress the spectral distortion for better image perception fusion quality. Lf and Hf decomposed 

components are fused using Sum Modified Laplacian (SML) and Gabor energy respectively. It showed better 
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results with reduced artifactscompared to WT. But in case of practical applications, NSCT is time consuming and 

complex. In [12] , sparserepresentation approach which is suitable for multi focus images. It reduces the 

computational complexity and enhances the quality of the image. The disadvantages like lack of spatial 

information and high reconstruction error made the researchers to develop a mew algorithm for image fusion 

model.  
Accordingly a methodology was proposed based on NSST and sparse representation model which is used 

to fuse a grayscale image and a color image. Fusing such functional and anatomical images is a typical situation. 

Normally, in medical imaging the functional images such as PET and SPECT images are found to be as pseudo 

color images. Hence, it should be treated as color images with RGB channels during the fusion process. The 

optimal way of fusing gray scale and color image  is by merging the gray scale image with each channel of the 

color image independently and then combining the three fused channels to construct an RGB image. However, 

this procedure may cause some color distortion problems. Therefore an effective approach is proposed through 

some color space transform methods. In which it separates the brightness or luminance component from the color 

image. In this method, the YUV color space is applied to accomplish the issues in grayscale and color image 

fusion.  

 

3. Proposed System 
The methodologies and their concepts of the proposed fusion model is constructed and discussed in this 

section. The overview of the proposed system is depicted in Figure 1. Before applying NSST, the image should 

be processed with color space transform methods. In such a way the YUV space encodes a color image into one 

luminance component Y and two chrominance components U and V. This approach is quite popular and an 

effective tool for anatomical and functional image fusion. Ultimately, this fusion scheme contains the following 

three steps. First, the Y, U, and V channels are obtained by converting RGB color space to YUV color space. 

Then,the proposed fusion scheme is implemented to fuse the grayscale image and the Y channel of YUV color 

space. Finally, by performing inverse YUV conversion (YUV to RGB) over the fused Y channel, the original U 

channel, and the original V channel, an original color fused image is obtained. The input images PET and MRI 

along with the YUV and Y component image is depicted in Figure 2. 

 
 

 

 

 

 

 

 

 

 

Figure 1. Overview of proposed system 

 
Figure 2 (a) MRI Image (b) PET Image (c) YUV Image (d) Extracted Y Component  
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3.1 NSST 

The NSST is an advanced version of contourlet and wavelet transform. Therefore, it can capture the 

complex image contours in several dimension and directions. This transform can be applied for decomposition of 

an image into LF and HFsubbands [13]. Moreover, it adopts for multi-scale and multi-directional. The 

decomposition is based on non sampledlaplacian pyramid filter (NSLP). Inorder to derive LF and HF sub image 
components,  

 

The shearing measurements is obtained using shear filter (SF) on each subimage components. The MRI and PET 

images are decomposed into LF and HF sub image components of same size using (NSLP) filter. Furthermore, the 

LF sub band is repeatedly decomposed to preserve the directional details of an image. At this stage, SF is 

implemented to obtain two directional subbands from HFsubimage components. The mathematical expression 

representing NSST is given by: 

𝑃𝐷𝑆 = {𝜓𝑎𝑏𝑐 = |𝑑𝑒𝑡 𝑑𝑒𝑡 𝑃 |
𝑥

2𝜓(𝑆𝑏𝑃𝑎𝑟 − 𝑧)}   (1) 

Where, P refers to anisotropic dilation and S presents a shear matrix with a as scale, b as direction, and c as shift 

parameter. The output of NSST decomposition is shown in Figure 3. 

𝜓𝑎,𝑏,𝑐
(0)

(𝑟) = 2𝑎
3
2𝜓(0)(𝑆0

𝑏𝑃0
𝑎𝑟 − 𝑐)      (2) and  

𝜓𝑎,𝑏,𝑐
(1) (𝑟) = 2𝑎

3
2𝜓(0)(1𝑃1

𝑎𝑟 − 𝑐)        (3) 

 
 

 
Figure 3. NSST decomposition applied on MRI and PET: (a) Low Frequency image of MRI (b) High Frequency 

image of MRI (c) Low Frequency image of PET (b) High Frequency image of PET 
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3.2 Sparse representation dictionary learning. 

 In SR the image data are approximated and expressed in terms of overcomplete dictionary. It can be 

mathematically expressed as𝑌 = 𝐷 × 𝛼, where, 𝐷𝜖𝑅𝑘×𝑚, k<m is a over complete dictionary and α represents the 

sparse coefficient. The optimized solution of sparse coefficient vector is computed using orthogonal matching persuit 

[OMP] [16]. A mock dictionary is trained from huge number of data patches during the learning stage of the 

dictionary. The sample training data{𝑋}𝑖=1
𝑛  is acquired by randomly sampling the n number of training patches of 

fixed size √𝑘 × √𝑘.The mathematical model of dictionary learning is expressed as 𝑚𝑖𝑛 𝑑𝑘{𝑎𝑖
𝑌}𝑖=1

𝑎  ∑𝑛
𝑖=1 ‖𝑎𝑖

𝑌‖0  

subject to ‖𝑋 − 𝐷𝑎𝑖
𝑌‖ < 𝜖     (4) 

 The present fusion model is learned by the training data set of 120 PET- MRI medical images to obtain the mock 

dictionary. The learning process is implemented with popular K-SVD algorithm and it comprises of two steps. (1) 

Sparse coding using OMP to generate sparse coefficient for each image patches. (2) To find a good approximation 

model by dictionary updation using K-SVD [17]. 

The optimization equation using SVD computation is given as: 

𝑚𝑖𝑛
𝑑𝑘𝑔𝑘

‖𝐶𝑘 − 𝑑𝑘𝑔𝑘
𝑇‖𝐹

2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜‖𝑑𝑘‖2 = 1      (5) 

In the updation stage, the overcomplete dictionary is approximated by SVD to update the sparse coefficients. This 

sparse coding process is continued until best possible sparse vectors are obtained in the dictionary. The dictionary 

computation using SVD provides a better result for real and synthetic images by filling missing pixels for better image 

representation. It provides better image representation for LFcomponents. This model is fast and efficient because 

the sparse coefficients and pixels of the image patches are updated simultaneously during the updation of the 

dictionary. Finally, the LF fused image patch for two reference images PET and MRI is computed by equation. The 

output of sparse representation dictionary is depicted in Figure 4. 

Algorithm: 

Input: PET –MRI training data set {𝑋}𝑖=1
𝑛  

Output: Learned dictionary 𝐷𝑘×𝑘 

Step 1: Compute sparse vector using OMP  

𝑚𝑖𝑛 𝑑𝑘{𝑎𝑖
𝑌}𝑖=1

𝑎  ∑𝑛
𝑖=1 ‖𝑎𝑖

𝑌‖0  subject to ‖𝑋 − 𝐷𝑎𝑖
𝑌‖ < 𝜖 

Step 2:  

▪ The image pixels are identified from each patches 

▪ Approximation error matrix is computed using  

𝑚𝑖𝑛
𝑑𝑘𝑔𝑘

‖𝐶𝑘 − 𝑑𝑘𝑔𝑘
𝑇‖𝐹

2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜‖𝑑𝑘‖2 = 1 

● SVD (U, Δ, V) is applied column by column of approximation matrix ek 

● Update ‘D’ column as U 

● Update ‘α’ by multiplying V and Δ 

● Compute the updated sparse coefficient 

● LF fused image patch is computed using 𝐼𝐿𝐹 = {𝐷𝛼𝑖
𝑓

+ 𝜇𝑖
𝐴. 1, 𝑖𝑓 𝛼𝑖

𝑓
= 𝛼𝑖

𝐴  𝐷𝛼𝑖
𝑓

+

𝜇𝑖
𝐵 . 1, 𝑖𝑓 𝛼𝑖

𝑓
= 𝛼𝑖

𝐵  } 

 

 
(a)                                                   (b) 

Figure 4.Output of sparse representation dictionary learning: (a) Pre-trained dictionary (b) Sparse 

Representation based LF fusion 

3.3 Gradient domain Guided image filtering 

 Guided image filter is a popular linear translational variant filter for edge preservation in an image. It has 

lot of applications in computer vision and medical image processing for image enhancement and image fusion 

[14]. But, this method failed to represent the pixels near to the edges in the image. This leads to some hallows in 
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the output images. To reduce the hallow artifacts, a Gradient Domain Guided Image Filtering (GDGIF) was 

proposed by considering first-order edge- aware factor {15]. This method will represent the images more 

accurately near edges and thus the edge preservation is highly improved than GIF [18]. This model comprises of 

two steps (a) Edge-aware waiting (b) Gradient domain guided filter 

3.3.1 Edge-aware  waiting 
Let I(x,y) be a guidance image and σI, 1(k) is the variance of  I(x,y) in 3x3 window and σI, r(k) be the 

variance of I(x,y) with window size of (2r+1) x (2r+1) . The mathematical model of edge-aware is given by 

𝜏𝐼(𝑘) =
1

𝑀
∑𝑀

𝑖=1
𝑥(𝑘)+𝜀

𝑥(𝑖)+𝜖
     (6) 

The weighting function measures the importance of each pixels in the guidance image I(x,y). Also the edges are 

detected accurately using this edge-aware weighting. 

3.3.2 Gradient domain guided filter 

The GDGF provides the local linear model between I(x,y) and the filtered output A(x,y). This model preserves 
only the edges of the guidance image I(x,y).  

𝐴(𝑖) = 𝑎𝑘𝐼(𝑖) + 𝑏𝑘          (7) 

The constants, ak and bk are obtained by the minimization of the difference between filtered output ‘A’ and 

image to be filtered ‘B’ 

𝐸 = ∑𝑖∈𝑤𝑘
⌈(𝑎𝑘𝐼(𝑖) + 𝑏𝑘−𝐵(𝑖))2 +

𝜆

𝜏𝐼(𝑘)
(𝑎𝑘 − 𝛾𝑘)2⌉      (8) 

𝛾𝑘 = 1 −
1

1+𝑒𝜂(𝑧(𝑘)−𝜇𝑘𝛼)            (9) 

The value γk approaches to 1 if k is an edge pixel and approaches to 0 if it is a smooth region pixel. Hence, it is 

less sensitivity to the selection of 𝛌and it is set to 105 in this model. The optimal values of ak and bk are computed 

using  

 

The final value of A(i) is given as eqn (10) 

𝐴(𝑖) = 𝑎𝑖𝐼(𝑖) + 𝑏𝑖                   (10) 

GDGIF operation can be represented in simple as GDGIFR (B,I) where,  R is the radius of the window, B and I 

infer the input image and guidance image respectively. 
 

3.4 Measurement of multiple visual feature for decision map 

 It is worth notable that the preservation of contrast, sharpness and structure arethe three important critical 

characteristics for the better visual quality of a fused image [19]. This method seperates the decision map into 

the three key visual feature measurement of input images as contrast saliency, sharpness and structure saliency 

3.4.1 Measurement of contrast saliency 

 The human visual system is more sensitive to changes in the local neighbourhood pixels. Therefore the 

change in local contrast of each pixel is used to construct the decision map. The local contrast can be measured 

using simple standard deviation, computation of local neighbourhood region [20]. The measurement is done by 

the sliding window approach which forms a map that indicates the local contrast variation. It is expressed as: 

𝐿𝐶 = (
1

𝐿×𝑃
∑𝐿

𝑙=1 ∑𝑃
𝑝=1 (𝐼(𝑥 + 𝑙, 𝑦 + 𝑝) − 𝑚(𝑥, 𝑦))2)

1

2
  (11) 

 

where, m is the mean value of the window with centre (x,y) and window size of (LXP). The Contrast Saliency  

(CS) map is constructed by  

𝐶𝑆 = 𝐿𝐶 ∗ 𝐺     (12) 

 

where, G is a Gaussian filter. This map provides the detail information of an image. The image pixels with high 

CC provides more information using the CS map. Decision map ‘D1’ is constructed as: 

𝐷1 = {1, 𝑖𝑓 𝐶𝑆 = 𝑚𝑎𝑥 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }       (13) 

 

3.4.2 Measure of sharpness 
 Measure of sharpness is an important feature in visual perception of images. The Sum_ Modified 

Laplacian (SML) is preferred for sharpness measurement in spatial domain [21]. The SML cab be mathematically 

expressed as 

𝛻𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
2 𝐼(𝑥, 𝑦) = |2𝐼(𝑥, 𝑦) − 𝐼(𝑥 − 𝑠𝑡𝑒𝑝, 𝑦) − 𝐼(𝑥 + 𝑠𝑡𝑒𝑝, 𝑦)| + 

|2𝐼(𝑥, 𝑦) − 𝑠𝑡𝑒𝑝) − 𝐼(𝑥, 𝑦 + 𝑠𝑡𝑒𝑝)|      (14) 

 

By using “step=I” between the pixels, SML can accommodate more possible variations in each size. The 

sharpness map (SR) is defined as: 

𝑆𝑅(𝑥, 𝑦) = ∑𝑀1
𝑚=𝜑−𝑀1

∑𝑁1
𝑛−𝑁1

[𝛻2𝐼(𝑥 + 𝑚, 𝑦 + 𝑛)]             (15) 

 



An Efficient Approach For Medical Image Fusion Using Sparse Representation Model 

1251 

This map provides clarity information and margin mutation of an image. SR map is used to construct the decision 

map ‘D2’ as; 

𝐷2 = {1, 𝑖𝑓 𝑆𝑅 = 𝑚𝑎𝑥 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }            (16) 

 

3.4.3 Measurement of Structure Saliency 

By using local gradient covariance, structural saliency is computed to construct the decision map D3. The local 

gradient covariance matrix is expressed as: 

𝐶 = (∑𝑌∈𝑊 𝐼𝑦
2(𝑌) ∑𝑌∈𝑊 𝐼𝑦(𝑌)𝐼𝑥(𝑌) ∑𝑌∈𝑊 𝐼𝑦(𝑌)𝐼𝑥(𝑌) ∑ 𝐼𝑥

2(𝑌) )           (17) 

 

Iy(x) and Ix(y) denotes the gradients in x and y direction. To compute local image structure, ‘C’ is decomposed 

through eigen value as : 

 

𝐶 = 𝑉(𝑆1
2 0 0 𝑆2

2 )𝑉𝑇       (18) 

 

The saliency measure provides better image structure in both blurred and random noise image. The structure 

saliency (SS) map can be given as: 

 

𝑆𝑆 = √(𝑆1 = 𝑆2)2 + 𝛼(𝑆1 + 𝑆2)2    (19) 

 

where, 𝛼 > −1, This parameter determine the corner like structures. The decision map D3 is given as: 

𝐷3 = {1, 𝑖𝑓 𝑆𝑆 = 𝑚𝑎𝑥 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }                    (20) 

 

3.4.4 GDGIF for weight map 

The obtained decision maps D1, D2 and D3 are usually not matched with object boundaries and noisy. This may 

produce artifacts in the fused image due to the similar brightness in the two adjacent pixels. By constructing the 
weight map, this halo artifacts can be avoided in fused images. Here the Guided Filtering GF) is applied on each 

initial decision maps D1, D2 and D3, an optimizedweight maps are constructed which shows detailed information 

about the edges in an image. Two weight maps W1 and W2 from the source image I(x,y) with decision maps D1, 

D2 and D3 are generated using the expressions: 

𝑊𝐻𝐹,𝑚 = 𝐺𝐹1[𝐷𝑚 , 𝐼(𝑥, 𝑦)]     (21) 

 

where, m=1,2,3 and r1, r2 represent the parameters of GF. The generated weight maps are based on various visual 

features contrast, saliency, sharpness and structure saliency measures. The overall weight map is calculated by 

combining these calculations of the input image I(x,y) 

𝑊𝐻𝐹 = ∏3
𝑚=1 𝑊𝐻𝐹,𝑚      (22) 

 

where, WHF is the resulting weight map of high frequency subbandsin the input image I(x,y). 

 
Figure 5. Output of HF fusion using GDGIF 

3.5 Image Fusion 

 By combining the approximate and detail components in different source images, the fused image is obtained by 

weighted averaging of LF components decomposed from sparse coding and HF components from GDGIF.  The output 

of GDGIF is depicted in Figure 5. 

𝐼𝐿𝐹 = {𝐷𝛼𝑖
𝑓

+ 𝜇𝑖
𝐴 . 1, 𝑖𝑓 𝛼𝑖

𝑓
= 𝛼𝑖

𝐴 𝐷𝛼𝑖
𝑓

+ 𝜇𝑖
𝐵 . 1, 𝑖𝑓 𝛼𝑖

𝑓
= 𝛼𝑖

𝐵  }     (23) 
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𝐼𝐻𝐹 = ∑𝑁
𝑛=1 𝑊𝐻𝐹 𝐼(𝑥, 𝑦)      (24) 

 

Finally, inverse NSST is applied on the fused ILF and IHF images to reconstruct the resultant image F as shown 

in Figure 6and follows: 

𝐹 = 𝑁𝑆𝑆𝑇−1(𝐼𝐿𝐹
𝑁𝑆𝑆𝑇 , 𝐼𝐻𝐹

𝑁𝑆𝑆𝑇)    (25) 

 

 
Figure 6. Output of Fused Image 

 

4. PERFORMANCE EVALUATION 

 In this section, experiments are performed to verify the feasibility of our proposed method over test 

images and MRI medical images. Later, the results of our proposed system are compared with the existing 

algorithms based on GFF, CBF, NSCT-SR, NSCT-PCNN, NSCT, DWT and LP. The visual quality of an image 
is measured in different aspects. Here, we have considered both the quantitative and visual representation of fused 

images. In such a way the three commonly used fusion performance metrices are evaluated and tabulated below 

A. Mutual Information: Under this evaluation metric, it conveys about how much the fused image has 

the information of input image. The mutual information about source image and fusion image is 

given by 

𝑀𝐼 = 𝑀𝐼𝐴𝐹 + 𝑀𝐼𝐵𝐹(26) 

where,  MIAF and MIBF denotes the normalized information between source image and fused image. 

B. Gradient based fusion metric: This measure gives the similarity between the edges exchanged from 

source image to fused image. 

𝑄
𝐴𝐵

𝐹 =
∑𝑀

𝑖=1 ∑𝑁
𝑗=1 [𝑄𝐴𝐹(𝑖,𝑗)𝑊𝐴(𝑖,𝑗)+𝑄𝐵𝐹(𝑖,𝑗)𝑊𝐵(𝑖,𝑗)]

∑𝑀
𝑖=1 ∑𝑁

𝑗=1 [𝑊𝐴(𝑖,𝑗)+𝑊𝐵(𝑖,𝑗)]
             (27) 

C. Structural similarity based fusion metric: It gives the quality assessment for image fusion using 
structural similarity technique. Structural Similarity (SSIM) is defined using the expression: 

𝑄𝑌 = {𝜏(𝑤)𝑆𝑆𝐼𝑀 (𝐴,
𝐹

𝑤
) + (1 − 𝑟(𝑤)𝑆𝑆𝐼𝑀(𝐵,

𝐹

𝑤
) 𝑓𝑜𝑟 𝑆𝑆𝐼𝑀(𝐴, 𝐵/𝑤 ≥

0.75  𝑚𝑎𝑥 {𝑆𝑆𝐼𝑀 (𝐴,
𝐹

𝑤
) , 𝑆𝑆𝐼𝑀 (𝐵,

𝐹

𝑤
)} 𝑓𝑜𝑟 𝑆𝑆𝐼𝑀(𝐴,

𝐵

𝑤
) ≤ 0.75 }      (28) 

 Under the experimental evaluation we have prepared three set of multifocus images such as clock, lab 

and disk. With theseinputs the validity of our proposed method is demonstrated in Table 1. It is observed that the 

performance of the proposed method is better than the traditional methods. Also the obtained images in figure 5 

reveal that the system has achieved a higher correlation and similarity with the source image.In this section, two 

groups of PET-MRI image modalities are framed. The corresponding performance comparison results are shown 

in Figure 6. It is observed that the proposed method has produced a clear results compared to NSCT-PCNN and 

CBF schemes. In medical applications, the lesion properties are more visible so that it will be more helpful for the 
medical experts in case of analysis and diagnosis. 

 

Table 1 Performance measures of fused medical images 

Inputs Index NSCT NSCT- 

PCNN 

NSCT- 

SR 

CBF GFF Proposed 

method 

Group 1 

PET-

MRI 

MI 2.557 1.306 3.050 4.890 3.268 5.361 

QAB/F 0.691 0.628 0.745 0.791 0.785 0.819 

QT 0.700 0.532 0.852 0.926 0.883 0.966 
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Group 2 

PET- 

MRI 

MI 2.439 2.680 2.635 2.810 2.746 2.901 

QAB/F 0.599 0.560 0.618 0.645 0.625 0.749 

QT 0.708 0.605 0.727 0.892 0.881 0.947 

 

 
Figure 6 Performance comparison of Group 1 and Group 2 PET-MRI images for different 

methods. 

 

5. CONCLUSION 

 This paper presents a medical image fusion framework based on NSST decomposition with sparse K-
SVD dictionary learning.Since NSST method is employed, the  shearing filters provides the spectral and spatial 

information through multiscale and multidirectional decomposition methods. The dictionary learning based 

method implied improved the detail information in low-frequency NSST subband.Furthermore, as guided filtering 

is applied to extract the high-frequency NSST componentsoutperforms the image fusion. Also, the color and edge 

details are acquired without any contamination due to artifacts. Finally, this method with seven other existing 

methods is executed for the PET-MRI image fusion. The experimental results highlight that the proposed system 

for image fusion can preserve the real and synthetic information of multiple source images better than other fusion 

methods. 
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