Quasi-continuity on Product Spaces

Bhagath kumar Soma ${ }^{1}$, Vajha Srinivasa kumar ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Basic Sciences,Gokaraju Rangaraju Institute of Engineering and Technology,Bachupally,Kukatpally,Hyderabad-500090,Telangana State, India
${ }^{2}$ Assistant Professor, Department of Mathematics, JNTUH College of Engineering, JNTU Kukatpally, Hyderabad-500085, Telangana State, India.
${ }^{1}$ somabagh@ gmail.com, ${ }^{2}$ srinu_vajha@yahoo.co.in

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021

Abstract

In this present paper, the notion of Quasi-continuity on a product space is introduced. The set of all such bounded Quasi-continuous functions defined on a closed and bounded interval is established to be a commutative Banach algebra under supremum norm.

Keywords: Quasi-continuity, Right and Left Limits, Commutative Banach Algebra, Product space.

1. Introduction

Quasi-continuity is a weaker form of continuity. In 1932, Kempisty introduced the notion of quasi-continuous mappings for real functions of several real variables in his classical research article [1]. There are various reasons for the interest in the study of quasi-continuous functions. There are mainly two reasons. The first one is relatively good connection between the continuity and quasi-continuity inspite of the generality of the latter. The second one is a deep connection of quasi-continuity with mathematical analysis and topology.

In this present work, we define quasi-continuity on a product space in a different approach and establish that the set of all such bounded Quasi-continuous functions on a closed and bounded interval forms a commutative Banach algebra under the supremum norm.

In what follows I and X stand for the closed unit interval $[0,1]$ and a commutative Banach algebra with identity over the field \square of real numbers respectively.

2. Preliminaries

In this section we present a few basic definitions that are needed further study of this paper.
Definition-1.1: Let $f: I \rightarrow X, q \in X$ and $x_{0} \in[0,1)$. We say that $f\left(x_{0}+\right)=q$ if for every $\varepsilon>0$ there exists a $\delta>0$ such that $\|f(t)-q\|<\varepsilon$ for all $t \in\left(x_{0}, x_{0}+\delta\right) \subset[0,1]$.

Definition-1.2: Let $f: I \rightarrow X, p \in X$ and $x_{0} \in(0,1]$. We say that $f\left(x_{0}-\right)=p$ if for every $\varepsilon>0$ there exists a $\delta>0$ such that $\|f(t)-p\|<\varepsilon$ for all $t \in\left(x_{0}-\delta, x_{0}\right) \subset[0,1]$.

Definition-1.3: A function $f: I \rightarrow X$ is said to be continuous at $x_{0} \in I$ if $f\left(x_{0}+\right)=f\left(x_{0}-\right)=f\left(x_{0}\right)$. We say that f is continuous on I if f is continuous at every point of I.

Definition-1.4: Let S be any non-empty set. If $c \in \square, f: S \rightarrow X$ and $g: S \rightarrow X$ then we define
a. $\quad(f+g)(x)=f(x)+g(x)$ for all $x \in S$
b. $\quad(c f)(x)=c f(x)$ for all $x \in S$
c. $\quad(f g)(x)=f(x) g(x)$ for all $x \in S$

Definition-1.5: A function $f: I \rightarrow X$ is said to be bounded on I if there exists a positive real number M such that $\|f(t)\| \leq M$ for all $t \in I$.

Definition-1.6: Let N and N^{\prime} be normed linear spaces. An isometric isomorphism of N into N^{\prime} is a one-to-one linear transformation T of N into N^{\prime} such that $\|T(x)\|=\|x\|$ for every x in N and N is said to be isometrically isomorphic to if N^{\prime} there exists an isometric isomorphism of N into N^{\prime}.

1. Quasi-Continuity on I^{2}

In this section, we introduce the notion of quasi-continuity on I^{2} and present a few results in this context.
Definition-2.1: A function $f: I \rightarrow X$ is said to be quasi-continuous on I if
a. $f(0+)$ and $f(1-)$ exist.
b. $\quad f(p+)$ and $f(p-)$ exist for every $p \in(0,1)$.

Definition-2.2: Let $f: I^{2} \rightarrow X$ and $(x, y) \in I^{2}$. We define $f_{x}: I \rightarrow X$ and $f_{y}: I \rightarrow X$ by $f_{x}(t)=f(x, t)$ and $f_{y}(t)=f(t, y)$ for all $t \in I$.

Definition-2.3: Let $(x, y) \in I^{2}$. A function $f: I^{2} \rightarrow X$ is said to be quasi-continuous at (x, y) if the functions $f_{x}: I \rightarrow X$ and $f_{y}: I \rightarrow X$ are quasi-continuous on I. We say that $f: I^{2} \rightarrow X$ is quasicontinuous on I^{2}, if f is quasi-continuous at every point of I^{2}.

Definition-2.4: Let $I^{2}=I \times I$. A function $f: I^{2} \rightarrow X$ is said to be bounded on I^{2} if there exists a positive real number M such that $\|f(s, t)\| \leq M$ for all $(s, t) \in I^{2}$.

Notation-2.5:

1. The set of all quasi-continuous bounded functions from I into X is denoted by $\mathscr{Q}(I, X)$.
2. We denote the set of all quasi-continuous bounded functions from I^{2} into X by the symbol $\mathcal{Q}\left(I^{2}, X\right)$.

Proposition-2.6: Let $c \in \square$. If $f: I \rightarrow X$ and $g: I \rightarrow X$ are quasi-continuous on I then so are $f+g, f g$ and $c f$.

Proposition-2.7: If $f_{n} \in \mathcal{Q}(I, X)$ for $n=1,2,3, \ldots$ and if $f_{n} \rightarrow f$ uniformly on I then $f \in \mathcal{Q}(I, X)$.

Proposition-2.8: $\mathbb{Q}(I, X)$ is a commutative Banach algebra with identity over the field \square of real numbers under the supremum norm $\|f\|=\sup \{\|f(x)\|: x \in I\}$.

Remark - 2.9: It is easy to observe the following.
a. $(f+g)_{x}=f_{x}+g_{x}$
b. $(f+g)_{y}=f_{y}+g_{y}$
c. $(f g)_{x}=f_{x} g_{x}$
d. $\quad(f g)_{y}=f_{y} g_{y}$
e. $(c f)_{x}=c f_{x}$
f. $\quad(c f)_{y}=c f_{y}$

Proposition-2.10: If $f \in \mathscr{Q}\left(I^{2}, X\right)$ and $g \in \mathcal{Q}\left(I^{2}, X\right)$ then
a. $f+g \in \mathcal{Q}\left(I^{2}, X\right)$
b. $\quad f g \in \mathscr{Q}\left(I^{2}, X\right)$
c. $\quad c f \in \mathscr{Q}\left(I^{2}, X\right)$ where $c \in \square$.

Proposition-2.11: The space $\mathscr{Q}\left(I^{2}, X\right)$ forms a normed linear space under the supremum norm $\|f\|=\sup \left\{\|f(s, t)\|:(s, t) \in I^{2}\right\}$.
3. Isometric Isomorphism between $\mathscr{Q}\left(I^{2}, X\right)$ and \mathscr{Q}^{2}

Throughout this section we take \mathscr{Q}^{2} to be the product space $\mathscr{Q}(I, X) \times \mathscr{Q}(I, X)$ and establish an isometric isomorphism between $\mathscr{Q}\left(I^{2}, X\right)$ and \mathscr{Q}^{2}.

Proposition-3.1: There exists an isometric isomorphism between $\mathscr{Q}\left(I^{2}, X\right)$ and \mathscr{Q}^{2}.
Proof: Fix $(x, y) \in I^{2}$. Define $\varphi: \mathcal{Q}\left(I^{2}, X\right) \rightarrow \mathscr{Q}^{2}$ by $\varphi(f)=\left(f_{x}, f_{y}\right)$.
First we prove that φ is 1-1.
Suppose that $\varphi(f)=\varphi(g)$ for $f, g \in \mathscr{Q}\left(I^{2}, X\right)$
$\Rightarrow \quad\left(f_{x}, f_{y}\right)=\left(g_{x}, g_{y}\right)$
$\Rightarrow f_{x}=g_{x}$ and $f_{y}=g_{y}$
$\Rightarrow f_{x}(t)=g_{x}(t)$ and $f_{y}(s)=g_{y}(s)$ for all $s, t \in I$
$\Rightarrow \quad f(x, t)=g(x, t)$ and $f(s, y)=g(s, y)$ for all $s, t \in I$
$\Rightarrow \quad f(x, y)=g(x, y)$
Since (x, y) is an arbitrary point in I^{2}, we have $f(x, y)=g(x, y)$ for every (x, y) in I^{2} and hence $f=g$.

Thus the mapping $\varphi: \mathscr{Q}\left(I^{2}, X\right) \rightarrow \mathscr{Q}^{2}$ is 1-1.
The norm of $(f, g) \in \mathscr{Q}^{2}$ is defined by $\|(f, g)\|=\max \{\|f\|,\|g\|\}$.
Now we prove that the mapping $\varphi: \mathscr{Q}\left(I^{2}, X\right) \rightarrow \mathscr{Q}^{2}$ preserves norm. we have

$$
\begin{aligned}
& \|\varphi(f)\|=\left\|\left(f_{x}, f_{y}\right)\right\| \\
& \geq\left\|f_{x}\right\| \\
& =\sup \left\{\left\|f_{x}(t)\right\|: t \in I\right\} \\
& \geq\left\|f_{x}(t)\right\| \forall t \in I \\
& =\|f(x, t)\| \quad \forall t \in I
\end{aligned}
$$

In particular, $\|\varphi(f)\| \geq\|f(x, y)\|$
Since (x, y) is an arbitrary point in I^{2}, we have $\|\varphi(f)\| \geq\|f(x, y)\|$ for all $(x, y) \in I^{2}$.
$\Rightarrow\|\varphi(f)\| \geq\|f\| \quad \rightarrow \quad(1)$
Since $\|f\|=\sup \left\{\|f(s, t)\|:(s, t) \in I^{2}\right\}$, it follows that $\|f\| \geq\|f(s, t)\| \quad \forall \quad(s, t) \in I^{2}$
$\Rightarrow \quad\|f\| \geq\|f(x, t)\|$ and $\|f\| \geq\|f(s, y)\|$ for every s and t in I
$\Rightarrow \quad\|f\| \geq\left\|f_{x}(t)\right\|$ and $\|f\| \geq\left\|f_{y}(s)\right\|$ f or every s and t in I
$\Rightarrow \quad\|f\| \geq\left\|f_{x}\right\|$ and $\|f\| \geq\left\|f_{y}\right\|$
$\Rightarrow \quad\|f\| \geq \max \left\{\left\|f_{x}\right\|,\left\|f_{y}\right\|\right\}$
$\Rightarrow \quad\|f\| \geq\|\varphi(f)\| \quad \rightarrow$
From (1) and (2) $\|\varphi(f)\|=\|f\|$.
Hence φ preserves norm.
Now it remains to show that φ is linear. If $f, g \in \mathscr{Q}\left(I^{2}, X\right)$ and $c \in \square$, then

$$
\begin{aligned}
\varphi(f & +g)=\left((f+g)_{x},(f+g)_{y}\right) \\
& =\left(f_{x}+g_{x}, f_{y}+g_{y}\right) \\
& =\left(f_{x}, f_{y}\right)+\left(g_{x}, g_{y}\right) \\
& =\varphi(f)+\varphi(g)
\end{aligned}
$$

Similarly, $\varphi(c f)=\left((c f)_{x},(c f)_{y}\right)$

$$
\begin{aligned}
& \quad=\left(c f_{x}, c f_{y}\right) \\
& =c\left(f_{x}, f_{y}\right) \\
& =c \varphi(f)
\end{aligned}
$$

Hence φ is an isometric isomorphism of $\mathscr{Q}\left(I^{2}, X\right)$ into \mathscr{Q}^{2}.
Proposition-3.2: If $f_{n} \in \mathcal{Q}\left(I^{2}, X\right)$ for $n=1,2,3 \ldots$ and $f_{n} \rightarrow f$ uniformly on I^{2} then $f \in \mathscr{Q}\left(I^{2}, X\right)$.

Proof: Let $\varepsilon>0$ be given and take $\delta=\varepsilon$.
For $f, g \in \mathcal{Q}\left(I^{2}, X\right)$, suppose that $\|f-g\|<\delta$.
Since $\varphi: \mathscr{Q}\left(I^{2}, X\right) \rightarrow \mathscr{Q}^{2}$ is an isometric isomorphism, we have $\|\varphi(f-g)\|<\delta$
$\Rightarrow\|\varphi(f)-\varphi(g)\|<\varepsilon$
Hence $\varphi: \mathscr{Q}\left(I^{2}, X\right) \rightarrow \mathcal{Q}^{2}$ is uniformly continuous on $\mathbb{Q}\left(I^{2}, X\right)$.
$\Rightarrow \varphi: \mathcal{Q}\left(I^{2}, X\right) \rightarrow \mathcal{Q}^{2}$ is continuous on $\mathcal{Q}\left(I^{2}, X\right)$.
Let $(x, y) \in I^{2}$. Suppose that $f_{n} \in \mathcal{Q}\left(I^{2}, X\right)$ for $n=1,2,3 \ldots$ and $f_{n} \rightarrow f$ uniformly on I^{2}.
$\Rightarrow \varphi\left(f_{n}\right) \rightarrow \varphi(f)$ in \mathcal{Q}^{2}
$\Rightarrow\left(\left(f_{n}\right)_{x},\left(f_{n}\right)_{y}\right) \rightarrow\left(f_{x}, f_{y}\right)$ in \mathcal{Q}^{2}
$\Rightarrow\left(f_{n}\right)_{x} \rightarrow f_{x}$ and $\left(f_{n}\right)_{y} \rightarrow f_{y}$ uniformly on I in $\mathcal{Q}(I, X)$
$\Rightarrow \quad f_{x} \in \mathcal{Q}(I, X)$ and $f_{y} \in \mathcal{Q}(I, X)$.
$\Rightarrow \quad f$ is quasi-continuous at $(x, y) \in I^{2}$.
Since $(x, y) \in I^{2}$ is arbitrary, $f \in \mathcal{Q}\left(I^{2}, X\right)$.
Proposition-3.3: $\mathcal{Q}\left(I^{2}, X\right)$ is a commutative Banach algebra with identity over the field \square of real numbers under the supremum norm.

References

1. Kempisty, .S., Sur les functions quasicontinues, Fund. Math. XIX, pp. 184 - 197, 1932.
2. Kreyszig, E., Introductory Functional Analysis with Applications, John Wiley and Sons, New York, 1978.
3. Neubrunn, T., Quasi-continuity, Real Analysis Exchange, Vol-14, pp.259-306, 1988.
4. Rudin, W., Principles of Mathematical Analysis, $3^{\text {rd }}$ Edition, Tata McGraw - Hill, New York, 1976.
5. Simmons, G. F., Introduction to Topology and Modern Analysis, Tata McGraw - Hill, New York, 1963.
6. Van Rooij, A. C. M. and Schikhof, W. H., A second Course on Real functions, Cambridge University Press, Cambridge, 1982.
