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Abstract : Group theory is main topic modern algebra and group is also useful in many other fields. In this paper we 

show a special type relationship between group theory and number theory. In this paper will give type group of 

rational functions with coefficients as Fibonacci number with respect composition of mapping operation. We also 

show that is not only a group but also a cyclic group. In this represent a special relation between properties of group 

and rational functions with Fibonacci numbers coefficients. In this paper we gave a special type of recurrence 

relation sequence of rational functions with coefficients as Fibonacci numbers and also we proved the collection of 

all such rational function form a cyclic group with respect to the composition of function operation. In this represent 

a special relation between properties of group and rational functions with Fibonacci numbers coefficients. In this 

paper we gave a special type of recurrence relation sequence of rational functions with coefficients as Fibonacci 

numbers and also we proved the collection of all such rational function form a cyclic group with respect to the 

composition of function operation.     

Keywords: Recurrence relation, group, cyclic. 

 

1. Introduction 

 

1.1. GROUP 

In modern algebra a group is a set which satisfied four properties with respect to the given    operation. Four axioms 

are namely 

 

Closure: - let H be any set and ∗ be any operation on H if 𝑎 ∗ 𝑏 ∈ 𝐇  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎, 𝑏 ∈ 𝐇  then called H satisfied 

closure property.  

 

Associative: - if (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏, 𝑐 ∈ 𝐇 then called H satisfied the associative property.  

 

Existence of Identity: - If there exist an element 𝑒 𝑖𝑛 𝐇 such that 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐇 then called 

identity is exist. 

 

 Existence of Inverse: - if 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎 ∈ 𝐇 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑏 ∈ 𝐇 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑒 then called inverse exist. 

1.2. Cyclic 
 If in a group every elements of a group can be generates by single element of group the group called the cyclic 

group. For example set of integer is a cyclic group with respect to addition. 

   

1.3.  Fibonacci numbers   

In Number Theory there are many special types of numbers according to their special properties. Fibonacci numbers 

are special type of numbers obtained from recurrence relation with given initial terms. Recurrence relation is an 

equation that defines a sequence based on a method that gives the next term as relation of the previous terms [2, 3, 4, 

7]. Recurrence relations are used in various fields of mathematics. 

In Number Theory there are many special types of Sequences of numbers. Fibonacci numbers sequence and Luca 

numbers Sequence both are special type of recurrence relation numbers with given initial terms. Italian 

Mathematician Leonardo of Pisa who is also known as by his nickname Fibonacci (1170-1240) he wrote (Book of 

the Abacus) in 1202. He was 1st European mathematician which work on Indian and Arabian mathematics.  He gave 

a special type sequence 

𝐹𝑛 =  𝐹𝑛−1 +  𝐹𝑛−2𝑛 ≥ 2                                                                                                                   (1.1) 

with initial Term 𝐹0 = 0 and 𝐹1 = 1 
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Edouard Lucas dominated the field recursive series during the period 1878-1891 he was 1st mathematician who 

applied Fibonacci’s name for sequence (1.1) and it has been known as Fibonacci sequence since then. Lucas 

sequence defined by the recurrence relation [5, 6, 8, 11, 17] 

 

 𝐿𝑛 =  𝐿𝑛−1 + 𝐿𝑛−2𝑛 ≥ 2                                                                                                    (1.2) 

With initial term,  𝐿0 = 2             𝐿1 = 1 

 

Terms of the Lucas sequence are called Lucas numbers. Binet forms of 𝑛𝑡ℎ Fibonacci and 𝑛𝑡ℎLucas 

numbers were given by Bernoulli (1724) and Euler (1726) respectively [9,10,12,13] 

 

1.4. Rational function 

𝑓(𝑥) =
𝑝(𝑥)

𝑞(𝑥)
 

 𝑤ℎ𝑒𝑟𝑒 𝑝(𝑥) 𝑎𝑛𝑑  𝑞(𝑥) 𝑎𝑟𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑡ℎ𝑒𝑛 𝑓(𝑥)𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛.  
In this paper we will show that a relationship between group theory and number theory. We will represent a special 

type sequence of rational functions with coefficients as Fibonacci numbers. We will prove collection of all rational 

functions defined by us form a cyclic group.     

 

1.5 Generalized Fibonacci sequences 
Generalized Fibonacci sequence [13,16], is defined as 

𝐹𝑘 =  𝑝𝐹𝑘−1 +  𝑞𝐹𝑘−2 , 𝑘 ≥ 2 𝑤𝑖𝑡ℎ 𝐹0 = 𝑎, 𝐹1 = 𝑏                                                            
where  p, q, a & b are positive integers [1,14,15,] 

For different values of  p,  q,  a & b many sequences can be determined. 

We will focus on two cases of sequences {𝑉𝑘}𝑘≥0 and {𝑈𝑘}𝑘≥0  which generated in  

If  p = 1 , q = a = b = 2 , then we get 

𝑉𝑘 =  𝑉𝑘−1 +  2𝑉𝑘−2 , 𝑘 ≥ 2 𝑤𝑖𝑡ℎ 𝑣0 = 2, 𝑉1 = 2                                                          
The  first  few  terms  of  {𝑉𝑘}𝑘≥0  are  2,  2,  6,  10,  22,  42  and  so  on. 

If p = 1, q = a  =  2 , b = 0 , then we get 

𝑈𝑘 =  𝑈𝑘−1 +  2𝑈𝑘−2 , 𝑓𝑜𝑟  𝑘 ≥ 2 𝑤𝑖𝑡ℎ 𝑈0 = 2, 𝑈1 = 0                                                   
The first few terms of {𝑈𝑘}𝑘≥0 are 2, 0, 4, 4, 12, 20 and so on. 

 

2. Main result of paper 

 Consider a real valued function 𝑢: (0, ∞) → (0,1)  given by 

  𝑢(𝑥) =  
1

1+𝑥
 

This function is clearly continuous on its domain. Clearly 𝑐𝑜𝑑𝑚𝑎𝑖𝑛 𝑜𝑓 𝑢 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑜𝑓 𝑢 so consider 

function 

 𝑢 𝑜 𝑢 =
1

1+
1

1+𝑥

  

Now we define 𝑧𝑘(𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜𝑢 … 𝑜𝑢)(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 (𝑘) 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠. 
Now we define a recurrence relation sequence of rational function  

  𝑧1(𝑥) = 𝑢(𝑥) =  
1

1+𝑥
    and  

     𝑧𝑘(𝑧) =
1

1+𝑧𝑘−1(𝑥)
    for all 𝑘 ≥ 2 

Now we shall show that every member of this family has Fibonacci coefficients. For this purpose we define the 

Fibonacci sequence starting 0,1,1,2,3,5,8,13 …   

Where  𝑓0 = 0  𝑎𝑛𝑑 𝑓1 = 1 𝑎𝑛𝑑  𝑓𝑛 = 𝑓𝑛−1 +  𝑓𝑛−2   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 2 

Now we have  𝑧𝑛(𝑥) =
𝑓𝑛−1 𝑥+𝑓𝑛

𝑓𝑛 𝑥+𝑓𝑛+1
     [1], where 

𝑓𝑖  𝑖𝑠 (𝑖)𝑡ℎ 𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑛𝑑     𝑧𝑛(𝑥) 𝑛𝑡ℎ 𝑡𝑒𝑟𝑚 𝑜𝑓 𝑎𝑏𝑜𝑣𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 

For any 𝑛 ∈ 𝑁 , 𝑡ℎ𝑒 𝑐𝑜𝑑𝑜𝑚𝑎𝑖𝑛 𝑜𝑓 𝑧𝑛(𝑥) 𝑖𝑠 

𝐴𝑛 = (min {
𝑓𝑛−1

𝑓𝑛
,

𝑓𝑛

𝑓𝑛+1
} , max {

𝑓𝑛−1

𝑓𝑛
,

𝑓𝑛

𝑓𝑛+1
}) [1] 

For example we can say that  

𝑐𝑜𝑑𝑜𝑚𝑎𝑖𝑛 𝑜𝑓 𝑧1(𝑥) 𝑖𝑠  𝐴1 = (0,1) 

                                                               𝑐𝑜𝑑𝑜𝑚𝑎𝑖𝑛 𝑜𝑓 𝑧2(𝑥) 𝑖𝑠  𝐴2 = (
1

2
, 1)  
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𝑐𝑜𝑑𝑜𝑚𝑎𝑖𝑛 𝑜𝑓 𝑧3(𝑥) 𝑖𝑠  𝐴3 = (
1

2
,
2

3
) 

And so on we can find co-domain of all functions. 

In particular if k is odd  

𝐴𝑛 = (
𝑓𝑛−1

𝑓𝑛

𝑓𝑛

𝑓𝑛+1
)  

 

If n is even then 

𝐴𝑛 = (
𝑓𝑛

𝑓𝑛+1
,

𝑓𝑛−1

𝑓𝑛
)  

Let 𝐼: (0, ∞) → (0, ∞) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐼(𝑥) = 𝑥 

Let G be set of all  𝑧𝑛(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 and including I function defined above. Now will prove G is cyclic group with 

respect composition operation. 

Closure: - let 𝑧𝑛 𝑎𝑛𝑑 𝑧𝑚  any two function in G then we according to definition    

𝑧𝑛(𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜𝑢 … 𝑜𝑢)(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 (𝑛) 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠. 
𝑧𝑚(𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜𝑢 … 𝑜𝑢)(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 (𝑚) 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠. 

(𝑧𝑛𝑜𝑧𝑚) (𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜𝑢 … 𝑜𝑢)(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 (𝑚 + 𝑛) 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠. 
  (𝑧𝑛𝑜𝑧𝑚) (𝑥) = 𝑧𝑚+𝑛(𝑥) ∈ 𝑮 

So closure property is satisfied.  

Associative: - all compositions are of u so associative property is clearly satisfied. 

Existence of Identity: - since G is including I so clearly identity is exist. 

 

 Inverse: - First we will prove all functions are one-one onto. 

   𝑧𝑛(𝑥) =
𝑓𝑛−1 𝑥+𝑓𝑛

𝑓𝑛 𝑥+𝑓𝑛+1
     , 𝑧𝑛(𝑦) =

𝑓𝑛−1 𝑦 +𝑓𝑛

𝑓𝑛 𝑦+𝑓𝑛+1
 

   𝑧𝑛(𝑥) = 𝑧𝑛(𝑦) 

        
𝑓𝑛−1 𝑥+𝑓𝑛

𝑓𝑛 𝑥+𝑓𝑛+1
=

𝑓𝑛−1 𝑦 +𝑓𝑛

𝑓𝑛 𝑦+𝑓𝑛+1
         After solving this we have  𝑥 = 𝑦 so we can say that all function all one-one. 

Let          
𝑓𝑛−1 𝑥+𝑓𝑛

𝑓𝑛 𝑥+𝑓𝑛+1
= 𝑦 solving this we have    𝑥 =

𝑓𝑛+1 𝑦−𝑓𝑛

𝑓𝑛−1 −𝑓𝑛𝑦
   

Let if possible  𝑓𝑛−1 – 𝑓𝑛𝑦 = 0 𝑡ℎ𝑖𝑠 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑦 =
𝑓𝑛−1

𝑓𝑛
∉ 𝐴𝑛 , 𝑐𝑙𝑒𝑠𝑟𝑙𝑦 𝑥 > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 𝑖𝑛 𝐴𝑛. 

𝑠𝑜 𝑤𝑒 𝑐𝑎𝑛 𝑠𝑎𝑦 𝑡ℎ𝑎𝑡 𝑒𝑣𝑒𝑟𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐴𝑛 ℎ𝑎𝑣𝑒 𝑝𝑟𝑒 − 𝑖𝑚𝑎𝑔𝑒 𝑢𝑛𝑑𝑒𝑟  𝑧𝑛 

So we can say that 𝑧𝑛 𝑖𝑠 𝑜𝑛𝑡𝑜 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 

So we can say that every member of 𝑮 is one-one and onto. So we can say that every member of 𝑮 is invertible. 

Cyclic Property:- every member can be generates by 𝑧1(𝑥) = 𝑢(𝑥) =  
1

1+𝑥
 so we can say that G is a cyclic group 

under the composition operation 

 

 

1. 2nd Main result of paper 

 Consider a real valued function 𝑢: (0, ∞) → (0,1)  given by 

  𝑢(𝑥) =  
1

𝑞+𝑥
 

This function is clearly continuous on its domain. Clearly 𝑐𝑜𝑑𝑚𝑎𝑖𝑛 𝑜𝑓 𝑢 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑜𝑓 𝑢 so consider 

function 

 𝑢 𝑜 𝑢 =
1

1+
1

𝑞+𝑥

  

Now we define 𝑧𝑘(𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜𝑢 … 𝑜𝑢)(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 (𝑘) 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠. 
Now we define a recurrence relation sequence of rational function  

  𝑧1(𝑥) = 𝑢(𝑥) =  
1

𝑞+𝑥
    and  

     𝑧𝑘(𝑥) =
1

𝑞+𝑧𝑘−1(𝑥)
    For all 𝑘 ≥ 2 

Now we shall show that every member of this family has Generalized Fibonacci coefficients. For this purpose we 

define the Generalized Fibonacci sequence starting  

With   𝑓0 = 0  𝑎𝑛𝑑 𝑓1 = 1 𝑎𝑛𝑑  𝑓𝑛 = 𝑞𝑓𝑛−1 + 𝑓𝑛−2   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 2 ,where q is any positive integer. 

Now we will prove  𝑧𝑛(𝑥) =
𝑓𝑛−1 𝑥+𝑓𝑛

𝑓𝑛 𝑥+𝑓𝑛+1
 , where    (1) 

𝑓𝑖  𝑖𝑠 (𝑖)𝑡ℎ 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖 𝑛𝑢𝑚𝑏𝑒𝑟 
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  𝑧𝑛(𝑥) 𝑛𝑡ℎ 𝑡𝑒𝑟𝑚 𝑜𝑓 𝑎𝑏𝑜𝑣𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 

We will prove result (1) by principal mathematical induction (PMI).  

For 𝑛 = 1                                     𝑧1(𝑥) = 𝑢(𝑥) =  
1

𝑞+𝑥
     and 𝑓0 = 0 , 𝑓1 = 1 𝑎𝑛𝑑 𝑓2 = 𝑞 so we can say that (1) 

result is true for 𝑛 = 1  

Now suppose that result is true for 𝑛 = 𝑘  so let  𝑧𝑘(𝑥) =
𝑓𝑘−1 𝑥+𝑓𝑘

𝑓𝑘 𝑥+𝑓𝑘+1
 

 

 

Now we will show that result is also true for 𝑛 = 𝑘 + 1 

Consider  𝑧𝑘+1(𝑥) =
1

1+𝑧𝑘(𝑥)
  now put the value of   𝑧𝑘(𝑥) =

𝑓𝑘−1 𝑥+𝑓𝑘

𝑓𝑘 𝑥+𝑓𝑘+1
 

We have  𝑧𝑘+1(𝑥) =
1

𝑞+
𝑓𝑘−1 𝑥+𝑓𝑘
𝑓𝑘 𝑥+𝑓𝑘+1

=
𝑓𝑘𝑥 + 𝑓𝑘+1

(𝑞𝑓𝑘 + 𝑓𝑘−1)𝑥 +(𝑞𝑓𝑘+1+ 𝑓𝑘)
=

𝑓𝑘 𝑥+𝑓𝑘+1

𝑓𝑘+1 𝑥+𝑓𝑘+2
   

So result is also true for 𝑛 = 𝑘 + 1 so we can say that result is true for all positive integer k by PMI. 

 

Theorem: - prove that 𝑧𝑘(𝑥) are monotonic functions. Particularly if 𝑘 is odd then 𝑧𝑘(𝑥)  is monotonically 

decreasing and if k is even then  𝑧𝑘(𝑥) is monotonically increasing. 

Proof: - clearly 𝑧𝑘(𝑥) all are differentiable on given domain.  So this theorem we will prove by First derivative test.  

We have   
𝑑𝑧1

𝑑𝑥
=  

−1

(𝑞+𝑥)2 < 0 , so 𝑧1(𝑥) is clearly monotonically decreasing function by First derivative test.   

Now by recurrence relation of functions we have 

        
𝑑𝑧𝑘

𝑑𝑥
=  

−1

(𝑞+𝑧𝑘−1)2

𝑑𝑧𝑘−1

𝑑𝑥
 

So we have  𝑠𝑔𝑛 [
𝑑𝑧𝑘

𝑑𝑥
] = −𝑠𝑔𝑛 [

𝑑𝑧𝑘−1

𝑑𝑥
]   

So we can say that if 𝑘 is odd then  
𝑑𝑧𝑘

𝑑𝑥
< 𝑜 

If 𝑘 is odd then 
𝑑𝑧𝑘

𝑑𝑥
> 0 

So finally we can say that if 𝑘 is odd then 𝑧𝑘(𝑥)  is monotonically decreasing and if k is even then  𝑧𝑘(𝑥) is 

monotonically increasing. 

Corollary: - For any 𝑘 ∈ 𝑁 , 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 𝑠𝑒𝑡 𝐴𝑘 𝑜𝑓 𝑧𝑘(𝑥) 𝑖𝑠 

 If k is odd  𝐴𝑘 = (
𝑓𝑘−1

𝑓𝑘

𝑓𝑘

𝑓𝑘+1
) , if n is even then 𝐴𝑘 = (

𝑓𝑘

𝑓𝑘+1
,

𝑓𝑘−1

𝑓𝑘
)  

Proof: - let 𝑘 is odd then 𝑧𝑘(𝑥)  is monotonically decreasing and we have   

 𝑧𝑘(𝑥) =
𝑓𝑘−1 𝑥+𝑓𝑘

𝑓𝑘 𝑥+𝑓𝑘+1
 

So 𝑧𝑘(𝑥) approach to its maximum value as 𝑥 → 0 so we can say that maximum value of 𝑧𝑘(𝑥) →
𝑓𝑘

𝑓𝑘+1
  and 𝑧𝑘(𝑥) 

approach to its minimum value as 𝑥 → ∞ so we can say that minimum value of 𝑧𝑘(𝑥) →
𝑓𝑘−1

𝑓𝑘
 , so finally we can say 

that  𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 𝑠𝑒𝑡 𝐴𝑘 𝑜𝑓 𝑧𝑘(𝑥) 𝑖𝑠 

   𝐴𝑘 = (
𝑓𝑘−1

𝑓𝑘

𝑓𝑘

𝑓𝑘+1
)  if k is odd. 

Let 𝑘 is even then 𝑧𝑘(𝑥)  is monotonically increasing and we have   

 𝑧𝑘(𝑥) =
𝑓𝑘−1 𝑥+𝑓𝑘

𝑓𝑘 𝑥+𝑓𝑘+1
 

So 𝑧𝑘(𝑥) approach to its minimum value as 𝑥 → 0 so we can say that minimum value of 𝑧𝑘(𝑥) →
𝑓𝑘

𝑓𝑘+1
  and 𝑧𝑘(𝑥) 

approach to its maximum value as 𝑥 → ∞ so we can say that maximum value of 𝑧𝑘(𝑥) →
𝑓𝑘−1

𝑓𝑘
 , so finally we can 

say that  𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 𝑠𝑒𝑡 𝐴𝑘 𝑜𝑓 𝑧𝑘(𝑥) 𝑖𝑠 

In particular if k is odd  

𝐴𝑛 = (
𝑓𝑛−1

𝑓𝑛

𝑓𝑛

𝑓𝑛+1
)  

 

If n is even then 

𝐴𝑛 = (
𝑓𝑛

𝑓𝑛+1
,

𝑓𝑛−1

𝑓𝑛
)  

Let 𝐼: (0, ∞) → (0, ∞) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐼(𝑥) = 𝑥 
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Let G be set of all  𝑧𝑛(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 and including I function defined above. Now will prove G is cyclic group with 

respect composition operation. 

Closure: - let 𝑧𝑛 𝑎𝑛𝑑 𝑧𝑚  any two function in G then we according to definition    

𝑧𝑛(𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜𝑢 … 𝑜𝑢)(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 (𝑛) 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠. 
𝑧𝑚(𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜𝑢 … 𝑜𝑢)(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 (𝑚) 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠. 

(𝑧𝑛𝑜𝑧𝑚) (𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜𝑢 … 𝑜𝑢)(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 (𝑚 + 𝑛) 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠. 
  (𝑧𝑛𝑜𝑧𝑚) (𝑥) = 𝑧𝑚+𝑛(𝑥) ∈ 𝑮 

So closure property is satisfied.  

Associative: - all compositions are of u so associative property is clearly satisfied. 

Existence of Identity: - since G is including I so clearly identity is exist. 

 

 Inverse: - First we will prove all functions are one-one onto. 

   𝑧𝑛(𝑥) =
𝑓𝑛−1 𝑥+𝑓𝑛

𝑓𝑛 𝑥+𝑓𝑛+1
     , 𝑧𝑛(𝑦) =

𝑓𝑛−1 𝑦 +𝑓𝑛

𝑓𝑛 𝑦+𝑓𝑛+1
 

   𝑧𝑛(𝑥) = 𝑧𝑛(𝑦) 

        
𝑓𝑛−1 𝑥+𝑓𝑛

𝑓𝑛 𝑥+𝑓𝑛+1
=

𝑓𝑛−1 𝑦 +𝑓𝑛

𝑓𝑛 𝑦+𝑓𝑛+1
         After solving this we have  𝑥 = 𝑦 so we can say that all function all one-one. 

Let          
𝑓𝑛−1 𝑥+𝑓𝑛

𝑓𝑛 𝑥+𝑓𝑛+1
= 𝑦 solving this we have    𝑥 =

𝑓𝑛+1 𝑦−𝑓𝑛

𝑓𝑛−1 −𝑓𝑛𝑦
   

Let if possible  𝑓𝑛−1 – 𝑓𝑛𝑦 = 0 𝑡ℎ𝑖𝑠 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑦 =
𝑓𝑛−1

𝑓𝑛
∉ 𝐴𝑛 , 𝑐𝑙𝑒𝑠𝑟𝑙𝑦 𝑥 > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 𝑖𝑛 𝐴𝑛. 

𝑠𝑜 𝑤𝑒 𝑐𝑎𝑛 𝑠𝑎𝑦 𝑡ℎ𝑎𝑡 𝑒𝑣𝑒𝑟𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐴𝑛 ℎ𝑎𝑣𝑒 𝑝𝑟𝑒 − 𝑖𝑚𝑎𝑔𝑒 𝑢𝑛𝑑𝑒𝑟  𝑧𝑛 

So we can say that 𝑧𝑛 𝑖𝑠 𝑜𝑛𝑡𝑜 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 

So we can say that every member of 𝑮 is one-one and onto. So we can say that every member of 𝑮 is invertible. 

Cyclic Property:- every member can be generates by 𝑧1(𝑥) = 𝑢(𝑥) =  
1

1+𝑥
 so we can say that G is a cyclic group 

under the composition operation 

 

2. Conclusion 

In this represent a special relation between properties of group and rational functions with Fibonacci numbers 

coefficients. In this paper we gave a special type of recurrence relation sequence of rational functions with 

coefficients as Fibonacci numbers and also we proved the collection of all such rational function form a cyclic group 

with respect to the composition of function operation.     
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