Research Article

Quasi-continuity on Product Spaces

Bhagath kumar Soma¹, Vajha Srinivasa kumar ²

¹Assistant Professor, Department of Basic Sciences, Gokaraju Rangaraju Institute of Engineering and Technology, Bachupally, Kukatpally, Hyderabad-500090, Telangana State, India ² Assistant Professor, Department of Mathematics, JNTUH College of Engineering, JNTU Kukatpally, Hyderabad-500085, Telangana State, India. ¹somabagh@gmail.com, ²srinu_vajha@yahoo.co.in

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021

Abstract: In this present paper, the notion of Quasi-continuity on a product space is introduced. The set of all such bounded Quasi-continuous functions defined on a closed and bounded interval is established to be a commutative Banach algebra under supremum norm.

Keywords: Quasi-continuity, Right and Left Limits, Commutative Banach Algebra, Product space.

1. Introduction

Quasi-continuity is a weaker form of continuity. In 1932, *Kempisty* introduced the notion of quasi-continuous mappings for real functions of several real variables in his classical research article [1]. There are various reasons for the interest in the study of quasi-continuous functions. There are mainly two reasons. The first one is relatively good connection between the continuity and quasi-continuity inspite of the generality of the latter. The second one is a deep connection of quasi-continuity with mathematical analysis and topology.

In this present work, we define quasi-continuity on a product space in a different approach and establish that the set of all such bounded Quasi-continuous functions on a closed and bounded interval forms a commutative Banach algebra under the supremum norm.

In what follows I and X stand for the closed unit interval [0,1] and a commutative Banach algebra with identity over the field \Box of real numbers respectively.

2. Preliminaries

In this section we present a few basic definitions that are needed further study of this paper.

Definition – 1.1: Let $f: I \to X$, $q \in X$ and $x_0 \in [0,1)$. We say that $f(x_0 +) = q$ if for every

 $\varepsilon > 0$ there exists a $\delta > 0$ such that $||f(t) - q|| < \varepsilon$ for all $t \in (x_0, x_0 + \delta) \subset [0, 1]$.

Definition – 1.2: Let $f: I \to X$, $p \in X$ and $x_0 \in (0,1]$. We say that $f(x_0 -) = p$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $||f(t) - p|| < \varepsilon$ for all $t \in (x_0 - \delta, x_0) \subset [0,1]$.

Definition – 1.3: A function $f: I \to X$ is said to be continuous at $x_0 \in I$ if

 $f(x_0 +) = f(x_0 -) = f(x_0)$. We say that f is continuous on I if f is continuous at every point of I.

Definition – 1.4: Let S be any non-empty set. If $c \in \Box$, $f: S \to X$ and $g: S \to X$ then we define

a.
$$(f+g)(x) = f(x) + g(x)$$
 for all $x \in S$

- b. (cf)(x) = cf(x) for all $x \in S$
- c. (fg)(x) = f(x)g(x) for all $x \in S$

Definition – 1.5: A function $f: I \to X$ is said to be *bounded* on I if there exists a positive real number M such that $||f(t)|| \le M$ for all $t \in I$.

Research Article

Definition – 1.6: Let N and N' be normed linear spaces. An *isometric isomorphism* of N into N' is a one-to-one linear transformation T of N into N' such that ||T(x)|| = ||x|| for every x in N and N is said to be *isometrically isomorphic* to if N' there exists an isometric isomorphism of N into N'.

1. Quasi-Continuity on I^2

In this section, we introduce the notion of quasi-continuity on I^2 and present a few results in this context. **Definition – 2.1:** A function $f: I \to X$ is said to be *quasi-continuous* on I if

a. f(0+) and f(1-) exist.

b. f(p+) and f(p-) exist for every $p \in (0,1)$.

Definition – 2.2: Let $f: I^2 \to X$ and $(x, y) \in I^2$. We define $f_x: I \to X$ and $f_y: I \to X$ by $f_x(t) = f(x,t)$ and $f_y(t) = f(t, y)$ for all $t \in I$.

Definition – 2.3: Let $(x, y) \in I^2$. A function $f: I^2 \to X$ is said to be quasi-continuous at (x, y) if the functions $f_x: I \to X$ and $f_y: I \to X$ are quasi-continuous on I. We say that $f: I^2 \to X$ is quasi-continuous on I^2 , if f is quasi-continuous at every point of I^2 .

Definition – 2.4: Let $I^2 = I \times I$. A function $f: I^2 \to X$ is said to be *bounded* on I^2 if there exists a positive real number M such that $||f(s,t)|| \le M$ for all $(s,t) \in I^2$.

Notation – 2.5:

1. The set of all quasi-continuous bounded functions from I into X is denoted by $\mathscr{L}(I, X)$.

2. We denote the set of all quasi-continuous bounded functions from I^2 into X by the symbol $\mathscr{Q}(I^2, X)$.

Proposition – 2.6: Let $c \in \Box$. If $f: I \to X$ and $g: I \to X$ are quasi-continuous on I then so are f + g, fg and cf.

Proposition – 2.7: If $f_n \in \mathscr{C}(I, X)$ for n = 1, 2, 3, ... and if $f_n \to f$ uniformly on I then $f \in \mathscr{C}(I, X)$.

Proposition – 2.8: $\mathscr{C}(I, X)$ is a commutative Banach algebra with identity over the field \Box of real numbers under the supremum norm $||f|| = \sup \{||f(x)|| : x \in I\}$.

Remark – 2.9: It is easy to observe the following.

- a. $(f+g)_x = f_x + g_x$
- b. $(f+g)_y = f_y + g_y$
- c. $(fg)_x = f_x g_x$
- d. $(fg)_{y} = f_{y}g_{y}$

e.
$$(cf)_{x} = cf_{y}$$

f. $(cf)_{y} = cf_{y}$

Proposition – 2.10: If $f \in \mathscr{C}(I^2, X)$ and $g \in \mathscr{C}(I^2, X)$ then

a.
$$f + g \in \mathscr{Q}(I^2, X)$$

b. $fg \in \mathscr{Q}(I^2, X)$

c. $cf \in \mathscr{C}(I^2, X)$ where $c \in \Box$.

Proposition – 2.11: The space $\mathscr{C}(I^2, X)$ forms a normed linear space under the supremum norm $||f|| = \sup \{||f(s,t)||: (s,t) \in I^2\}.$

3. Isometric Isomorphism between $\mathscr{C}(I^2, X)$ and \mathscr{C}^2

Throughout this section we take \mathscr{Q}^2 to be the product space $\mathscr{Q}(I, X) \times \mathscr{Q}(I, X)$ and establish an isometric isomorphism between $\mathscr{Q}(I^2, X)$ and \mathscr{Q}^2 .

Proposition – 3.1: There exists an isometric isomorphism between $\mathscr{C}(I^2, X)$ and \mathscr{C}^2 . **Proof:** Fix $(x, y) \in I^2$. Define $\varphi : \mathscr{C}(I^2, X) \to \mathscr{C}^2$ by $\varphi(f) = (f_x, f_y)$. First we prove that φ is 1-1. Suppose that $\varphi(f) = \varphi(g)$ for $f, g \in \mathscr{C}(I^2, X)$ $\Rightarrow (f_x, f_y) = (g_x, g_y)$ $\Rightarrow f_x = g_x$ and $f_y = g_y$ $\Rightarrow f_x(t) = g_x(t)$ and $f_y(s) = g_y(s)$ for all $s, t \in I$ $\Rightarrow f(x,t) = g(x,t)$ and f(s, y) = g(s, y) for all $s, t \in I$ $\Rightarrow f(x, y) = g(x, y)$ Since (x, y) is an arbitrary point in I^2 we have f(x, y) = g(x, y) for every (x, y) in I^2 and hence

Since (x, y) is an arbitrary point in I^2 , we have f(x, y) = g(x, y) for every (x, y) in I^2 and hence f = g.

Thus the mapping $\varphi : \mathscr{Q}(I^2, X) \to \mathscr{Q}^2$ is 1-1. The norm of $(f, g) \in \mathscr{Q}^2$ is defined by $||(f, g)|| = \max \{||f||, ||g||\}$. Now we prove that the mapping $\varphi : \mathscr{Q}(I^2, X) \to \mathscr{Q}^2$ preserves norm. we have $||\varphi(f)|| = ||(f_x, f_y)||$

 $= \max\left\{ \left\|f_{x}\right\|, \left\|f_{y}\right\|\right\}$ $\geq \left\|f_{x}\right\|$ $= \sup\left\{ \left\|f_{x}(t)\right\| : t \in I\right\}$ $\geq \left\|f_{x}(t)\right\| \quad \forall \ t \in I$ $= \left\|f(x,t)\right\| \quad \forall \ t \in I$ In particular, $\left\|\varphi(f)\right\| \geq \left\|f(x,y)\right\|$ Since (x, y) is an arbitrary point in I^{2} , we have $\left\|\varphi(f)\right\| \geq \left\|f(x, y)\right\|$ for all $(x, y) \in I^{2}$. $\Rightarrow \ \left\|\varphi(f)\right\| \geq \left\|f\right\| \quad \rightarrow \quad (1)$ Since $\left\|f\right\| = \sup\left\{\left\|f(s,t)\right\| : (s,t) \in I^{2}\right\}$, it follows that $\left\|f\right\| \geq \left\|f(s,t)\right\| \quad \forall \quad (s,t) \in I^{2}$ $\Rightarrow \ \left\|f\| \geq \left\|f(x,t)\right\| \quad \text{and} \quad \left\|f\| \geq \left\|f(s,y)\right\| \text{ for every } s \text{ and } t \text{ in } I$ $\Rightarrow \ \left\|f\| \geq \left\|f_{x}(t)\right\| \quad \text{and} \quad \left\|f\| \geq \left\|f_{y}(s)\right\| \text{ for every } s \text{ and } t \text{ in } I$...

$$\Rightarrow ||f|| \ge ||f_x|| \text{ and } ||f|| \ge ||f_y||$$

$$\Rightarrow ||f|| \ge \max \{ ||f_x||, ||f_y|| \}$$

$$\Rightarrow ||f|| \ge ||\varphi(f)|| \rightarrow (2)$$

From (1) and (2) $||\varphi(f)|| = ||f||.$

Hence φ preserves norm.

Now it remains to show that φ is linear. If $f,g\in\mathscr{C}(I^2,X)$ and $c\in\Box$, then

$$\varphi(f+g) = \left(\left(f+g\right)_x, \left(f+g\right)_y \right)$$
$$= \left(f_x + g_x, f_y + g_y \right)$$
$$= \left(f_x, f_y \right) + \left(g_x, g_y \right)$$
$$= \varphi(f) + \varphi(g)$$
Similarly, $\varphi(cf) = \left((cf)_x, (cf)_y \right)$
$$= \left(cf_x, cf_y \right)$$
$$= c \left(f_x, f_y \right)$$
$$= c \varphi(f)$$

Hence φ is an isometric isomorphism of $\mathscr{L}(I^2, X)$ into \mathscr{L}^2 .

Proposition – 3.2: If $f_n \in \mathscr{C}(I^2, X)$ for n = 1, 2, 3... and $f_n \to f$ uniformly on I^2 then $f \in \mathscr{C}(I^2, X)$.

Proof: Let
$$\varepsilon > 0$$
 be given and take $\delta = \varepsilon$.
For $f, g \in \mathscr{C}(I^2, X)$, suppose that $||f - g|| < \delta$.
Since $\varphi : \mathscr{C}(I^2, X) \to \mathscr{C}^2$ is an isometric isomorphism, we have $||\varphi(f - g)|| < \delta$
 $\Rightarrow ||\varphi(f) - \varphi(g)|| < \varepsilon$
Hence $\varphi : \mathscr{C}(I^2, X) \to \mathscr{C}^2$ is uniformly continuous on $\mathscr{C}(I^2, X)$.
 $\Rightarrow \varphi : \mathscr{C}(I^2, X) \to \mathscr{C}^2$ is continuous on $\mathscr{C}(I^2, X)$.
Let $(x, y) \in I^2$. Suppose that $f_n \in \mathscr{C}(I^2, X)$ for $n = 1, 2, 3...$ and $f_n \to f$ uniformly on I^2 .
 $\Rightarrow \varphi(f_n) \to \varphi(f)$ in \mathscr{C}^2
 $\Rightarrow ((f_n)_x, (f_n)_y) \to (f_x, f_y)$ in \mathscr{C}^2
 $\Rightarrow (f_n)_x \to f_x$ and $(f_n)_y \to f_y$ uniformly on I in $\mathscr{C}(I, X)$
 $\Rightarrow f_x \in \mathscr{C}(I, X)$ and $f_y \in \mathscr{C}(I, X)$.
 $\Rightarrow f$ is quasi-continuous at $(x, y) \in I^2$.
Since $(x, y) \in I^2$ is arbitrary, $f \in \mathscr{C}(I^2, X)$.

Proposition – 3.3: $\mathscr{L}(I^2, X)$ is a commutative Banach algebra with identity over the field \Box of real numbers under the supremum norm.

Research Article

References

- 1. Kempisty, .S., Sur les functions quasicontinues, Fund. Math. XIX, pp. 184 197, 1932.
- 2. Kreyszig, E., Introductory Functional Analysis with Applications, John Wiley and Sons, New York, 1978.
- 3. Neubrunn, T., *Quasi-continuity*, Real Analysis Exchange, Vol-14, pp.259-306, 1988.
- 4. Rudin, W., Principles of Mathematical Analysis, 3rd Edition, Tata McGraw Hill, New York, 1976.
- 5. Simmons, G. F., *Introduction to Topology and Modern Analysis*, Tata McGraw Hill, New York, 1963.
- 6. Van Rooij, A. C. M. and Schikhof, W. H., *A second Course on Real functions*, Cambridge University Press, Cambridge, 1982.