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Abstract: Queueing models are used to model various real-life situations and finds various applications in 

engineering and the sciences. To account for the inherent imprecision in real world data, one resorts to fuzzy set 

theoretic methods, which are extremely versatile. In this paper, we analyze the M/G/1 queueing system with setup 

costs in fuzzy environments. A solution procedure is proposed to achieve the primary goal of determining the 

fuzzy performance measures of the system. The problem is reduced effectively to the problem of determining the 

solutions to a pair of parametric nonlinear programs. The graded mean integration scheme is also used for 

defuzzification of the fuzzy characteristics. An example is presented to illustrate the proposed solution procedure. 
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1. Introduction  

Zadeh [1] in 1965 introduced the concept of fuzzy sets. Following Zadeh, the theory of fuzzy sets was developed 

by around 300 researchers – De Kerf [2], Kaufmann [3], Dubois [4], Prade [5], Mizumoto and Tanaka [6] to name 

a few. These researchers have played crucial roles in shaping the modern theory. 

Fuzzy set theory provides a mathematical framework that formalizes the notion of uncertainty and vagueness in 

data. One can transform real-life situations which involve uncertain or fuzzy data into formal mathematical 

models. The theory finds many applications in several areas of science and engineering such as statistics, logic, 

control theory, communication networks, neural networks, operations research etc. Queueing theory is one notable 

field in which fuzzy set theoretic techniques have been applied and put to great use. Notable researchers in fuzzy 

queueing theory include Li and Lee [7], Negi and Lee [8], Buckley [9,10] and Chen [11]. 

Probability theory is central to the subject of classical queueing theory. The parameters of the probability 

distributions used in classical queueing models are crisp real numbers. Real-life data on the other hand, is 

inherently fuzzy. Thus, in real-life situations, the parameters involved are often described using linguistic terms, 

and thus fuzzy set theory comes into picture. 

A popular approach to analyzing queueing models in fuzzy environments is parametric nonlinear programming 

[11,12]. In this paper, we use parametric nonlinear programming to study and analyze the M/G/1 queueing model 

with setup costs [13] in fuzzy environments. This paper is organized as follows. Sec. 2 and 3 discuss in brief the 

necessary preliminaries, Sec. 4 describes the queueing model in discussion, Sec. 5 presents the proposed solution 

procedure, and Sec. 6 illustrates a numerical example. Sec. 7 concludes the study.  

2. Preliminaries 

2.1 Fuzzy set theoretic definitions 

A fuzzy set A  [14] defined on the universe or the domain of discourse X  is characterized by a function A  that 

maps the universe into the closed interval  0,1 . The function A  is called the membership function associated 

with the fuzzy set A . The value ( ) [0,1]A x   of the membership function at a point x  of the universe is 

interpreted as the extent of membership of x  in A , or its membership grade. A fuzzy subset of X  is a fuzzy set 

whose universe is X . 

A useful family of crisp sets associated with a fuzzy set A  are its α-cuts. For 0 1  , the (weak) α-cut of A  , 

denoted A
, is defined by 

                                                    : { | , ( ) }A x x X A x X     .                                              (1) 
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Similarly, the strong α-cut of A , denoted A
, is defined by 

                                                   : { | , ( ) }A x x X A x X      .                                              (2) 

The α-cuts of a fuzzy set A  are nested, i.e. for reals ,  , one has 

                                                       0 1 A A       .                                              (3) 

Special α-cuts of A  include the support and the core, denoted supp A  and core A  respectively. These are 

defined as 

                                                
1 0core : ,      and    supp :A A A A  .                                            (4) 

A useful quantity associated with a fuzzy set is its height h . It is defined as 

                                                            : sup ( ) :h A A x x X  .                                                 (5) 

A fuzzy set is called normal iff its height is one. 

Fuzzy sets whose α-cuts are all convex in X are called convex. A characterization of the convex fuzzy sets is the 

following: the fuzzy set A  is convex iff for each  0,1   and for all elements 1 2, ,x x X  we have that 

                                                    1 2 1 21 min ,A x x A x A x    .                                      (6) 

2.2 Zadeh’s extension principle 

Let f  be a real-valued function that takes n  real arguments, i.e. : nf  . The function that extends the 

definition of f  so as to admit fuzzy inputs to produce a fuzzy output is called the fuzzy extension of f . Such an 

extension was first provided by Zadeh, through his extension principle [14]. 

Formally, suppose that 1 2, , , nA A A  are fuzzy subsets of . Then, B   1 2, , , nf A A A  for some fuzzy 

subset B  of  (the f  here is its fuzzy extension – we will not distinguish between the two to avoid possible 

confusion). The extension principle defines B  through the equation in Eq. (7). 

                         1 2
1

( ) sup   min  , , , ,  where each  ,  |  i i n i
i n

B x A t f t t t x t x
 

     ,            (7) 

along with the convention that sup 0 . 

2.3 Fuzzy numbers 

A fuzzy number [14] is a normal fuzzy subset A  of the real numbers  that satisfies the following properties: 

       (i)  supp A  is bounded, and 

      (ii)  A
 is a closed interval in  for  0,1  . 

Since intervals are convex, it immediately follows that fuzzy numbers are convex. 

2.4 Operations on fuzzy numbers 

Suppose that the function f  is continuous, and that the inputs to f  are fuzzy numbers 1 2, ,A A , nA , with 

 1 2, , , nB f A A A . In principle, B  is defined by Zadeh’s extension principle (see Eq. (7)), which is 

extremely difficult to implement and parse. A relatively easier and equivalent approach that uses α-cuts is due to 

Buckley and Qu [15]. Their result states that B  is a fuzzy number defined by 

                            1 2   ( , , , ) with    , for 0 1| n i iB x x f a a a a A i         .                  (8) 

This result is very versatile in that it enables one to perform various operations on fuzzy numbers. 

3. Trapezoidal Fuzzy Numbers 

The fuzzy number B  is called trapezoidal [16] iff  

                                    

1
1 2

2 1

2 3

4
3 4

4 3

      for 

( )       1           for 

      for 

x
x

B x x

x
x


  


  
 
  



  and zero otherwise,                        (9) 

for some reals 
1 2 3 4
, , ,    that satisfy 3 41 2

   .  We will denote such fuzzy numbers B  as 

 1 2 3 4, , ,B   for brevity.  
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It is easily seen that  1 4supp ,B  , and that  2 3core ,B  . Also, the α-cut of B  is given by the interval 

                                         1 2 1 4 4 3( ) ,  ( ) , for (0,1]B         .                          (10) 

4. The M/G/1 queue with setup times 

4.1 Basic description 

Our considerations will be based on the M/G/1 queueing system, with setup costs (time cost), in fuzzy 

environments. The M/G/1 queue [17] consists of a single server, whose service time is modelled as a random 

variable T . The distribution of T  is assumed to be a general one, i.e. ~T G  for some distribution G . We also 

assume that the arrivals are Poisson distributed with rate parameter  . There is also a time cost associated with 

the server. The server is “switched off” if there are no customers in the system. The next arrival to the queue 

“activates” the server, but it takes a non-zero amount of time until the service begins. This time is called the setup 

time and is modelled as a random variable S . It is also assumed that the service times and the interarrival times 

are independent, and that the queueing discipline is first-come first-served in nature. 

This queueing system has been widely studied, and its performance measures in steady state are already known. 

One must keep in mind that steady state demands that [ ] 1E T  . 

4.2 Relevant results 

We now state the formulae for a few performance measures (in steady state) of the above queueing system [18,19]. 

1. The average time that a customer spends in the queue, 
qW , is given by 

                                     

2 2var [ ] var [ ]
[ ].

2 1 [ ] 2 1 [ ]

q T E T S E S
W E S

E T E S

 

 

    
     

    
                            (11) 

2. The average time that a customer spends in the system, 
sW , is given by 

                                                               [ ].s qW W E S                                                        (12) 

3. The queue length 
qL  and the number of customers in the system 

sL  are given by Little’s formulae: 

                                                         and  .q q s sL W L W                                                    (13) 

We shall study the above queueing system in fuzzy environments, wherein all system parameters are intrinsically 

fuzzy. Our primary goal is to extend the formulae for the above performance measures to admit fuzzy inputs, to 

produce fuzzy outputs. 

5. Solution procedure 

The objective is to satisfactorily analyze the system in question in fuzzy environments, in steady state. We shall 

model any and all fuzziness in the parameters of the system using fuzzy numbers. Henceforth, the Poisson arrival 

rate shall be denoted :  , and the central moments of the service time distribution shall be denoted : [ ]T E T   

and : varT T  . The fuzzy numbers  and S S   are defined similarly. The only (fuzzy) parameters of the system 

are , ,T ,S T  and S .  

It is important to keep in mind that the existence of steady state demands that the traffic intensity   (: [ ]E T  

for a crisp queue) of the system be lesser than one. When the system parameters are fuzzy, this translates to 

sup (supp ) sup (supp ) 1T   . It should also be noted that if either of the distributions of the random 

variables T  and S  is parametrized by a single variable, then the associated mean and variance are not 

independent fuzzy quantities, and thus the number of parameters of the system falls by one. However, we shall 

work in a general setting, and thus assume that the mean and variance are independent quantities.  

Now, the primary goal is to extend the formulae for the performance measures in the previous section to hold in 

fuzzy environments, so that they admit fuzzy numbers as input and produce fuzzy outputs. More precisely, if z  

denotes a fuzzified performance measure of interest, given the membership functions , ,T ,S T  and S , and 

the function 
5:f   that relates the crisp parameters of the system to the crisp performance measure of 

interest, we are to construct the membership function z  of the fuzzified performance measure z .  

Theoretically, we can achieve this by appealing to Zadeh’s extension principle, defined by Eq. (7). We have  

                  5

1 2 3 4 5( ) sup min ( ), ( ), ( ), ( ), ( ) :  with  ( ){ }T S T Sz y x x x x x x f x y                   (14) 

for each y , where 1 2 3 4 5( , , , , )x x x x x x . We also use the convention that sup  0 . But this approach 

is extremely difficult to implement and use. Thus, we appeal to the result due to Buckley and Qu in Eq. (8), which 

uses α-cuts rather than defining the membership function of the output pointwise. Applying this result yields 

            1 2 3 4 5 1 2 3 4 5, , , , :  ,  ,  ,   and  :T S T Sz y f x x x x x x x x x x S     

                 (15) 
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for 0 1  , where the fuzzy output z  is a fuzzy number. This equation is simpler in form and is easier to 

interpret. Henceforth, it will be assumed that 0 1   unless stated otherwise. Since z  is a fuzzy number, its 

α-cuts are closed intervals in . Therefore, ,L Uz z z

 
     with 

                   min min | ( )   and  max max | ( )L Uz z y z y z z y z y 

                   (16) 

We can also write similar equations for the fuzzy rates. Combining Eqs. (15) and (16) for the interval z
, namely 

that [ , ]L Uz z z

   and z S

 , we get 

                          1 2 3 4 5

1 2 3 4 5

min

     = min  ( , , , , )

        subject to ,  ,  ,   and  

L

T S T S

z S

f x x x x x

x x x x x

 

        



    

                   (17) 

                          1 2 3 4 5

1 2 3 4 5

max

     = max  ( , , , , )

        subject to ,  ,  ,   and  

U

T S T S

z S

f x x x x x

x x x x x

 

        



    

                   (18) 

Equivalently, we can write  

                                                   

1 2 3 4 5

1

2

3

4

 = min  ( , , , , )

        subject to     

                        ( ) ( )

                        ( ) ( )

                        ( ) ( )

                   

L

L U

L U

T T

L U

S S

L U

T T

z f x x x x x

x

x

x

x



 

 

 

 

 

 

 

 

 

 

 

 

5     ( ) ( )L U

S Sx   

                                          (19) 

                                                   

1 2 3 4 5

1

2

3

4

 = max  ( , , , , )

        subject to     

                        ( ) ( )

                        ( ) ( )

                        ( ) ( )

                   

U

L U

L U

T T

L U

S S

L U

T T

z f x x x x x

x

x

x

x



 

 

 

 

 

 

 

 

 

 

 

 

5     ( ) ( )L U

S Sx   

                                          (20) 

Thus, to determine the function z , it suffices to solve the optimization problems in Eqs. (19) and (20). These 

problems constitute a pair of parametric nonlinear programs – parametric because the feasible region is 

parametrized by a confidence level  0,1  , and nonlinear since the function f  is nonlinear in general. The 

function f  is continuous on its domain (in particular, it is continuous on the feasible region), and the feasible 

region is closed and bounded in 
5
. Therefore, the extreme value theorem guarantees the solvability of the 

programs in Eqs. (19) and (20). 

We also define the quantities 0 0 and  L Uz z  as the numbers that one obtains when zero is substituted for   and 

simplified in the expressions for the solutions  and  L Uz z   to the programs in Eqs. (19) and (20). Due to continuity, 

it is easily seen that these numbers are the endpoints of the support of z . 

It remains to construct the map z . We now exploit the nested structure of the α-cuts of the fuzzy number z , as 

in Eq. (3). For real numbers ,   with 0 1    , we have 

                                                      , , .L U L Uz z z z z z 

   
                                                     (21) 

Notice how the inclusion is strict – this is not necessarily the case for general fuzzy sets but holds necessarily for 

fuzzy numbers. Now, we turn our attention to the maps 
Lz  and 

Uz . The above inclusion immediately 

implies that these maps are strictly increasing and strictly decreasing, respectively. Therefore, these functions are 

injections, and thus are invertible on their respective ranges. Denote the inverses by  0 1: , 0,1L LL z z     and 



Analysis Of The M/G/1 Queue With Setup Costs In Fuzzy Environments Using Parametric Nonlinear 

Programming 

688 

 1 0: , 0,1U UR z z     respectively. Then, clearly, by definition of the α-cut, it follows that the membership 

function z  of z  is expressible as 

                                    

0 1

1 1

1 0

  ( )           

( )      1              

  ( )           

L L

L U

U U

L y z y z

z y z y z

R y z y z

  


  


 

, and zero otherwise.                         (22) 

It is not easy to obtain simple closed-form expressions for ( )L y  and ( )R y , and thus one resorts to numerical 

approximations. The collection of intervals (the α-cuts) 

                                                                 ,  0,1   |L Uz z                                                   (23) 

can be used to arrive at approximate plot of the map z  by performing interpolation on a finite subset of the 

collection. 

Finally, we defuzzify the fuzzy output, namely the performance measure of interest, into a crisp value for practical 

use. All input fuzziness is encoded in the defuzzified value. There are several defuzzification techniques available 

in the literature. We shall use the graded mean integration scheme, which defuzzifies a given fuzzy number z  

into a crisp quantity by means of the formula 

                                            

 
 

1

1

0

1

0

0

  
2

( )   

 

L U

L U

z z d

z z z d

d

 

 




  

 



   





                              (24) 

where ( )z  is the defuzzified value. 

6. Numerical example 

We now present a numerical example that illustrates the proposed solution procedure. We assume that the arrival 

rate is a trapezoidal fuzzy number given by  

                                                  
12 3 3 4

, , ,  min
60 60 60 60

   
   

 
.                                             (25) 

We also assume that the setup times are exponentially distributed with expected value [ ]E S

 10,12,13,15  minS  . Note that the exponential distribution is a single parameter distribution, and thus its 

variance and mean are dependent. Indeed, we have 

                                                                
2var [ ]S E S .                                                         (26) 

 Further, we assume that the service times are distributed so that [ ] (9,10,11,12) minTE T   and 

2var (1,2,2,3) minTT   . We shall construct the fuzzified queue length L  and the fuzzified waiting time 

W  (in the queue) in steady state. To this end, we first write down the α-cuts of the system parameters. Henceforth, 

we shall assume 0 1  . We have 

     
2 4

, ,  9 ,12 ,  10 2 ,15 2 ,  1 ,3
60 60

T S T

    
         

  
          
 

  (27) 

Now, suppose that f  and g  are the functions that relate the crisp system parameters, namely the arrival rate, 

the mean service time, the mean setup time and the service time variance in that order with the crisp queue length 

and the crisp queue waiting time. Then, using Eq. (26) and Eqs. (11), (12) and (13), we see that 

                                                 

2 2

1 2 4
1 2 3 4 1 3

1 2

2

1 2 4
1 2 3 4 3

1 2

( , , , )
2 1

( , , , ) .
2 1

x x x
f x x x x x x

x x

x x x
g x x x x x

x x

 
  

 

 
  

 

                                        (28) 

Our considerations in the previous section applied to the present case (cf. Eqs. (19) and (20)) yield the following 

pairs of parametric nonlinear programs for the α-cuts of the two performance measures: 
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2 2

1 2 4
1 2 3 4 1 3

1 2

1

2

3

  min  ( , , , )
2 1

2 4
              subject to  

60 60

                               9 12

                               10 2 15 2

                     

L x x x
L f x x x x x x

x x

x

x

x



 

 

 

 
   

 

 
 

   

   

4         1 3x    

                                  (29) 

                                        

2 2

1 2 4
1 2 3 4 1 3

1 2

1

2

3

  max  ( , , , )
2 1

2 4
              subject to  

60 60

                               9 12

                               10 2 15 2

                     

U x x x
L f x x x x x x

x x

x

x

x



 

 

 

 
   

 

 
 

   

   

4         1 3x    

                                (30) 

                                        

2

1 2 4
1 2 3 4 3

1 2

1

2

3

  min  ( , , , )
2 1

2 4
              subject to  

60 60

                               9 12

                               10 2 15 2

                        

L x x x
W g x x x x x

x x

x

x

x



 

 

 

 
   

 

 
 

   

   

4      1 3x    

                                  (31) 

                                      

2

1 2 4
1 2 3 4 3

1 2

1

2

3

  max  ( , , , )
2 1

2 4
              subject to  

60 60

                               9 12

                               10 2 15 2

                        

U x x x
W g x x x x x

x x

x

x

x



 

 

 

 
   

 

 
 

   

   

4      1 3x    

                                   (32) 

The feasible region as parametrized by   is given by 

                         
2 4

, 9 ,12 10 2 ,15 2 1 ,3
60 60

F
 

      
  

          
 

.                (33) 

Also observe that 

                                              
2 4

: , 9,12 10,15 1,3
60 60

F 
 

      
 

.                                   (34) 

We also observe that these nonlinear programs are essentially global optimization problems in 11119four 

variables, and thus techniques of multivariable calculus can be used. The use of a computing utility like MATLAB 

R2020b reveals the following information about the partial derivatives of f  and g : 

1. All the four first partial derivatives of f  are positive on  , and 

2. All the four first partial derivatives of g  are positive on  . 

Therefore, both f  and g  increase with respect to all their arguments on   (and hence on ( )F  ) and thus f  

and g  both attain their maximum and minimum on ( )F   at the points 

                 
2 4

,9 ,10 2 ,1    and   ,12 ,15 2 ,3
60 60

 
     

    
        

   
                (35) 

Therefore, the α-cuts of the fuzzy performance measures L  and W  are given by 
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2 4

,9 ,10 2 ,  1 ,  ,12 , 15 2 , 3
60 60

L f f  
     

     
          

    
             (36) 

2 4
,9 ,10 2 ,  1 ,  ,12 , 15 2 , 3

60 60
W g g  

     
     

          
    

 

We now construct the membership functions of the fuzzy performance measures L  and W . Towards this, we 

determine the intervals 

                                                ,  0.0,0.1, ,1.0   |L Uz z z

                                            (37) 

where ,z L W , using the above expressions for the α-cuts. These intervals are tabulated in Table 1.  

 

 [ , ]L UL L L

   [ , ]L UW W W

   

0.0   [0.3984,2.6333]  [11.9524,39.5000]  

0.1   [0.4324,2.3098]  [12.3547,35.5354]  

0.2   [0.4684,2.0521]  [12.7748,32.4018]  

0.3   [0.5066,1.8410]  [13.2148,29.8543]  

0.4   [0.5471,1.6641]  [13.6769,27.7355]  

0.5   [0.5902,1.5132]  [14.1638,25.9399]  

0.6   [0.6361,1.3823]  [14.6785,24.3938]  

0.7   [0.6851,1.2674]  [15.2248,23.0445]  

0.8   [0.7377,1.1655]  [15.8069,21.8530]  

0.9   [0.7941,1.0742]  [16.4299,20.7901]  

1.0   [0.8550,0.9917]  [17.1000,19.8333]  

 

Table 1 

 

Now, we perform linear interpolation on the data in Table 1 to arrive at the plots of the required membership 

functions. We have used MATLAB R2020b for this purpose, and the results are depicted in Figures 1 and 2. 

 

        
  Fig. 1: Plot of the membership function L            Fig. 2: Plot of the membership function W  

 

It remains to defuzzify the two fuzzy outputs. We use the graded mean integration scheme, which uses the 

following formula for defuzzification of a fuzzy number z  (cf. Eq. (24)) 
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 
 

1

1

0

1

0

0

  
2

( )   

 

L U

L U

z z d

z z z d

d

 

 




  

 

 

   





,                                  (38) 

where ,L Uz z z

 
    . We use MATLAB R2020b to evaluate the integrals for ,z L W . The defuzzified values 

are  

                                            ( ) 1.0135  and  ( ) 19.5825L W   .                                                           (39) 

Practitioners will find these values extremely useful. 

7. Conclusion 

The queueing model discussed in this paper has a wide range of applications – particularly in systems where idle 

servers are deactivated to conserve power. Incorporating fuzziness in the analysis of such queueing systems makes 

the model a better approximation to what happens in reality. The proposed solution procedure reduces the problem 

of determining the performance measures to pairs of optimization problems. The procedure is very generic and 

applies to a wide range of queueing models. Practitioners will find the data obtained through this analysis helpful 

in the design of efficient systems. 
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