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1. Introduction

Repeated measurements, which are done many times, are observations of the same property. What characterizes such
observations from those in the more conventional modelling of statistical data is that the same variable is measured
more than once on the same observational unit. As in the study of natural regression, the answers are not independent
and more than one observational unit is used. The responses do not constitute a simple time sequence, [1],
[2],[10].[11],[15].

In the Bayesian methods to inference, the unknown quantities are viewed as random variables in a probability model
for the observed data. Specifically, the set yet undefined parameters are interpreted in the Bayesian method as random
variables. Bayesian methods focus on the Monte Carlo Markov chain include what we conclude is the most satisfactory
solution to the adaptation of model structure and the path the model is most likely to go in the future. [5] ,[6] ,[7] .[8]
[91,[11] .[12], [14].

Many studies have explored the repeated measurement model. for example: Vonesh and Chinchilli (1997) discussed the
univariate repeated measurements model , analysis of variance model,[15]. Al-Mouel (2004) studied the multivariate
repeated measures models and comparison of estimators, [1]. Al-Mouel and Wang (2004) they studied the asymptotic
expansion of the sphericity test for the one-way multivariate repeated measurements analysis of the variance model, [2].
Yin and et al, in (2016), they introduce a Bayesian procedure for the mixed-effects analysis of efficiency studies using
mixed binomial regression models subjects in either one- or two-factor repeated-measures designs,[16]. Mohaisen and
Khawla in (2016), they introduce a Bayesian procedure for the mixed-effects analysis of efficiency studies using mixed
binomial regression models subjects in either one- or two-factor repeated-measures designs, [13]. AL-Mouel, Mohaisen
and Khawla in (2017), they are used Bayesian procedure based on Bayes quadratic unbiased estimator to the
linear one - way repeated measurements model, [5]. In this work, we consider the estimators corresponding to the
expected mean square rate of repeated measurements model depending on Bayes estimation using Jeffreys' non-
informative prior and proper Bayes estimation, and obtaining 14 cases that were classified into five types, which are
best linear unbiased estimator (BLUE), excepted the type 5 which is bias.

2.Setting Up The Model

The repeated measurement model can be summarized as following:

habc =0+ Ap t ”a(b)+ B, + (AB)bc+ €abc (1)

where

a =1,...,1"is an index for experimental unit within group (b)",

b =1,...,] "is an index for levels of the between-units factor (Group)",

¢ =1,...,K"is an index for levels of the within-units factor (Time)",

hape - "is the response measurement at time (c) for unit (a) within group (b)",

6 : "is the overall mean",

A, : "is the added effect for treatment group (b)",

Ta(py: IS the random effect for due to experimental unit (a) within treatment group (b)",

331


mailto:korihaydar@gmail.com
mailto:abdulhusseinsaber@yahoo.com

B, : "is the added effect for time (c¢)",
(AB),. : "is the added effect for the group (b) X time (c¢) interaction”,
€apc: 1S the random error on time (c¢) for unit (a) within group (b)".
For the parameterization to be of full rank, we imposed the following
set of conditions:
Y _ A, =0; 3K, B.=0; X_(AB),. =0 foreachc=1,...,K;
K ((AB),. =0 foreachb=1,...,J.
and let, the €, and 1, )are independent with
€ap I-1.d ~N(0,0) and m,p,y i.i.d ~N(0,07) )
The (ANOVA) table of one — way RMM is:

Table (1): ANOVA table of one-way repeated measurement model

| Source of I Degree of I Sum I Mean Square I Expected of Mean Square

Wariation Freedom Square
Group JS-1 554 554 %Eézlflg + K o2+’
J—1
Unit (Group) Jr—1) 55 55, Koi+ol
J -1
Time K—1 SS, S55g - ZK B2 + o7
K —1
Growp xTime | (€= DU D | SSaep | SSwen | o B (aB) + o
Residual J(K— 1) — 1) 55, 55, ol
JK -1 —1)

The sum of squares due to groups, subjects group, time, group x time and residuals are then defined respectively as
follows:

SSy = IKYK Ry — 1 )% 8S, = K¥L ¥ (Rap, — hp)?
SSp = I Zes(hc = h.)% SSpxp = 1 Thay Zbor(Bpe = hp. —ho + 1)
SSe = Ther Xy Zer(Rape = Rope = hap. + Ry )?

where

= 1

h = U—Kﬂ:l Y1 TK_1 hape : the overall mean.
h, = %Z{ﬂ YK Yape : the mean for group (b).

Rap = %Zlgzl hapc : the mean for ath subject within group (b).
h,= %Z{zl ¥4_1 hap. - the mean for time (c).

hpe = ; I _1 hape - the mean for group (b) at time (c).

Let

Oape = O+ A, + LETOM B + (AB) (3)
represent the mean of time (c) for unit (a) within group (b).

and, let

H= €09 + 2{7:1 fbAb + Z{z:l 2{7:1 {)afb T[a(b) + Zlc(:l {)ch +

Z{;=1 ZE:l fbfc (AB)bc (4)
an arbitrary linear combination of parameters 6, A4, ..., Ag, Ty (1), -, gy » By, -y By (AB)qy, .., (AB) i
the best linear unbiased estimators (BLUE's) of the estimable parameters 6, 4,, mq), Bc, (AB)pcand Oy, are 0=h_,
Ab = }_l.b. - E! ﬁa(b) = (1 - r)(}_lab. - }_l.b.)l Bc = }_l..c - }_l ’ (A\B)bc = }_l.bc + ,_l - }_l.b. - ,_l..c and éabc =
(1 =) (hap. = hp) + R, [4].
from the variance analysis (ANOVA) table, we have that

E(MS,;) = 1, = Ko2 + a? (5)
and

EMS,) = 1. = 0 (6)
since, the ANOVA estimators of T, and T, are

T, =MS,and T, = MS, ©)
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The rate of expected mean squares is denote

Te _ O'eg

r= (8)

T - Ko.,.2[+a€2

note that 0 < r < 1 is known iff 62 /a2 is known. And the corresponding estimator of r is
o _ MSe _ SSe 1

No.l # = s, = 55 D) 9)

These estimates can be beyond the parameter space. To trim the estimated value of # by result (9), we put r» > 1, thus

obtaining the estimator
SSe
No.2 7 = mm{ss (1< o ,1} (10)

the trimmed version, No.1, is the usual ANOVA estimator.

3. Estimation of Bayes using Jeffreys' previous non-informative prior

A prior distribution is suggested in which the position parameters 8, A,, B., (AB),. are taken to be distributed
independently of the expected mean squares t,; and ..

Using Jeffreys' rule , they arrive at a non-informative prior distribution in which u, 6, Ay, B, (AB)pe
log(t.) and log(t,;) are statistically independent with locally uniform distributions. Thus, the non-informative prior
distribution has the p.d.f:

p(@, Ab' Bc' (AB)bC’ Te» Tn) = pl(Abr BC’ (AB)bc)pZ (Te: Tn) (11)
with

p1(6, Ay, B., (AB),.) « a constant

pZ(TG'Tﬂ) °( (Te'Tn)_l ’ (Trr = Te > 0)-

alternatively, in term of 8, A4,,B,, (AB);., 62 and o2 the prior p.d.fis
P(6, Ay, B, (AB)yc, 02,0%) = p1(6, Ap, B., (AB) ) p3(é, 07)
« 0. %(02 + Ko2)™! (12)
subject to the restrictions (t,, = t. > 0). The likelihood function is
L(8,Ap, B, (AB) e, 02, 07|h) =
[2rt,(J + Dt (Kt + Ko + 1) (J + (KT, + Ko, +

ss, 1D, SS, JEDED 1[UK(h_-8)2  1JK(hp—h_—Ap)? . IJK(h c—h_—Bc)?
T )] ( n) 2 20€ 2 T_l‘r_lexp {__[ .b.~N.~4p .c—N.~5c
Ll T Te T € 2 T J+D) 1y (Kte+Kop+1y)
K (hpeth..—hp—h.c—(AB)pc)* | SSp | SSe
+2E e
(J+1)(Kte+Kog+ty) T Te
Jd=n-4 | _JU-DEK-1) 1[UK(h.~0)% | IJK(hp—h.—Ap)? | IJK(h.c—h.=Bc)?
L(6, Ay, Bey (AB)por T TalW) & (1) 2 (17 2 exp {— 3 [F0emt 4 ARt DR ey
JK(hpe+h_—hp —h_c—(AB SSg . SS,
JK(hpc+h. —hp—h.c—(4B)pc)? +_n+_e} (13)
T T Te

from result (11) and prior of result(13), we have

p4(9' Ab' BC' (AB)bCI Tes Trrlh) x L(@ Abl Bc' (AB)bCI Tes Tn’lh)pl (9, Abt BC' (AB)bc)pZ (TE' Tn) X
A-y-e | _Jdond-1) UK(h.=8)? | IJK(hp=h.~Ap)® | IJK(h.c—h..~Bo)?

() 2 @7 2 (et ewp (-5 [F - Py
UK(h.bc‘*'h“._h.;:b._h“c_(AB)bc)z 4SS 5:[56 }
T T[ €
_[J4-D), [LU-D&K-1) 1[JK(h —6)2  1JK(hp—h_—Ap)?
P40, Ay, Bey (AB) e, Te, Talh) o () ™[ 7 *2lr) [T e - 2[0Sy U hnto
UK(e=h, ~B) | K(hpcth., —hp=hc=(A4B)po)® | SSu +_g]}
T T T

we have
P4(6, Ay, Boy (AB)pe, Tertalh) e (e) [ 5+ e Bt lexp {1

K (hpeth..—hp—h.c—(AB)pc)?

1JK(h_—6)? n K (hp—h_ —Ap)* n 1K (hc—h_—B)*

T T T

SSn Se
2y } (14)

subject to the restrictions (—o < 6, 4,, B;, (AB)pe < ©, T, = 1. > 0),where [, =J(I —1)(K—-1)and [, =J( — 1).
The marginal p.d.f of (., T;) is given by
Ps (T tal) o () 15l r ) B lep [~ 2[5 4 55¢)) (15)

subject to the restrictions (—o < 6, 4, B, (AB)bC < 00,T; 2T > 0).
the p.d.f. (13) is the product of two inverted gamma p.d.f.'s. thus, if these restrictions are ignored, the of r is:

pe(r|h) = = (Fln L Z—?’r) 0<r<1i, (16)

1, tm S. (g=2)
(—”) (mse?) 2
where p(F,_;, = c) = e o 0<c <o (17)
B (E)el 2
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denote the F- distribution density with [, and [, degree of freedom evaluated at (c). We shall refer to (17) as the
untruncated marginal posterior p.d.f. of r.

If I > 1,] > 0, the distribution mode with this p.d.f is
SSe  JU-1)-2

No.3 7= (18)
SSp J(I-1)(K—-1)+2

If J(I — 1)(K — 1) > 2, the distribution mean with p.d.f (15) is

No.4 7 = e JU~V (19)

Sz JU-1)(K-1)-2
if J(I — 1)(K — 1) < 2, the distribution mean is infinite.
It can be show that, when the restrictions T, > t. > 0 are taken into account, the marginal posterior p.d.f. of r is

MSy p(Fl | = Msn )
__ MSe¢ mle™ MSe |
p;(r|lh) = MSy
PFinle<T75.)

where F,_,_is a random variable which has distribution is F with [,and [, degrees of freedom.

The distribution mode, for I > 1,] > 0, is the following truncated version of estimator No.3:
SSe  JU-1)-2

,0<r<i, (20)

No.5# = mln{ SSnm, 1} (21)
if J(I — 1)(K — 1) > 2, the truncated marginal posterior distribution mean is:
a_ & J-1) Iy(u+1, v-1)
No.6 7 = SSp JU-D(K-1)-2  ILe(u, v) (22)
where x = — S5t 4, 2 107D | JU=DEK-1)
(SSe+ SSp) 2 2
_ f;ctu_l(l—t)v_l
Ix(u, 17) = Wdt (23)

Indicate the incomplete rate of beta function. If J(I — 1)(K — 1) > 2, There is no mean distribution.

Clearly, estimate No0.12 is included in the interval (0. 1], and can be composed as:
A _ U 1—x Iy(u+1, v-1)

= Borl vol) (24)

v-1 x Iy(u, v)
where u, v and x is defined as (22).

4. Proper Estimation of Bayes
Equation (15) suggests that a convenient proper prior p.d.f. for t,; and T, is:

- ﬁ+3 - E+1 1[SS; = SSE
o Crorealh) oc (o) 1+l [ enp (- 1255 4 552 25)
Subject to the restrictions t,, = 1. > 0.
where [}, ;, SS; and SS; are arbitrary positive constants. The likelihood of a set of contrasts of linearly independent
error is:

L(te, 1SSy, $S) = (1) 7 (x) ™! (&)17”'1 (%)lf' Cexp{-1 [Z 4 2]}

T 2Lty Te
(T =21 >0) (26)
P9 (T, Te) = L(Te, T |SSn, SSIPa (Tr, Te)
We have
I+l _ [letle N N
ot 1) o (o) | e e {2 [y et} ¢ s s ), @)

If J(I — 1) + L > 2, the untruncated marginal posterior distribution mode of r is:
SSe+SS¢ JU-1)+1p-2

No.7 # = 2 - (28)
SSp+SSy JU-1)(K—-1)+15+2

and the untruncated marginal posterior distribution mode is:

N0.8 # = min{ssetsSe JU- D=2 44 (29)

SSp+SSy JU-1)(K—-1)+15+2

if J(I — 1)(K — 1) + I > 2, the untruncated marginal posterior distribution mean is:

No9 7 = SS€+SSi ](1—1)+ln* (30)
SSp+SSy JU-1)(K-1)+15-2

and the truncated marginal posterior distribution mean is:

No.10 =+ 1= Le(utl, v-1) (31)
v-1 x Iy(u, v)

with

X = ssf+ss,*, _u= JUI-1)+1; _ U+l and v = JU-1)(K-1)+1¢ _ le+lg .

(SSe+SSe+SSp+SSy,) 2 2 2 2

estimators No.7 and No.10 were calculated by solving that the prior (26) data are a linear independent error fixed. This
procedure is similar to taking the data to be the vector y (for inference about r) and taking the prior p.d.f. of the vector
h.

9, Ab' BC’ (AB)bC’ Te and T to be
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P10(0, Ap, Be, (AB) e, Te, Tr) = P1(0, Ap, B, (AB) ) P8(Te, Tr), (32)
where

P1( Ay, B., (AB),.) « constant, (33)
if the right distribution for 6, 4,, B.and (AB),. is chosen, it is useful to assume a prior distribution in which the
marginal distribution of t, and t; is given by (25) and the conditional distribution of T, and t,is given by (25) and the
conditional distribution of y and z is considered,

9~N (h* ‘”) )

N*

~(i_l* - (]+L1)‘En)

_ (E*c _ f_l* ’ K(o2+ cr,%)+1:n)

L*

(34)

I o R e "")*“”]))

where h*,h% —h*,h’. — h* and h*, + hj — h*, — h’, are arbitrary constants and L* =[; + [; + JK. We get the
posterior p.d.f. by integrating this prior with the chance (29).
p11(9 Ab' Bc' (AB)bc' Te» T?Tlh) - L(G' Ab' Bc' (AB)bc' Te Tn:lh)plo(gt Abt Bc' (AB)bc' Te» Tnlh)

g le+1} N
« () [ o) FF 1 e (-3 (Fe e By k) (35)
according to the restrictions (—co < 8, 4, B., (AB)p. < ©, T, = T > 0).
where
K =
(L(E,,,—@)2 + L*(E.*..-G)Z) + (L(ﬁ.b.—ﬁ...—x‘lb)2 + L*(E.*b.—ﬁ.*..—Ab)z) + (L(E..C—J"...—Bc)z + L*(E_*_c—ﬁ.*..—Bc)z) +
T T T T T T

(L(E.bc*‘fl..._E.b._ﬁ..c-(AB)bc)z + L*(EZC'*'E.*.._E};__Efc_(AB)bc)2)
T T
L—(E —0)2 + i(ﬁ* —6)? =1, Y[Lh2 — 2Lh_6 + LO2 + L'h*% — 2L°h" 0 + L"6?]

(Lh +L* h)

+ Lh% + L'h*? —

t[L6% + 167 —2(Lh, + L'R)6 + CRAl R

L+L*

_ e —1(p2 _ 2Wh +L'R1)6 | (Lh_+L* h.._) —1( 772 o pepe2 _ LR FLRY)?
- (L +1L )Tn (9 L+L* (L+L*)? ) + Tn (Lh +1 h L+L* )
— — 2 — —.\2
Lh_+L*h) _ _., (Lh_+Lh?)
_ * -1 _ ( -1 2 * T %2 _
=L+ L), (9 T ) + 1, (Lh___ + L"h™ I

L+L* L+L* L+L*

2
R +LR)\ 2 L(hp~h )+L*(R—RT, R o—R)+L*(R*~R*)\?
K = (L + L*)Tn—l {(9 _ (Lh_+L h)) + <Tj _ b ( J- )) + (Bc _ L(h c—h )+L*(n’; h)) + ((AB)IJC _

L(E.bc"'ﬁ..._}_l.b._’_l..c_(TY)jk)"'L*(}_lzc*'}_li_ﬁfb._}_lfc_(AB)bc) z -1
T +1, G

6= 10Tt L+ (R = R) + (R — ) = (R —F)) + ((Re—R) = (R = 7)) + (e + -

_ _ _ _ _ _ 2
R =R = (4B)ac) = (R + B2~ By, = e = (4B)ac)) | (36)
and L = IJK
the posterior distribution (35) can be rewritten as
p11(0; Ab' BCI (AB)bC' Te» Trrl h) = P12 (9' Ab' BCI (AB)bcl Te» Ty h)p13(Te, TT[l h) (37)
where
_ e - R +L7h)\? L(Rp—R.)+L* (R —R")\*
p12(9; Abl BC’ (AB)bcl TE: TT[I h) X Tnzexp {_%(L + L )TT[ ! [(9 - (L L_:Ll; )) + (Ab - ( & 2-:-14*( b- )) +
L(E..C_E...)‘*L*(Efc_ﬁf.) 2 L(E.bc"'ﬁ..._ﬁb._E..c—(AB)bc)"'L*(’_13)5+’_1i._ﬁfb._ﬁfc_(AB)bc) 2

(BC B L+L* ) + ((AB)”C B L+L* ) (38)
where (—oo0 < 6,4, B., (AB)p. < o), and

ln+l7r lg+le % «

SSp+SSp+G . SSe+SS§

PraCrotalh) o (rp) |5 ey (5 e (1 [  ssevsse (39)

Subject to the restrictions (t, = t. > 0).
Note that the marginal posterior p.d.f of (T, and t. is given by (39) and has the same form as (24). Thus, from (39),

The above estimators are similar to the No.7-No.10 estimators:
No.ll f = —setSSe JU-Dilg-2 (40)
SSp+SSp+G JU-1)(K—1)+1c+2

where JU — 1) + [, > 2)
(the untruncated marginal posterior distribution mode of),
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No.12 7 = mln{ SSe+SSe JU-1)+15-2 1}
. SSp+SSp+G JU-1)(K-1)+1t+2" 777
(the truncated marginal posterior distribution mode),

A SSe+SSE I-1)+1,
No.13 7= St _ JU-DHi
SSp+SSp+G JU-1)(K-1)+1g-2

where JU —1D)(K - 1) + ;> 2)
(the untruncated marginal posterior distribution mean), and

A_ U 1-x Le(u+1, v-1)
No.14 #= i r  Law

where JU —1)(K - 1) + 1 > 2)
(the truncated marginal posterior distribution mean), with

X = SSp+SSi+G \
T (SSe+SSE+ SSp+SSL+G)
U= JU-1)+15 _ Ip+ly
2 2 I
v = JU-DK-D+lg _ letlg J
2 2

The corresponding estimators of 6, Ay, mqp), Be, (AB)pe, Oqpe and H =
é(:l chc + Z{7=1 Z?:l {)bfc(AB)bc

are given by
O=nh_
oy = (L =) (hap. — Vp)
AAb = }_l.b. - ’_1...
Ec = ’_l..c - ’_l

(@)bc =hpe+h, —hy —h,
Oapc =h_+ A, + oy + B. + (@)bc
Oijr = hpe + Raw)
H= €,0+3%)_€y(hp — ) +3hos They Lote [(1 = F)(hap. — 7))
+ X8 be(he—R.)+ Xy Ty bple(hpc + R =Ry —hc)

(41)

(42)

(43)

(44)

?o0 + Zi:l LpAp + Yoy Z{)=1€a{’b Tap) T

\ (45)

where (a=1,..,I; b=1,..,J; ¢ =1,...,K). For estimators No.1-No0.10, and by

- (45

Rawy = (1 =) (han. — k), (@ =1,..,1; b
A (L(P_l_b_—’_l“.)"'l‘*(ﬁ*b._h)

1,..,))

Ab (L+L*)
E _ (L(h c—h )+L*(R*c—h")
¢ (L+L¥)
(‘@)bc _ L(hnbc"'h“._hnb._h“(cl)‘:i*§h.bc+h---_h.b._h..c)’ (L=UK L' =1+ 1 +1)
Oapc =0+ Ay + Rgpy + B, + (AE)DC
H= 2,0+ tyhy + 35y Ty Lty Ra) + ZKo £cB,

+ 2{7:1 Z,cczl fbfc(@)bc

(46)

where (a=1,..,I; b=1,..,J; c =1,...,K). For the estimators No.11-No.14.

There are five types of estimators of 6, A, 4(,), Be, (AB) e, Oape and H.

data only from a full collection of sufficient statistics SS,, SS. and h_.

Type 1: This type consists of the following estimators:

p D)
o
I

Bl;c = Bl,z;c = }_l..c - }_l...’_ B _ ~
(AB)l; bc = (AB)LZ; be = h.bC + h’ - h.b. - h..Cl
91; abc = é\1,z; abc = }_l + A\1,z;b + ﬁl,z;a(b) + El,z;c + (A-B)

1,z;bc’
01,2 abc = hpe + 1,2; a(b)»
and

Notice that all estimators for r based on the
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H = €46 +Z{7=1£b(}_l.b._}_l )+ X 121 Eple [(1 =) (hap, — V)]
f:(:lfc(rl..c_f_l...)‘i'z 12 1€b‘g (hbc+h _hb h ),

where (a=1,..,I; b=1,..,J; c =1,..,K) and z is an arbitrary positive constant. Let 8, = @1_1 denote the vector
of dimensions n x 1 whose ath component is 8, ,.,.
Type 1 estimators will be called untruncated estimators. This type contains No.1, and No.3.

Type 2: This type consists of estimators as follows:

2,z;bc’
92,2; abc = h.bc + T[Z,z; a(b)»
and

H = €06 + Z{,:l ty(hy —h)+3Xhs Z{):1 Lot [(1 = ) (hap, — V)]
+ Zé(:l 1/UC(E..C - FL) + Zi:l Zé(:l fbfc(ﬁ.bc + E - E.b. - E..c),

with
fy =y, = min{z 25, 13,
where (a=1,..,I; b=1,..,J; c=1,..,K) and z is an arbitrary positive constant. Let 8, = 8,, denote the vector

of dimensions n x 1 whose ath component is 8, ,.,.
Type 2 estimators are known as truncated estimators. This type contains No.2 and No.5.

Type 3: This type consists of estimators as follows:

3,z;bc’
93,2; abc = h.bc + 7T3,z; a(b)
and

Hy= 200+ 3 _ty(hp =)+ 2oy 301 008 [(1 = ) (hap. — V)]
+Z§=1£c(}_l..c_ﬁ...)+z 12 1€b£ (hbc+h _hb_h )

with

f3 =13, = f3(557, SSe), _ _

where (a=1,..,I; b=1,..,J; c=1,..,K) and f3(x,y) is an arbitrary function of x,y > 0. Let 83 = 03, denote
the vector of dimensions n x 1 whose ath component is §3‘z;a.

This type contains No.1, No.2, No.3, No.5and No.6, we note that types 1 and 2 are special case of type 3.

Type 4: This type consists of the following estimators:

h
3,z; b + 7,-2-3,2; a(b) + ES,Z;C + (A,B)&z;bc'
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03,2 abc = hpe + 7%3,2; a(b):
and

Hy= €0 +%)_, ty(hp —h)+They Yho1thte [(1 =) (hap. — 7)]
+ ZIC{=1 gc(ﬁ..c - Fl) + Z{;=1 Zé{:l ’Ebfc(f_l.bc + f_l - E.b. - E..c),

with
~ ~ SSe
Ty =14,Z = f4_ (E),

where (i=1,..,n,j=1,..,q,k=1,...,q) and f,(x,, x,) is an arbitrary positive function of x; > 0 and x, > 0. Let
Ay = My, denote the vector of dimensions n x 1 whose ath component is 8, ..
Note the special cases of Type 4 estimators are Type 3 estimators. In addition to estimators of type 3, This class is
composed of No.1, No.2, No.3, No.5, No.6, No.7, No.8, No.9, No.10 estimators.

Type 5: this type consists of estimators as follows:
A _ Lh +L"R}
)
7/-E'S; a(b) = 7/-E'S,Z;a(b) = (1 - fS,Z)(hab. - h’.b.)l (a = 1' ...,I; b= 1' ;])

_ L(hp—h )+L* (A3 —h")

AS,Z;b - (L+L%) 4
B _ L(hc—h )+L*(R—h?)
5z,c — (L+L%) 4
5 _ L(}_l.bc‘*"_l..._ﬁ.b._ﬁ.c)+L*(EEC+ET‘.._ETC._E’.‘C) _ PR *
(4B),, .= o J(L=[K L' =0+ +1)
Bc.ope = LR —L"R: | L(hp—h )+L"(R}, —hY) + Rssam) + L(hc—h )+L*(hc—h?) n L(pcth, —hp—h )+L (R +h—R} —R)
.abc zZ;a
; (L+LY) L+L%) Z5 @+L%) @+L7)
~ __ LRpc—2L*R*+L*R}, ~
95; abc — < (L+L") <+ s5,2; a(b)
and

ﬁs = 1‘009\5: abc + Z{;=1 ’EbAS,z; b + Zfl:l Z{):l ’Ea‘eb Ss,z;a(b) + Zf:l gc)/S,z; c + Z{;:l Zlg:l 1/Dbgc(‘[y)s,z; bc

where (a=1,..,I; b=1,..,]J; c=1,..,K) and 75 depends (nontrivially) on G as well as SS. and SS,, with G is
define in (34).

L=IKandL* =1+ 1+ JK. Let 05 = 55,2 denote the vector of dimensions n x 1 whose ath component is 95‘2;,1.
This type contains the estimators No.11, No.12, No.13 and No.14.

4. Estimators Description and Category

A complete list of the estimators of r considered in this paper is as follows:
p—MSe _ SSe_1

No.l #= = , (K >1).
MS;  SSp (K-1)
A (SSe 1
No.2 7 = mm{ssn = }
o _ SSe  JU-1)-2
No.3 = SSp JU-1)(K-1)+2
o _ SSe  JU-1) _ _
No.4 # = 55, JU—D®E-D2 Wwhere JU—1)(K—1) > 2
A SSe JU-1)
No.5 # = mln{ssn](1—1)(1(—1)—2' }
o _ SSe Ja-1) Le(u+1, v-1) _ _
No.6 = S T DFED2 La v Wwhere JU — 1)(K—1) > 2
_ _ _ X iu—14_4\0-1
where x = — 538 __ 5, = 4@, _ JUZDK D,Ix(u,v) i Gl i dt.
(S§Se+ SSs) 2 2 B(u,v)
o SSe+SSE JU-D+p—2 _ .
No.7 7= 55,155 J0-D)(K-D)Et2 Wwhere JJ -1+ 17 > 2
No.8 # = min{oer>e _JUDtn=2 4,

SSp+SSy JU-1)(K-1)+1i+2"

A SSe+SS; J(I-1)+15 _ _ «
No.9 + = 551558 JU-DE-D =2 Wwhere JU- DK -1 +1;>2
A U 1—x Iy(u+1, v-1)
No.10 7= i % L@
with x = SSp+SSk _JU-D+Ig _ U+l and v = JI-1)(K-1)+1¢ _ le+lg .

(SSe+SSE+ SSe+SSE)’ 2 2 2 2

A SSe+SSE JU-1)+15-2 _ «
No.11 #= S5,455048 JU-DK—1) 31272 Wwhere JU—1)+1;>2

N0.12 # = min{ SSe+SS} JU-1)+15-2 1
’ SSp+SSH+G JU-1)(K-1)+1E+2"
No.13 # = —etS¥e __ JU-Dilq where J(I — 1)(K — 1) + 12 > 2

SSp+SSi+G J(I-1)(K—1)+15—2

338



u 1-x Iy(u+1, v-1)

No.14 += Wwhere JU—1)(K-1)+1;>2

v-1 x Ie(u, v)
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