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1.Introduction

Repeated measurements, which are done many times, are observations of the same property. What characterizes
such observations from those in the more conventional modelling of statistical data is that the same variable is
measured more than once on the same observational unit. As in the study of natural regression, the answers are
not independent and more than one observational unit is used. The responses do not constitute a simple time
sequence, [1], [2],[10],[11],[15].

In the Bayesian methods to inference, the unknown quantities are viewed as random variables in a probability
model for the observed data. Specifically, the set yet undefined parameters are interpreted in the Bayesian
method as random variables. Bayesian methods focus on the Monte Carlo Markov chain include what we
conclude is the most satisfactory solution to the adaptation of model structure and the path the model is most
likely to go in the future. [5] ,[6] ,[7] .[8] ,[9] .[11] ,[12], [14].

Many studies have explored the repeated measurement model. for example: Vonesh and Chinchilli (1997)
discussed the univariate repeated measurements model , analysis of variance model,[15]. Al-Mouel (2004)
studied the multivariate repeated measures models and comparison of estimators, [1]. Al-Mouel and Wang
(2004) they studied the asymptotic expansion of the sphericity test for the one-way multivariate repeated
measurements analysis of the variance model, [2]. Yin and et al, in (2016), they introduce a Bayesian procedure
for the mixed-effects analysis of efficiency studies using mixed binomial regression models subjects in either
one- or two-factor repeated-measures designs,[16]. Mohaisen and Khawla in (2016), they introduce a Bayesian
procedure for the mixed-effects analysis of efficiency studies using mixed binomial regression models subjects
in either one- or two-factor repeated-measures designs, [13]. AL-Mouel, Mohaisen and Khawla in (2017), they
are used Bayesian procedure based on Bayes quadratic unbiased estimator to the linear one - way
repeated measurements model, [5]. In this work, we consider the estimators corresponding to the expected
mean square rate of repeated measurements model depending on Bayes estimation using Jeffreys' non-
informative prior and proper Bayes estimation, and obtaining 14 cases that were classified into five types,
which are best linear unbiased estimator (BLUE), excepted the type 5 which is bias.

2.Setting Up The Model

The repeated measurement model can be summarized as following:

habc =6+ Ab + ”a(b)+ Bc + (AB)bc+ €abc (1)

where

a =1,...,1"isan index for experimental unit within group (b)",

b =1,...,] "is an index for levels of the between-units factor (Group)",

¢ =1,...,K"is an index for levels of the within-units factor (Time)",

hape - "is the response measurement at time (c) for unit (a) within group (b)",

6 : "is the overall mean",

A, : "is the added effect for treatment group (b)",

Ta(py- "is the random effect for due to experimental unit (a) within treatment group (b)",

B, : "is the added effect for time (c)",

(AB),, : "is the added effect for the group (b) X time (c) interaction",

€qpc. IS the random error on time (c) for unit (a) within group (b)".

For the parameterization to be of full rank, we imposed the following

set of conditions:

YA, =0; YK B.=0; X)_(AB),. =0 foreachc=1,...,K;
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K ((AB)p. =0 foreachb=1,...,J.
and let, the €, and 1, p)are independent with
€apc i-i.d ~N(0,02) and 4y i.i.d ~N (0, 07) )
The (ANOVA) table of one —way RMM is:

Table (1): ANOVA table of one-way repeated measurement model

Source of Degree of Mean Square || Expected of Mean Square
Variation Freedom
Group J-1 S5s, 55, %ZJ;qAaZ: + K o2+c?
J—1
Unit (Group) J(—-1) Ss,. 5SS, Ko2i+c?2
J(—-1)
Time K—1 555 S5g %zi":l B.:Z +a-€2
K—1
Group X Time | (K—1)(J—1) | SSis = —515)«453 ) T Bem1 T (4B} + 07
Residual J(K—1)({I—-1) SS, 55, ol
J(K-DH(I—-1)

The sum of squares due to groups, subjects group, time, group x time and residuals are then defined respectively
as follows:

SS, =1IK Z§=1(_E.b. __’_1...)2; S5, = KZ{l=1 Z{;=1(E_ab. - }_Eb.)z B B
SSp =1 Béoq(hc — h---zz' SSaxp = IZ{’zlz_Ic(zl(h‘bc ~ho=heth)’
SSe = Thes Xos Zer (Rape = Rope = hap. + Ry )?

where

- 1

h = U—KZ§:12§=1 YK hgpe : the overall mean.
h, = %Zﬁzleﬂ Yabe - the mean for group (b).

hep = %25:1 hqpe : the mean for ath subject within group (b).
h,= %Z{ﬂ ¥4_1 hap. - the mean for time (c).

hpe = %Z{lzl hape - the mean for group (b) at time (c).
Let
Oape = O +A, + LETOM B + (AB) (3)
represent the mean of time (c) for unit (a) within group (b).
and, let
H = foe + Z{;:l gbAb + Efz:l Z{;:l eafb Ta(p) + Zi(:l chc +
Yhe1 Tt 5Lc(AB)pc (4) an
arbitrary linear combination of parameters 8, Ay, ..., Ag, (1), ) ¢y » By, ooy By (AB)1y, oo, (AB) j
the best linear unbiased estimators (BLUE's) of the estimable parameters 6, 4;, 4y, Be, (AB)pcand 8, are
6=h, Ay=hy,—h_ fiepy=1~=1)(hap.—hp), B.=h.—h_, (@)bc =hpc+h_ —hy —h, and
9abc = (1 - r)(}_lab. - }_lb) + E.bu [4]
from the variance analysis (ANOVA) table, we have that

E(MS;) = 1, = Ko2 + a? (5) and

E(MS,) = 1, = o (6) since, the ANOVA
estimators of T, and t. are

T, = MS,and T, = MS, (7) The rate of expected mean

squares is denote
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Te ol .
r=—= (8)notethat 0 <r < 1is
T K0ﬂ+¢r€
known iff 62 /52 is known. And the corresponding estimator of r is
No.l 7= = 3% 1 9)

MS;  SSp (K-1)
These estimates can be beyond the parameter space. To trim the estimated value of # by result (9), we put r > 1,
thus obtaining the estimator

. . (SSe 1
No.2 r=m1n{é(K_1), }

is the usual ANOVA estimator.

(10) the trimmed version, No.1,

3. Estimation of Bayes using Jeffreys' previous non-informative prior

A prior distribution is suggested in which the position parameters 6, 4,, B., (AB);. are taken to be distributed
independently of the expected mean squares t,; and ..

Using Jeffreys' rule , they arrive at a non-informative prior distribution in which u, 6, Ay, B;, (AB)pe,
log(t.) and log(t,;) are statistically independent with locally uniform distributions. Thus, the non-informative
prior distribution has the p.d.f:

p(0, Ap, B, (AB)pc, Te, Tn) = P1(Ap, Be, (AB)pc)P2(Te, Tr) ©)
with

p1(8, Ap, B., (AB)}.) < a constant

pZ(Te'Tn) x (Te'Tn)_l ' (Tn 2T > O)-

alternatively, in term of 6, 4,,B,, (AB),., 62 and ¢? the prior p.d.f is
p(H'AbﬁBc' (AB)bc' 0'52' 0'1%) - pl(e Ab' Bc' (AB)bc) Ps3 (062' 07%)
x 0. %(02 + Ko2)™! (11)
subject to the restrictions (t, = t. > 0). The likelihood function is
L(8,Ap, B,, (AB) ., 02,02|h) = [(2nt,(J + Dt (Kt + Ko, + 1,)(J + 1) (KT, + Ko, +

Ja=n_, JU-1(K-1)_, ) ) )
= (ssn) 2 (& 2 =lr-lex {_1 [UK(h...—e) UK(hp=h.=Ap)® | 1K(h.c=h.—Bc)
T T Te T € p 2 T J+D) 1y (Kte+Kog+1y)
R (hpcth, ~hp—h.c~(AB)pc)® | SSp g]}
D) (Kt Kog i) + - + . L(6,Ap, B., (AB) pc, Te, T | )
_Ja-1)-4 _JU-D&E-1 1[IJK(h_-6)2  IJK(hp—-h_—Ap)? | 1JK(h c—h_—Bg)?
(Tﬂ_—) > (Tg) 2 exp {__[] ( ) + ] ( .b. b) + ] ( ..C {:) +
2 T T T
IJK(hpe+h_ —hp—h c—(AB)pe)? | SS. SS,
JK(hpcth, . .;:b. c—(AB)p¢) + n+ e} (12)
T

from result (9) and prior of result(12) we have

p4(9 ‘]457' E)?C' (AB)I}L(‘II Te);]fn I)h') x L(@ Abl Bc' (AB)bCI Tes Tn’lh)pl(gt Abt BCI (AB)bc)pZ (TE' Tn) x
1)—4 -1 1 2 - _ 2 — —_ 2

(TTE)_ B (Tg)_ > (1_6 TT[) exp{ [I]I((:l: -0) + I]K(h.blth___ Ap) + I]K(huc‘[hm Bc) +

T T T

R (hpeth, ~hp—h.c~(AB)pc)* | SSp +§]}

+

Tr T Te

Ja-1) JU-1)(K-1) _0)2
P4(6,Ap, Be, (AB) e, Te Tall) o€ (1) 7 e 2 e (- L[R2

K (hp~h.-Ap)? n K (hc=h..~Bc)* n K (hpeth. ~hp—h.c—(AB)po)* 4 SSm &]}

T

T T T T Te
we have
[ _ [l 1[JK(h, -60)%  1JK(hp—h, —Ap)?
P40, Ay, Bey (AB) e, Te, Talh) o ()| 342l () [ e {— L[ CmOS  UICR0 )
1JK (h.c=h_—Bc)* +UK(h.bc+h..._h‘;:b._h..c_(AB)bc)z 4 S5n +&]} (13)
T

n
subject to the restrictions (—co < 6,4, B, (AB)pe < 0, T, =T, > 0), where [, =J(I —1)(K — 1) and [,
Ja -1).
The marginal p.d.f of (., T;) is given by
Ps (T tall) o (1) 172l r ) [l - 1[5 4 %)) (14)

T Te
subject to the restrictions (—o < 6, A, B, (AB)bC < 00,T; 2T > 0).
the p.d.f. (12) is the product of two inverted gamma p.d.f.'s. thus, if these restrictions are ignored, the of r is:

Pe(rlh) = 5 p (Fiyy, = %r) 0<r<1, (15)

Al MSn ( 11'[2—2 )

(li) 2 ()

where p(F,_ ;. =c) = , 0< ¢ < oo, (16)

(Ig+le)
l 1 l ~_ €/
B(%%)[H(ﬁ)el 2

denote the F- distribution density with [, and [, degree of freedom evaluated at (c). We shall refer to (16) as the
untruncated marginal posterior p.d.f. of r.
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If I > 1,] > 0, the distribution mode with this p.d.f is
o SSe  JU-1)-2

No.3 7= SSp JU-1)(K-1)+2

If J(I — 1)(K — 1) > 2, the distribution mean with p.d.f (14) is
o SSe  JUu-D

No.4 7 = SSp JU-1)(K-1)-2

the distribution mean is infinite.

It can be show that, when the restrictions T, = t. > 0 are taken into account, the marginal posterior p.d.f. of r

IS

17)

a8)ifJU - DK - 1) < 2,

MSg p(Fipie= MSg r)
p;(rlh) = MSe - EMSIZSE ,0<r=<1, (19)
PFinle<T75.)

where F,_,_is a random variable which has distribution is F with [;and [. degrees of freedom.
The distribution mode, for I > 1,] > 0, is the following truncated version of estimator No.3:

o o SSe  JU-1)-2
No0.5 # = min { 55, J0-DE-Dr2" 1} (20)

if J(I — 1)(K — 1) > 2, the truncated marginal posterior distribution mean is:

A & J-1) Ix(u+1, v-1)
No.6 7 = SSp JU-1)(K-1)-2  Ix(u, v) (1)
where x = — 35t _Ju-n v = JU-1)(K-1)
(SSe+ SSp)’ 2 2 '
_ f;‘tu—l(l_t)v—l
L(u,v) = Tﬂ)dt (22)

Indicate the incomplete rate of beta function. If J(I — 1)(K — 1) > 2, There is no mean distribution.

Clearly, estimate No.12 is included in the interval (0. 1], and can be composed as:
A _u 1-x Iy(u+1, v-1) (23)

v-1 x Iy(u, v)
where u, v and x is defined as (22).

4. Proper Estimation of Bayes
Equation (14) suggests that a convenient proper prior p.d.f. for A5 and A, is:
1 1}
-| F+3 - [E+1 1[SSy | SS&
o Crorealh) oc (o) L+l [ enp (- 1255 4 552 24)
Subject to the restrictions t, = 1. > 0.
where 7,17, SS; and SS; are arbitrary positive constants. The likelihood of a set of contrasts of linearly
independent error is:
- le

_ 1 (SSe\2 Y/sse\z 1 1[SSz . SS

L(TE' Tnlssm Sse) = (Tn) 1(Te) ! (_) : (T_:)Z exp {__ [_ +== }

T 2Lty Te

(T 21 >0) (25)
p9(TmTe) = L(Te' TnISSm SSe)p4- (Tm Te)
we have

_[ltlx _[letle 11585, +SS; SS.+SS;
ot o (o) 1 552 (550 {1 [850 2 S50 550 ¥ 550
T €

(T =1 > 0). 26) IfJ(I — 1) + I, > 2, the
untruncated marginal posterior distribution mode of r is:
No.7 7= >etSSe JU-tln-2 (27) and the untruncated
SSp+SSh JU-1)(K—1)+13+2
marginal posterior distribution mode is:
A s (SSe+SS¢ JU-D) -2
No.8 7 = min {55,T+ss;‘T JU-1)(K-1)+1E+2" }
2, the untruncated marginal posterior distribution mean is:
NO9 7 = SSe+5S¢ JU-1)+1}
' SSp+SSk JI-1)(K—1)+15—2
posterior distribution mean is:
No.10 7= 1% Lt vol) (30) with
v-1 x Le(u, v)
SSp+SSs
X=—:
(SSe+SSE+SSp+5S%)
y = A0 _ (k)

28) if J(I — 1)(K — 1) + I* >

(29) and the truncated marginal

2 2
I-1)(K-1)+1 le+lg
and v = )(2 )ezezel
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estimators No.7 and No.10 were calculated by solving that the prior (25) data are a linear independent error
fixed. This procedure is similar to taking the data to be the vector y (for inference about r) and taking the prior
p.d.f. of the vector h.

0,4y, B;, (AB)}¢, T and T, to be

P1o (6' Ab' Bc' (AB)bc' Te) Tn) = p1(9. Abv BC' (AB)bc)pB(Te: Tn)l (30) where

P1( Ap, B;, (AB),) o constant, (31) if the right distribution for
0, A, B.and (AB),. is chosen, it is useful to assume a prior distribution in which the marginal distribution of
T, and T, is given by (24) and the conditional distribution of t. and tis given by (24) and the conditional
distribution of y and z is considered,

e
- (}_l*b _ }_l* ) (]+1)‘En)

L*

_ (E*c _ f_l* ’ K(o2+ 0‘72[)+‘En-)

L*

(32) where h* , %, —h*, h*, —

I R A T

f— -_— - - - L*

h* and h*. + h*. — h’, — h}, are arbitrary constants and L* =1, 4+ [Z + JK. We get the posterior p.d.f. by
integrating this prior with the chance (28).

pll(e Ab' BC’ (AB)bC' Te) Tnlh) - L(Gr Abr Bc' (AB)bC' Te Tnlh)plo(gt Abt BC’ (AB)bCI Tes Tnlh)

ln+ln lE+lE «
R el O W e P {3 (B B i) (33)
according to the restrictions (—o < 8, 4, B., (AB)p. < ©, T, = T > 0).

where
L(h_-6)? | L*(h*-6)? L(Rp—R, -Ap)? | (K -R"—4p)" L(h.c—y . —-Bo)? | L*(Rl.—h* —B.)?
K=( + )+ + o, +( + )+

n T T Tn T T

™ 7 7 7 *(T* Tk 3 2
L(Apc+h, ~hp—R c—(AB)pc)* 4L (Rpo+hE -} —Rc=(AB)pc)
T T

TL—(E__ -0)? + Ti*(ﬁ_*__ —0)2 =1, [Lh% —2Lh_0 + LO? + L'h"? — 2L*h" 0 + L*6?]

=t 167 + 1007 — 2(Lh + L'R2)0 + LS g2 g o2 - GRTRD.

= (L + L)t (97 — Xt (”ELIZ;) ) (R e S
%)2 +1,7" (LE%_ +L'h*2 — _<”7...L++LL**H:1>2)

K=(+L)t, " {(9 _ (LE,L,:ZH,T,))Z n <Tj _ L(E,z;.—ﬁiiii(ﬁ?.-ﬁ))2 n (Bc _ L(fl,,c—ﬁ“z:i:(flfc_71.*“))2 N

o P B I L A~ 2
L(Rpeth ~Fp—T.c—(y) ) +L (Al +R* —RY —A'—(AB
((AB)bc _ L(Apcth. ~hp-hc (TV)ij:L*( hethE =Ry —Ric—( )bc)) ]+‘tn'1G

G = LL'[t (L + L] {(h —R)’ + ((hb —h ) (h* -k ))2 + ((i_l__c —h.)— (k- 71.*..))2 +

_ _ _ _ _ _ 2
((hoe+F =Ry = he = (4B)ye) = (e + 7 = B, = Rie = (4B),c)) |
(34)and L = [JK
the posterior distribution (33) can be rewritten as

p11(0; Ab' BCI (AB)bC' Te» Trrl h) = plZ(e' Ab' BCI (AB)bcl Te» Ty h)p13(Te, TT[l h)
(35) where

= * 2
p12(9; Abl BC’ (AB)bcl Te, Ty h) X T;[zexp {_%(L + L*)‘tfl_1 [(9 - M) + (Ab -

L+L*
VA () 2 e N )
L(hy, hmZ:LL*(h'b' h...)) n (Bc Lk h'fiifh“” h.__)) N (( AB),, —
L(E.bc"'ﬁ..._ﬁb._E..c_(AB)bc)+L*(E*bc+E.*.._E.*b._ﬁfc_(AB)bc))2]}

L+L*
0,4y, B;, (AB) . < ), and

(36) where (—o <

+1
I T3

l,;+le ]

lee 5"

{ 1 [ss,r+ss,*r+a n ssE+ss;]}
2 T Te

p13(TE'TT[|h) X (TT[) [

(37)
Subject to the restrictions ( T, = t. > 0).
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Note that the marginal posterior p.d.f of (T, and t. is given by (37) and has the same form as (23). Thus, from

(37), The above estimators are similar to the No.7-No.10 estimators:
No.ll 7= —etSfe JU-Dtln-2 (38) where (J(I — 1) + I, >

SSp+SSp+G JI-1)(K—-1)+1g+2
2)

(the untruncated marginal posterior distribution mode of),
a” . SSe+SS¢ JU-1)+13-2 .
No0.12 # = min {ss,,+ss,*,+c JO-DE-DiET2’ 1}, (39) (the truncated marginal
posterior distribution mode),
SSe+SSe JU-1)+15

No.13 # = 5455048 JU-DR-D 12 (40) where J(I — 1)(K — 1) +
I:>2)

(the untruncated marginal posterior distribution mean), and
A U 1-x Le(u+1, v-1)
No.14 7= —— T
where JUI — DK — 1) +[; > 2)
(the truncated marginal posterior distribution mean), with
_ SSp+SS;+G
x= (SSe+SSE+ SSp+SSL+G)
_JU-D+E _ letly (42)
- 2 T2
V= 1(1—1)(12<-1)+lz _ ls:lé
The  corresponding  estimators  of 6,4, m,4), Bey (AB)pc, Bape  and  H = £,60 + Z{FlfbAb +

o1 Xhoa oty Moy + XK1 €Be + Yo Yoy €48 (AB) e

(41)

u

are giveQ by
0=h,
oy = (1 =) (hap. — V)
Ab = E.b. - Fl...
BC = }_l..c - }_l
(AB), =hpe+h. —h, —h,

R B N R © . b (43)
Oape =h..+ Ap + Tap) + B, + (AB)bC

éijk = hpe + o)
A= 40+%_¢,(hp —Rh)+Thor Th 1 ple [A = ) (Rap. — ¥5)]
+¥K be(he—h )+ 2K tyto(Rpe+ R —hp —R)

where (a=1,..,I; b=1,..,J; ¢ = 1,...,K). For estimators No.1-No.12, and by
é _ ((Lh"+L*hf)
@+ J/
fawy = A =P (hap. —hp),(@a=1,..,; b=1,..,])
2 L(hp~h )+L* (R} —h)

Ap = (L+LY)
B = Qlheoh )+ (RI—RY)
€~ (L+L¥) > (44)
(AB),, = LbethTlphH L Cpet M Zhp 70D (= i 1 = 17 4 1 + 1)

(L+L*)
Bape =6 + Ay + figpy + B. + (AB),
A= 409 + Z{;=1 fbAb + Zfz:l Z{;=1 ot ﬁa(b) + Z?:l fcgc
+ Z{,:l Z’szl fbfc(AB)bc
where (a =1, ..,I; b=1,...,J; c =1,...,K). For the estimators N0.13-No.16.
There are five types of estimators of 6, A,, gy, Be, (AB) e, Oape @nd H. Notice that all estimators for r based

on the data only from a full collection of sufficient statistics SS,, SS. and h_.

Type 1: This type consists of the following estimators:
él = }_l 1

1 amy = (L= ) (hap. = V),

Al;b = AI,Z:D = f_l.b. __E...r

El;c = El,z;c =h:,—h_,
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(/TB)]_; be = (A\B)l’z; bc = }_l-bC + E - }_l.b. - E..Cl

él; abc = é\1,2; abc = }_l + Al,z;b + ﬁl,z;a(b) + El,z;c + (AB)

A~ _ 1,z;bc’

01,2 abc = hpe + ﬁl,z; a(b):

and

g — J 5 I ] YA =

H = £,6 +%,_; fb(h.b. h) + Ya=12p=1tptc [(1 7) (hap. Y.b.)]
+ Zé{:l ‘EC(E..C - }_l) + Z{,=1 Zé{:l {)b#c(}_l.bc + }_l - }_l.b. - E..c)’

with

~ ~ SSe
= TLZ =Z

E.
where (a=1,..,I; b=1,..,J; c=1,..,K) and z is an arbitrary positive constant. Let §; = 8, denote the
vector of dimensions n X 1 whose ath component is 91,“.

Type 1 estimators will be called untruncated estimators. This type contains No.1, and No.3.

Type 2: This type consists of estimators as follows:

0,=h_,

ﬁz; a(b) = a- 7¢)(Flab. = V)

Az;b = Az,z;b = }_l.b. - f_l,,,,

BZ;C = Bz,z;c = FL..C - Flr

(B),,. = (AB), , =Fpe+h. —hy, —h,,

92; abc = éZ,Z; abc = E + A2,z;b + ﬁz,z; a(b) + Ez,z;c + (1@)

2,z;bc’

92,2; abc = E.bc + 7/-E-Z,z; a(b)»

and

H = 4,6 + Z{,:l ty(hy —h)+ Xl Z{):1 Lol [(1 =) (hap. — Vb))
+ Zé(:l 1/UC(E..C - FL) + Zi:l Zé(:l fbfc(ﬁ.bc + E - E.b. - E..c),

with
#, = ,, = min {z%, 1},
where (a=1,..,I; b=1,...,J; c =1,...,K) and z is an arbitrary positive constant. Let 8, = @Z,Z denote the

vector of dimensions n x 1 whose ath component is 9, ..
Type 2 estimators are known as truncated estimators. This type contains No.2 and No.5.

Type 3: This type consists of estimators as follows:
és = ’_1,., )

7/'i'3; a(b) = (1 - f)(rlab. —¥Yb)

AS:b = A3,Z:b = f_l.b. __}_l...,

E3;c = §3,z;c =h:,—h_,

(‘@)3; be (‘@)3_2; be E.bc + E - E.b. - E..c:

é\3;abc = §3,z; abc = h + A3,z;b + 7’-2'3,2; a(b) + B\3,z;c + (A\B)&z;bc’

é\3,2; abc = E.bc + 7/'E'S,z; a(b)>
and
Hy= 40+ _ p(hp — )+ Xhor Xh_1 ple [(1 — ) (Rap. — V)]
3 0 b=1"b\'“b. a=14p=1"b'c ab. — Vb.
+ 21 te(he—R) + Ty By be(hpe + R —hp — )

with

‘PS = ‘P3,z = f3 (SSTI'SSE)! _ _
where (a=1,..,I; b=1,..,J; c=1,..,K) and f3(x,y) is an arbitrary function of x,y > 0. Let 83 = 63,
denote the vector of dimensions n x 1 whose ath component is 85 ..

This type contains No.1, No.2, No.3, No.5and No.6, we note that types 1 and 2 are special case of type 3.

Type 4: This type consists of the following estimators:
9\3 = FL y _
ﬁs; a(b) = A=) (hap. = Vb )
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AZS;b = ‘?3,2:1) = f_l.b. __]Tl...’
BE:\C ZBS,z;cih..c _h, B B
(AB)S; bc - (AB)S,Z; bc =

+h —h, —h,,
p +

}_l.bc
éS; abc = é\3,2; abc = Fl + A3,z; 7,-2-3,2; a(b) + §3,Z;C + (A/E)S,Z;bc'
93,2; abc = }_l.bc + ﬁS,z; a(b);
and
Hy = €60 + %oy €o(Rp. = h.) + Tims Ty e [(1 = ) (hap. = Tb)]

+ Zlc(:l fc(}_l..c - }_l) + Z{;:1 ?:1 fb{)c(]’_l.bc + E - E.b. - }_l..c)‘

with

A~ A SSe

T'4 = T4,Z = f4 (E),

where (i =1,..,n,j=1,..,q,k =1, ...,q) and f,(x;, x;) is an arbitrary positive function of x, > 0 and x, >
0. Let fiy, = fiy, denote the vector of dimensions n x 1 whose ath component is 8, ,..

Note the special cases of Type 4 estimators are Type 3 estimators. In addition to estimators of type 3, This class
is composed of No.1, No.2, No.3, No.5, No.6, No.7, No.8, No.9, No.10 estimators.

Type 5: this type consists of estimators as follows:
A _ Lh +L"R}

5T+ ~ ~
7/-E'S; a(b) = 7/-E'S,Z;a(b) = (1 - fS,Z)(hab. - h’.b.)l (a =1.,b=1, ;])

N _ L(hp—h )+L*(h3 —h")
AS,z;b - ’

(L+L*)
B _ LR )+L*(RI—RY)
5z,c — (L+L*) )
1D _ L(}_l.bc+}_l..._ﬁ.b._}_l..c)+L*(E_*bc+ﬁi._ﬁ.*c._ﬁfc) _ * __ J* *
(4B),, ,. = ) J(L=UK L =+1;+1)
A _ LR -L'R | L(Rp—h )+L*(R}—R%) o L(hc=h )+L*(RIc~h%)
95;abc - (L+L (L+L7) + 7r5,z;a(b) + (L+L7)
L(Apcth. —hp—h.)+L (R +hE—RY =Rl
(L+L*)
~ __ Lhpc—2L*R*+L*R}, A~
95; abc — < (L+LY) £+ T[S,Z;a(b)
and

HS = 1€)09\5; abc + Z{;:1£bA5,z; b + Zé:l 22:1 fa{)b 65,z;a(b) + Zlc(:l ’?cys,z; c + 2{7:1 ZIC<=1 fb’?c(‘[y)S,z; bc

where (a=1,..,I; b=1,...,J; c =1,...,K) and 75 depends (nontrivially) on G as well as SS. and SS,;, with
G is define in (34).

L=IKand L' =1, +1:+JK. Let 85 = @s_z denote the vector of dimensions n X 1 whose ath component is
Hs,z;a-

This type contains the estimators No.11, No.12, No.13 and No.14.

4. Estimators Description and Category

A complete list of the estimators of r considered in this paper is as follows:
o _ MSe _ SSe 1

No.l #=yce=2e s, (K > 1).
No.2 #=min{>t——, 1}
SSy (K—1)
No.3 7= e _JU-U22
) T oSSy JU-1)(K-1)+2
o SS, Jj(I-1)
No.4 7= ém ,Where]([ - 1)(K — 1) > 2
N (SSe  JU-1)
No.5 7 = min {ssn JDR-D=2’ }
A _ SSe Ju-1) Iy(u+1, v-1) _ _
No.6 f = S T DFED2 La v Wwhere JU—-—1)(K—-1) > 2
___SSs _a-1) _ JU-1)(K-1) _ htta-prt
where x = (SSe+Ssg)’ 2 0T 2 e (wv) = B(uv) d
A SSE+552 JU-1)+1lp-2 _ %
No.7 7= 55,755 JO-D)K-D)1Lt3 Wwhere JJ -1+ 1 > 2
N0.8 7 = min {ocroe JUZDHa=2 43

SSp+SSh JI-1)(K—1)+15+2”

SSe+SSe  JU-D+ln where J(I — 1)(K—1) + 12> 2

No.9 7= SSp+SSp JI-1)(K—1)+15—2
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A U 1-x Le(u+1, v-1)
No.10 7= 1 % L)
with x = —SSmSS _ U Ut g, - JUTDEDHE et
(SSe+SSE+ SSe+5S%)’ 2 2 2 2
A SSe+SS¢ JU-1)+1-2 _ N
No.11 #= 5455048 JU-DK-1)T1or2 Wwhere JU—1)+1;>2
No.12 #= min{—>ets% _JU-Dta=2 4,
SSp+SSp+G JU-1)(K-1)+1c+2
A SSc+SS¢ JU-D)+1; _ _ N
No.13 # = 5455046 JU-DER-D 12 Wwhere JU-D(K-1)+1;>2
No.14 7= 1% L+l voD) where J(I — DK —1) + 12> 2

v-1 x Ie(u, v)
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