
Turkish Journal of Computer and Mathematics Education         Vol.12 No. 7 (2021), 738- 748 

Research Article 

 

738 

Analysis Of  Pattern Matching  Algorithms Used For Searching The Patterns In MLIR 

Framework 
 

Chayapathi A R1, G Sunil Kumar2, Manjunath Swamy B E3, Thriveni J4, Venugopal K R5 
 

1Information Science Department, Visvesvaraya Technological University, Acharya Institute of Technology 

Bengaluru, Karnataka, India, archayapathi@gmail.com 
2Computer Science Department, Banglore University, UVCE Bengaluru, Karnataka, India   
3Computer Science Department,Don Bosco Institute of Technology, Bengaluru, Karnataka 
4Computer Science Department, Banglore University, UVCE Bengaluru, Karnataka, India,  
5Banglore University Bengaluru, Karnataka, India 

 

 

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published 

online: 16 April 2021 

Abstract. There is a solid requirement for the real-time ordering of enormous measures of information stream-

ing at the rate of 10GB/s or more. This information should be scanned for designs and the query items are time-

basic in fields as different as security reconnaissance, monetary services including stock exchanging, checking 

the basic well-being states of patients, atmosphere notice frameworks, etc. Here, the file will be required to age-

off in a little time and thus will be of limited size. Notwithstanding, such situations can't endure any infringe-

ment of indexing latency and severe pursuit reaction times. Likewise, future greatly parallel (multicore) struc-

tures with capacity class recollections will empower rapid in-memory constant indexing, where the index can be 

totally put away in a high limit storage class memory. As the web is growing, it means a number of documents 

on the web are also growing so index size will also grow. The approach would be to partition a single large 

search index into smaller partitions and assigned to each node in the cluster.  Later when a search request comes 

each node in the cluster will perform a search on the local index for each query term and send the result back to 

the central machine, which will later combine search results from all nodes in the cluster and then send it to the 

user. In this paper also comparative analysis of rabin-karp and Knuth-Morris-Pratt and Boyer-Moore algorithm 

has been done based on the execution time of the search pattern. An experimental result of the algorithm is pre-

sented in this paper, based on the result it has been concluded that KMP algorithm is better to use in MLIR 

framework.  

Keywords: Indexing, Rabin Karp, Knuth-Morris-Pratt, Boyer-Moore,MLIR. 

 

1  Introduction 

Multilingual Information Retrieval (MLIR) System as the name denotes exhibits capabilities of managing in-

quiry utilization with a single language and accomplishes report-recovery through various dialects. MLIR en-

sures translation of queries is carried out with utmost care. This work relies on language-independent indexing 

technology to work on the text chunks of three languages: Kannada, Hindi, and English. In the present intercon-

nected world, it is found that archives and different wellsprings of data arrive in a variety of dialects. This repre-

sents an issue for some pursuit applications. We have to comprehend the language of these archives admirably 

well to dissect them appropriately and give the most ideal search experience.[3]  The work employs a multilin-

gual dictionary-based word-to-word query translation. The experimental results is used for evaluation, analysis, 

and comparison of the performance of three different algorithms used for searching patterns. The existing works 

fail to satisfy the needs of Multilingual search through keywords, not only issues of establishing semantic im-

portance of different starting points have to be considered, Additionally ability to gather swift access, de-

duplicating, rectifying, and creating joins are handled. We drew motivation from these factors designed a system 

displaying results for the keyword search through multi-languages with user preferences as the pivotal point. 

The system is envisioned for retrieving multiple languages-based results simultaneously. So, on carrying out a 

search for an English keyword the results are obtained in multiple languages. The plan is to employ Hindi and 

Kannada languages to procure the results. As our team is comfortable conversing in these two languages along 

with English we preferred to use them for result generation. As future work, it can be extended for all Indian 

languages with a script.  

 

The rationale behind the usage of the framework is to ensure the users can view documents written in various 

languages on executing a query. Though contrasts are bound to emerge with monolingual and multilingual situa-

tions provided the users have knowledge of more than one language. The focus is to create UI possessing differ-

ential showcasing capabilities. In a situation where more than one user encounters outcomes Interpreting them 

to few more dialects is essential.  

 



Chayapathi A R1, G Sunil Kumar2, Manjunath Swamy B E3, Thriveni J4, Venugopal K R5 

739 

Based on the multifaceted nature of clients interpreting the components at different stages is accomplished 

for various data-access requirements. Different types of interpretation used are: Title interpretation, Abstract 

interpretation, Keyword interpretation, Term interpretation, Explicit interpretation, caption interpretation, full 

document interpretation are various types. The goal is to construct a search engine capable of giving results in 

multiple languages at a given point in time. As all Indians can converse in more than one language on average, it 

becomes necessary to cater to the information needs of people in multiple languages. Also, the Information will 

be available in multiple languages and the objective is to ensure all the users have access to information in more 

than one language. The intent of our proposed system are: 

 Document Indexing, retrieving, filtering. 

 Prepare Summary and Present the information 

 Procuring metadata in multilingual format; information  retrieval with cross-language capabilities 

 The capability of Semantic Parsing and Morphological analysis  

 Ensure disambiguation techniques and document segmentation process  

 

The focus of the research work is constructing an indexing framework employed for indexing multilingual 

documents. Also developing algorithms for effective storage and posting of multilingual documents is a key 

objective. Such a process ensures an efficient reduction in the index size of vocabulary matches for multiple 

languages is in place. The current day generic search engines like Google produce search results in the suitable 

language: for instance if the search query is in English the information is retrieved English only. For procuring 

results in Multiple languages like Kannada, Hindi, and so on the keywords have to be keyed in those respective 

languages. 

2 Design and Implementation of the Architecture 

The framework for structural design comprises a system to handle objects called frameworks. They also support 

the thinking-process involved in the fundamental property of these elements. Fig.1 elucidates the architecture of 

search engines. In the Admin section File Indexing module is used to allow the administrator to create indexing 

for each file/document uploaded. The Inverted indexing facilitates setting up an index on the Admin section. On 

the User section provision to enter the query for search is given. The Language Translation module determines 

the language used and also determines its comparable languages. The string searching algorithm employed in 

this work can detect a set of pattern strings in a queried text. It also enables speed testing of the equality between 

patterns and the substrings. The Index Mapping module facilitates the determination of the index of the file 

based on the search query and eventually exhibits the results in chosen destination language[1]. 

 

 
Fig.1. The Search Engine Architecture 



Analysis Of  Pattern Matching  Algorithms Used For Searching The Patterns In MLIR Framework 

740 

 

Fig.2 elucidates the blow-up image of the context-level design module planned for implementation in the MLIR 

framework. This also depicts a whole data-system and signifies the interaction taking place with external enti-

ties. 

 
Fig.2. MLIR Framework Contextual Design 

 

 

Steps followed at Admin side of the framework: 

1. Accumulate all indexing documents. 

2.  Initiate the Tokenization process for the text, transforming each document as a list of tokens. 

3. Accomplish linguistic preprocessing to obtain normalized tokens list, that has indexing terms.  

4. Create an inverted index by the process of document Indexing which comprises of a dictionary and 

postings. 

Steps followed at Client-side for displaying the searched result: 

1. Key in the Query for searching. 

2. Translating searched query into supported Language. 

3. Selection of pattern matching Algorithm. 

4. Displays the searched result. 

5. The graph is displayed for Analysing different pattern matching algorithms based on the execution 

time. 

 

2.1 Inverted Indexing  

Indexing is a crucial part of any information retrieval system. It is a challenging task requiring paying atten-

tion to any practical issues. The main goal of hoarding an index is to make faster queries and improved perfor-

mance in detecting correct documents for a given search query. If the indexing method doesn’t exist significant 

amount of time and computing power would have required for the search engine as it would scan every docu-

ment in the collection. For example, if an index of 1,00,000 documents can be inquired in milliseconds,  a  con-

secutive examination of every word in 1,00,000       huge documents requires hours of computation. Further 

bigger system storage is expected to store the index, a moreover a substantial increase in the time for updating 

is evaluated by comparing with the saved information retrieval time. 

Inverted indexing is the most popular index structure in search engines [2]. Inverted Indexing is an indexing 

method used for storing a mapping from content that includes words or numbers to the location where it be-

longs like a table or document or a group of documents. The main reason for using inverted indexing is be-

cause it provides faster full-text searches which come at a cost of increased CPU processing when a docu-

ment is stored in a db. 

 There are different types of indexing techniques like forward indexing, inverted indexing, and Suffix trees. 

Its concurred inverted indexing is better compared with the forward indexing and Suffix trees because it allows 

complete pattern matches instead of simple word-based search, transforming the functionalities as compressed 

suffix array structures. Pattern location through inverted files is more efficient and faster during the usage of 

equivalent memory-based structures.  

 

2.2 Experimental Result 

The execution background is all set through the installation of the necessary IDE for developments through the 

java programming language. The algorithm provided in the design and implementation ensures meeting the 

objectives. Since our experiment is in progress, we have included screenshots in Fig.3, Fig.4, and Fig.5. These 

screenshots lead to achieving the desired outcome. [1] The system built can upload and process the inputs from 

different languages employed. The Fig.3. Depicts LOGIN to the MLIR Search Engine. 

https://en.wikipedia.org/wiki/Computer_Storage


Chayapathi A R1, G Sunil Kumar2, Manjunath Swamy B E3, Thriveni J4, Venugopal K R5 

741 

 
Fig.3.Screenshot for log in to the MLIR Framework 

The Fig.4. Depicts entering the keyword to be searched related to the document, in the proposed system three 

different algorithms have been used to search the content based on the entered keyword and these algorithms are 

analyzed based on the execution time. 

 

 
Fig.4. Searching the content based on the keywords and Algorithm selection 

 

The system is capable of translating all the search queries into different languages we have deployed in the 

design. The system translates all search queries into the various languages based on the user's preferences as 

illustrated in Fig .5 and Fig .6. Our MLIR aims is designed to work on three languages English, Hindi, and Kan-

nada.   

 
Fig.5. Results for the searched keywords 



Analysis Of  Pattern Matching  Algorithms Used For Searching The Patterns In MLIR Framework 

742 

 
Fig.6. Results for the searched keywords 

 

 
Fig.7. Screenshot for uploading the Files into the corpus by the Admin. 

Fig.6 depicts uploading the document to the corpus.This page, provides the option to selecting the language, 

giving title to the document, description of the document, and also provides the instruction for uploading the 

document to the corpus. 

3. Pattern matching Algorithms 

String algorithms are effective in detecting appropriate content within a minimum time. Various research teams 

are deployed to come up with software and hardware designs to ensure quick pattern searching. By applying 

various algorithms in different applications approximate best algorithm is determined.[4] Pattern matching is a 

methodology to verify the apparent sequence of strings to detect the occurrence of the elements of some pat-

terns. Similar to pattern recognition, the matching should be identical. The patterns have the form sequences of 

pattern matching providing the occurrence of a pattern within a sequence of string. So that output is obtained as 

some component of the matched pattern[7]. 

 

In the proposed Architectural design following algorithm has been used for searching requested queries.  

 

1)  Rabin-Karp Algorithm 

2)  Knuth–Morris–Pratt algorithm 

3)  Boyer–Moore string search algorithm 

Rabin-Karp Algorithm 

 



Chayapathi A R1, G Sunil Kumar2, Manjunath Swamy B E3, Thriveni J4, Venugopal K R5 

743 

Rabin-Karp Algorithm works based on the hashing technique. R-K algorithm utilizes hashing value for 

matching and compares from left to right. Rabin-karp string matching algorithm works using modular hashing 

and is the first to introduce the concept of hashing in the string matching process. [10] It is similar to brute force 

comparison except it improves the speed of comparison. The first step is to calculate the hash value of the given 

pattern. It makes the window of size length of the pattern, and this window is made movement right to the text 

each time when hash values become unequal. The second step is to compute the hash value of characters inside 

the window. Then the algorithm iterates through the text string. If hash values of pattern and window become 

equal then only it starts comparison of each character in the window with each character of pattern and if all the 

characters of window matches with the characters of the pattern then return the position of the pattern in the 

text. If characters mismatch then it stops comparison and moves the window to the right by one character and 

continues the above process. [5] 

 
 

The pseudocode employed in the RK algorithm receives the text T, Search pattern P, Q, and d, where d denotes 

|Σ| and is given in the program. The function power(d,m-1) represents d m−1 and mod denotes the regular 

modulo function. The initial for loop is used to preprocess and consumes Θ(m) time for the first process. The 

second for loop is used for matching strings and consumes Θ((n−m+1)m) time in the worst case. If P = am and 

T = an, then the verifications take time Θ((n − m + 1)m), as the possible verifications have a valid shift.[5] 

 

Knuth–Morris–Pratt algorithm 

 

Knuth-Morris algorithm matches the characters of pattern and text from left to right. In Comparison 

with BF algorithm, the KMP algorithm exhibits improved pattern matching characteristics. The algorithm was 

developed by Donald Knuth and Vaughan Pratt, and further by James H. Morris, thus the name KnuthMorris-

Pratt operation. [11]. It works based on prefix and suffix match within the given pattern. Compare each charac-

ter of text with each character of the pattern, if all the characters of pattern matched with the text substring of 

length pattern, then return the starting position of text string where a pattern exists. If there is no match of a par-

ticular character then find a substring in the pattern which must be a suffix as well as a prefix in that substring. If 

no found then compare the next character of text with starting character of the pattern and continue the process. 

If suffix and prefix found then compare the next character of text with the next character immediately after the 

prefix substring and continue the process.  

This method avoids backward movement for comparison and also reduces time complexity. To summa-

rize, a pattern denoted by P[1, . . . , m], the prefix function of the pattern P is given by function π : {1, 2, . . . , 

m} = {0, 1, . . . , m − 1} such that π[q] = max{k : k ≤ q and Pk is a proper suffix of Pq}. Unofficially, π[q] is the 

length of the longest prefix of P which is Pk and q is the current character in the text T. Here is a description of 

the pseudocode.[5] 

 

 

 

 

 



Analysis Of  Pattern Matching  Algorithms Used For Searching The Patterns In MLIR Framework 

744 

 
 

Boyer–Moore: String searching algorithm 

 

Boyer-Moore algorithm compares the letters from right to the left side for the patterns against the text in the 

same direction as like-pattern, starting with the index equal to the length of pattern-1. It matches the tail of the 

pattern rather than the head. It gives better results in less time when the alphabet is reasonably sized and the 

pattern is reasonably lengthy.  

The algorithm is based on some shift mappings or functions that establish the mapping of the shifting index 

according to matching characters or occurrence of the mismatch.[7] 

 

The pseudocode of the algorithm comprises of 2 functions and the main function for computation of the good 

suffix and a function for final occurrence computations. [5] The algorithm monitors the pattern and characters in 

it from right to the left starting from the rightmost one. For a deviation or a complete-match involved for a 

whole pattern, two pre-computed functions are used for shifting the position of the window to the right. 

Here is a description of the two shifts functions-  

• The good suffix shift or matching shift: This ensures alignment of the pattern characters matched against the 

target characters which are already been matched. 

 • The bad character shift or occurrence shift: This avoids the repetition of ineffective comparisons with des-

tination characters. [8] 

 

 



Chayapathi A R1, G Sunil Kumar2, Manjunath Swamy B E3, Thriveni J4, Venugopal K R5 

745 

 

3.1 Analysis of pattern matching Algorithm  

 

In this paper, we have selected three different  String matching algorithms and analyzed them based on time 

complexity and Execution time. When the time complexity for the Rabin Karp algorithm is analyzed O(n +m) 

represents the best case, but the worst-case time complexity of Rabin Karp algorithm is O(nm). Finding the best-

time complexity of the Boyre Moore Algorithm is O(n/m) and the worst-case time complexity is O(nm). The 

best time complexity of the Knuth Morris Algorithm is O(n) and the worst-case time complexity is O(n).[6] 

 

The best algorithm for different applications is determined by using them in different scenarios. Most applica-

tions use Boyer Moore, RK or KMP algorithms for their effective functionality and other applications employ 

the fundamentals of all aforementioned algorithms to determine their functions.[9] 

 

Sl.No 
Execution Time 

Pattren Rabinn Karp Knuth Morris Boyer Moore 

1 Education 2013ms 830ms 2949 ms 

2 acquisition 968ms 275 ms 458 ms 

3 storytelling 601ms 353 ms 1030 ms 

4 knowledge 5113ms 378 ms 936 ms 

5 learning 2302ms 435 ms 564 ms 

6 research 707ms 303 ms 551 ms 

 

Table.1:Execution time of all the three Algorithms used for searching small patterns  in MLIR Framework 

 
Fig.8. Screenshot to compare the Execution time of R-K and KMP Algorithm. 

 

 
Fig.9. Screenshot to compare the Execution time of R-K and BM Algorithm. 

 

 
Fig.10. . Screenshot to compare the Execution time of BM and KMP Algorithm. 



Analysis Of  Pattern Matching  Algorithms Used For Searching The Patterns In MLIR Framework 

746 

 
 

Fig.11. . Screenshot to compare all the three Algorithms 

 

. Table.1 Shows the Execution time of R-k, KMP, and BM algorithms for smaller patterns. Fig.8 shows the 

chart for the execution time of the KMP algorithm and R-k algorithm and in this chart, we can easily analyze 

that KMP executes faster than R-K algorithm in searching the pattern.  Fig.9 shows the chart for the execution 

time of  BM algorithm and R-k algorithm and this graph shows that BM executes faster than R-K algorithm in 

searching the pattern. Fig.10 shows the chart for the execution time of  BM algorithm and KMP algorithm and 

this graph shows that BM executes faster than KMP algorithm. Fig.11 chart shows the comparison of all three 

algorithms. By analyzing above mentioned graphs inferred that KMP algorithm is faster in searching the smaller 

patterns compare to the R-K and BM Algorithm.  

Sl.No 
Execution Time 

Pattern Rabinn Karp Knuth Morris Boyer Moore 

1 Education is the Process 1093ms 245ms 435ms 

2 process of facilitating 1817ms 766ms 295ms 

3 facilitating learning 1913ms 719ms 806ms 

4 acquisition of knowledge 4695ms 1440ms 1355ms 

5 Educational methods 2413ms 317ms 539ms 

6 directed research 2446ms 926ms 563ms 

 

Table.2:Execution time of all the three Algorithms used for searching long patterns  in MLIR Framework 

 
Fig.12. Screenshot of the chart for comparing the Execution time of R-K and KMP Algorithm. 

 
Fig.13. Screenshot of the chart for comparing the Execution time of R-K and BM Algorithm 



Chayapathi A R1, G Sunil Kumar2, Manjunath Swamy B E3, Thriveni J4, Venugopal K R5 

747 

.  

Fig.14. Screenshot of the chart for comparing the Execution time of BM and KMP Algorithm. 

 

 
Fig.15. Screenshot of the chart for comparing all the three Algorithms. 

 

Table.2 Shows the Execution time of R-k, KMP, and BM algorithms for bigger patterns. Fig.12 shows the 

chart for the execution time of  KMP algorithm and R-k algorithm and Fig.13 shows the graph for the execution 

time of  BM algorithm and R-k algorithm and these charts show that R-K algorithm is slower in searching the 

pattern compared to the BM and KMP. Fig.14 illustrates the chart for the execution time of  BM algorithm and 

KMP algorithm and this graph shows that BM algorithm is slightly faster than KMP algorithm. Fig.15 graph 

shows the comparison of all three algorithms. By analyzing above mentioned graphs inferred the BM algorithm 

is faster in searching for the bigger patterns compare to the KMP and RK Algorithm. But, the R-K algorithm has 

limitations, a distinct set of characters with identical hash values is one among them, accordingly, a fake hit 

occurs, leading to a disparity, [7] and it is slower in searching patterns compare to the other two algorithms.  

 

4 Conclusion 

The research work is based on the principles of the semantic-based methodology. Particularly it works for multi-

lingual information retrieval. Three languages used in the work are English, Kannada, and Hindi. A Multilingual 

Information Retrieval System handles inquiry in a solo language and retrieves the records in different dialects. 

The system is developed using multilingual lexicon-based word-by-word translation of queries. Languages like 

Hindi and Kannada are used for producing the outcome. The algorithms allow us to examine keywords in the 

documents of diverse dialects. In the proposed work three different algorithms are used for scanning the entered 

keywords in the corpus and compared all the three algorithms by considering the execution time for smaller 

patterns and longer patterns, by analyzing these graphs of algorithms it can be concluded that KMP algorithm 

efficient for smaller strings and BM works slightly better for long search patterns compare to KMP algorithm.  

The work is envisioned to cater to the needs of documents in different Indian dialects and also constituting big-

word orientations. 

 

References 

 

1. Chayapathi, A.R., Kumar, G.S., Thriveni, J. and Venugopal, K.R., 2021. Usage of Multilingual Indexing for 

Retrieving the Information in Multiple Language. In Advances in Machine Learning and Computational In-

telligence (pp. 255-264). Springer, Singapore. 

2. Xu, X., Pan, S. and Wan, J., 2010, May. Compression of the inverted index for comprehensive performance 

evaluation in Lucene. In 2010 Third International Joint Conference on Computational Science and Optimi-

zation (Vol. 1, pp. 382-386). IEEE. 



Analysis Of  Pattern Matching  Algorithms Used For Searching The Patterns In MLIR Framework 

748 

3. Chayapathi A R, G Sunilkumar, Manjunathswamy B E, Thriveni J, Venugopal KR, 2020, April, NLP-based 

Stemming and Lemmatization approaches for Multilingual Search Indexing. International Journal of Ad-

vanced Science and Technology, Vol. 29, No. 6, (2020), pp. 9121 - 9134. 

4. Singla, N. and Garg, D., 2012. String matching algorithms and their applicability in various applica-

tions. International journal of soft computing and engineering, 1(6), pp.218-222. 

5. Lumburovska, L., 2018. Time-Efficient String Matching Algorithms and the Brute-Force Method (Doctoral 

dissertation, Univerza v Ljubljani, Fakulteta za računalništvo in informatiko). 

6. Rasool, A., Tiwari, A., Singla, G. and Khare, N., 2012. String matching methodologies: A comparative 

analysis. REM (Text), 234567(11), p.3. 

7. Sheikh, N.U., Rahman, H. and Al-Qahtani, H., 2019. An Optimized Pattern Recognition Algorithm for 

Anomaly Detection in IoT Environment. arXiv preprint arXiv:1901.08729. 

8. SS.Swapna, Yashdeep Jha, Syed Zaheed, Keertik Dewangan,Sayyed Mujahid Pasha, A Survey on Different 

Pattern Matching Algorithms of Various Search Engines. International Journal of Engineering Research in 

Computer Science and Engineering (IJERCSE) Vol 6, Issue 10, October 2019. 

9. Minal Suthar, Amit Patel, Shivali Shah,, 2015. A Survey Paper on String Matching. International Journal 

for Scientific Research & Development, Vol. 3, Issue 05, 2015 , ISSN (online): 2321-0613 

10. Hakak, S.I., Kamsin, A., Shivakumara, P., Gilkar, G.A., Khan, W.Z. and Imran, M., 2019. Exact string 

matching algorithms: Survey, issues, and future research directions. IEEE Access, 7, pp.69614-69637. 

11. Zhou, Y. and Pang, R., 2019, December. Research of Pattern Matching Algorithm Based on KMP and 

BMHS2. In 2019 IEEE 5th International Conference on Computer and Communications (ICCC) (pp. 193-

197). IEEE. 


