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Abstract: In this paper, we consider the estimators corresponding to the expected mean square rate of  repeated 

measurements model depending on Bayes estimation using Jeffreys' non-informative prior and proper Bayes estimation, 

and  obtaining 14 cases that were classified into five types. 
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1. Introduction  

Repeated measurements, which are done many times, are observations of the same property. What characterizes such 

observations from those in the more conventional modelling of statistical data is that the same variable is measured 

more than once on the same observational unit. As in the study of natural regression, the answers are not independent 

and more than one observational unit is used. The responses do not constitute a simple time sequence, [1], 

[2],[10],[11],[15]. 

 In the Bayesian methods to inference, the unknown quantities are viewed as random variables in a probability model 

for the observed data. Specifically, the set yet undefined parameters are interpreted in the Bayesian method as random 

variables. Bayesian methods focus on the Monte Carlo Markov chain include what we conclude is the most satisfactory 

solution to the adaptation of model structure and the path the model is most likely to go in the future. [5] ,[6] ,[7] ,[8] 

,[9] ,[11] ,[12], [14]. 

Many studies have explored the repeated measurement model. for example: Vonesh and Chinchilli (1997) discussed the 

univariate repeated measurements model , analysis of variance model,[15]. Al-Mouel (2004) studied the multivariate 

repeated measures models and comparison of estimators, [1]. Al-Mouel and Wang (2004) they studied the asymptotic 

expansion of the sphericity test for the one-way multivariate repeated measurements analysis of the variance model, [2]. 
Yin and et al, in (2016), they introduce a Bayesian procedure for the mixed-effects analysis of efficiency studies using 

mixed binomial regression models subjects in either one- or two-factor repeated-measures designs,[16]. Mohaisen and 

Khawla in (2016), they introduce a Bayesian procedure for the mixed-effects analysis of efficiency studies using mixed 

binomial regression models subjects in either one- or two-factor repeated-measures designs, [13]. AL-Mouel, Mohaisen 

and Khawla in (2017), they are used Bayesian  procedure  based  on  Bayes  quadratic  unbiased  estimator  to  the  

linear  one - way  repeated measurements  model, [5]. In this work, we consider the estimators corresponding to the 

expected mean square rate of  repeated measurements model depending on Bayes estimation using Jeffreys' non-

informative prior and proper Bayes estimation, and  obtaining 14 cases that were classified into five types,  which are 

best linear unbiased estimator (BLUE), excepted the type 5 which is bias.  

2.Setting Up The Model 
The repeated measurement model can be summarized as following:  

     =   +    +      +    +       +                                                                        (1) 

where 

        "is an index for experimental unit within group (b)", 

        "is an index for levels of the between-units factor (Group)", 

       "is an index for levels of the within-units factor (Time)", 

     : "is the response measurement at time (c) for unit (a) within group (b)", 

  : "is the overall mean", 

   : "is the added effect for treatment group (b)", 

     : "is the random effect for due to experimental unit     within treatment group    ", 
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   : "is the added effect for time    ", 

       : "is the added effect for the group       time     interaction", 

    : "is the random error on time     for unit     within group    ". 

For the parameterization to be of full rank, we imposed the following 

set of conditions: 

∑   
 
        ∑   

 
         ∑       

 
       for each c = 1,…, K; 

∑       
 
       for each b = 1,…, J. 

and let, the      and      are independent  with  

                  
    and                    

                                                                   (2) 

The (ANOVA) table of one – way RMM is: 

 

 

The sum of squares due to groups, subjects group, time, group   time and residuals are then defined respectively as 

follows: 

      ∑   ̅     ̅         ∑ ∑   
   

 
   

 
    ̅     ̅    

   

      ∑   ̅     ̅    
   ,        ∑ ∑   

   
 
    ̅     ̅     ̅     ̅    

    ∑ ∑ ∑   ̅     ̅          ̅    
  

   
 
   

 
     

where 

 ̅  
 

   
∑ ∑ ∑     

 
   

 
   

 
     : the overall mean. 

 ̅    
 

  
∑ ∑     

 
   

 
    : the mean for group (b). 

 ̅    
 

 
∑     

 
     : the mean for ath subject within group (b). 

 ̅    
 

  
∑ ∑     

 
   

 
    : the mean for time (c). 

 ̅    
 

 
∑     

 
    : the mean for group (b) at time (c). 

Let 

         +    +      +    +                                                                                                        (3) 

represent the mean of time (c) for unit     within group    . 

and, let  

       ∑     
 
    ∑ ∑     

 
   

 
         ∑     

 
      

          ∑ ∑           
 
   

 
                                                (4)  

an arbitrary linear combination of parameters   ,        ,               ,        ,                 . 

the best linear unbiased estimators (BLUE's) of the estimable parameters                      and      are  ̂   ̅ , 

 ̂   ̅     ̅ ,  ̂            ̅     ̅    ,  ̂   ̅     ̅  , (  ̂)
  

  ̅     ̅   ̅     ̅    and  ̂    

     ( ̅     ̅   )   ̅   , [4]. 

from the variance analysis (ANOVA) table, we have that 

             
    

                                                                                                                        (5)  

and 

            
                                                                                                                           (6)  

since, the ANOVA estimators of     and    are 

 ̂      and  ̂                                                                                                                         (7)  
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The rate of expected mean squares is denote 

    
  

  
  

  
 

   
    

                                                                                                                              (8)  

note that       is known iff   
   

 ⁄  is known. And the corresponding estimator of   is 

No.1    ̂  
   

   
 

   

   

 

     
                                                                                                              (9)  

These estimates can be beyond the parameter space. To trim the estimated value of  ̂ by result (9), we put   > 1, thus 

obtaining the estimator 

No.2    ̂       
   

   

 

     
                                                                                                      (10) 

 the trimmed version, No.1, is the usual ANOVA estimator. 

3. Estimation of Bayes using Jeffreys' previous non-informative prior 

A prior distribution is suggested in which the position parameters  ,              are taken to be distributed 

independently of the expected mean squares          . 

Using Jeffreys' rule , they arrive at a non-informative prior distribution in which  ,  ,                

                   are  statistically independent with locally uniform distributions. Thus, the non-informative prior 

distribution has the p.d.f: 

   ,                                                                                            (11) 

with 

    ,                           

                 
         ,           . 

alternatively, in term of                   
         

  the prior p.d.f is  

                   
    

                           
    

    

                                               
     

     
                                                                     (12) 

subject to the restrictions          . The likelihood function is 

                   
    

 |   
[                                      

   ]
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+-                          (13) 

from result (11) and prior of result(13), we have 

                       |                         |                                
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we have 

                       |       
 * 

  
 
  +    

  *
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+-                         (14)  

subject to the restrictions                              , where                and          . 

The marginal p.d.f of         is given by 

          |       
 * 

  
 
  +    

  *
  
 
  +   , 

 

 
*
   

  
 

   

  
+-                                           (15) 

subject to the restrictions                                

the p.d.f. (13) is the product of two inverted gamma p.d.f.'s. thus, if these restrictions are ignored, the of   is:  

    |   
   

   
 (      

 
   

   
 )                                                                              (16) 

where  (        )  
 
    
  

 
    
  

       
   

  
         

 

  
      
 

 
      
 

 [  (
    
  

) ]
         

 

    ,  0                                               (17)  
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denote the F- distribution density with             degree of freedom evaluated at ( ). We shall refer to (17) as the 

untruncated marginal posterior p.d.f. of   .  

If        , the distribution mode with this p.d.f is  

No.3    ̂   
   

   

        

             
                                                                                              (18) 

If              , the distribution mean with p.d.f (15) is 

No.4   ̂   
   

   

      

             
                                                                                               (19)  

if              , the distribution mean is infinite. 

It can be show that, when the restrictions         are taken into account, the marginal posterior p.d.f. of    is 

    |   

       
   

 (       
       
   

 )

         
       
   

 
         ,                                                                      (20) 

where       
 is a random variable which has distribution is F with            degrees of freedom.  

The distribution mode, for        , is the following truncated version of estimator No.3: 

No.5  ̂        
   

   

        

             
                                                                                      (21) 

if              , the truncated marginal posterior distribution mean is: 

No.6  ̂  
   

   

      

             
 
              

          
                                                                               (22) 

where   
    

          
   

      

 
   

           

 
   

        
∫              
 

      
                                                                                                  (23) 

Indicate the incomplete rate of beta function. If              , There is no mean distribution. 

Clearly, estimate No.12 is included in the interval (0. 1], and can be composed as:  

 ̂  
 

   

   

 
 
              

          
                                                                                                      (24)  

where           is defined as (22).  

4. Proper Estimation of  Bayes  

Equation (15) suggests that a convenient proper prior p.d.f. for           is: 

          |       
 [ 
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*
   

 

  
 

   
 

  
+-                                          (25)  

Subject to the restrictions        . 

where   
    

     
         

  are arbitrary positive constants. The likelihood of a set of contrasts of linearly independent 

error is: 

        |             
      

  (
   

  
)

  
 
   

(
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*
   

  
 

   

  
+- 

,(                                                                                                                            (26) 

                 |                    

 We have               

              
 [ 
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  [

     
 

 
  ]
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*
       

 

  
 

       
 

  
+- , (                                                (27) 

 If          
   , the untruncated marginal posterior distribution mode of   is:  

No.7    ̂   
       

 

       
 

         
   

              
   

                                                                                    (28)  

and the untruncated marginal posterior distribution mode is: 

No.8  ̂       
       

 

       
 

         
   

              
   

                                                                          (29) 

 if               
   , the untruncated marginal posterior distribution mean is: 

No.9   ̂   
       

 

       
 

         
 

              
   

                                                                                   (30)  

and the truncated marginal posterior distribution mean is: 

No.10   ̂  
 

   

   

 
 
              

          
                                                                                       (31)  

with 

   
        

 

        
         

  
   

         
 

 
 

      
  

 
          

              
 

 
 

     
 

 
 . 

estimators No.7 and No.10 were calculated by solving that the prior (26) data are a linear independent error fixed. This 

procedure is similar to taking the data to be the vector y (for inference about  ) and taking the prior p.d.f. of the vector 

h.  

                         to be  
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                                                     ,                                          (32) 

 where  

                   constant,                                                                                             (33) 

 if the right distribution for                   is chosen, it is useful to assume a prior distribution in which the 

marginal distribution of           is given by (25) and the conditional distribution of          is given by (25) and the 

conditional distribution of y and z is considered, 

   ( ̅   
  

  

  )                                                                     

   ( ̅   
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 (  
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                                                        (34)  

where  ̅ 
   ̅   

   ̅ 
   ̅   

   ̅ 
       ̅   

   ̅ 
   ̅   

   ̅   
  are arbitrary constants and       

    
    . We get the 

posterior p.d.f. by integrating this prior with the chance (29).  

                        |                         |                          |    
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according to the restrictions                              . 
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}                                                                        (36) 

 and        

the posterior distribution (35) can be rewritten as 

                        |                       |                  |                    (37) 

where  
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where                      , and 

         |         
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*
       

   

   
 

       
 

  
+-                                                             (39)  

Subject to the restrictions           . 

Note that the marginal posterior p.d.f of       and    is given by (39) and has the same form as (24). Thus, from (39), 

The above estimators are similar to the No.7-No.10 estimators: 

No.11    ̂   
       

 

       
   

         
   

              
   

                                                                                    (40)  

where           
     

(the untruncated marginal posterior distribution mode of),  
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No.12  ̂        
       

 

       
   

         
   

              
   

   ,                                                                       (41) 

 (the truncated marginal posterior distribution mode),  

No.13    ̂   
       

 

       
   

         
 

              
   

                                                                                    (42)  

where                
     

(the untruncated marginal posterior distribution mean), and  

No.14   ̂  
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where                
     

(the truncated marginal posterior distribution mean), with  
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The corresponding estimators of                           and        ∑     
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are given by  
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where                            . For estimators No.1-No.10, and by  
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                           (46)  

where                            . For the estimators No.11-No.14. 

There are five types of estimators of                           and  . Notice that all estimators for   based on the 

data only from a full collection of sufficient statistics         and  ̅ .  

Type 1: This type consists of the following estimators: 
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 (  ̂)
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and 



337 
  

 ̂       ∑   ( ̅     ̅   )
 
    ∑ ∑     

 
   

 
   [    ̂   ̅     ̅    ]   

 ∑   ( ̅     ̅ ) 
    ∑ ∑     ( ̅     ̅   ̅     ̅   )

 
   

 
   

          
    

  

with 

 ̂   ̂      
   

   
.  

where                             and z is an arbitrary positive constant. Let  ̂    ̂    denote the vector 

of dimensions     whose ath component is  ̂     . 

Type 1 estimators will be called untruncated estimators. This type contains No.1, and No.3. 

Type 2: This type consists of estimators as follows: 
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 ̂            ̂   ̅     ̅    , 
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with 

 ̂   ̂          
   

   
   ,  

where                             and z is an arbitrary positive constant. Let  ̂    ̂    denote the vector 

of dimensions     whose ath component is  ̂     . 

Type 2 estimators are known as truncated estimators. This type contains No.2 and No.5. 

Type 3: This type consists of estimators as follows: 
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with 

 ̂   ̂                ,  

where                             and         is an arbitrary function of      . Let  ̂    ̂    denote 

the vector of dimensions     whose ath component is  ̂     . 

This type contains No.1, No.2, No.3, No.5and No.6, we note that types 1 and 2 are special case of type 3. 

Type 4: This type consists of the following estimators: 
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where                           and           is an arbitrary positive function of      and     . Let 

 ̂    ̂    denote the vector of dimensions     whose ath component is  ̂     . 

Note the special cases of Type 4 estimators are Type 3 estimators.  In addition to estimators of type 3, This class is 

composed of No.1, No.2, No.3, No.5, No.6, No.7, No.8, No.9, No.10 estimators. 

Type 5: this type consists of estimators as follows: 
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where                             and  ̂  depends (nontrivially) on   as well as     and    , with G  is 

define in (34). 

      and      
    

    . Let  ̂    ̂    denote the vector of dimensions     whose ath component is  ̂     . 

This type contains the estimators No.11, No.12, No.13 and No.14. 

4. Estimators Description and Category  

A complete list of the estimators of    considered in this paper is as follows: 
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