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Abstract: In this work, we develop and trained deep learning models for the segmenting and classification of 

cassava leaf disease as Blight or Mosaic. As the second-largest provider of carbohydrates in Africa, cassava is a key 

food security crop grown by smallholder farmers because it can withstand harsh conditions. At least 80% of 

household farms in Sub-Saharan Africa grow this starchy root, but viral diseases are major sources of poor yields.  

Our emphasis here was on two major cassava diseases that occur in Nigeria which are the Cassava Mosaic Disease 

(CMD) and the Cassava Bacterial Blight disease (CBBD). A total of 46 models were trained in five categories from 

over 21397 cassava leaf images was collected at different times of day containing leaves at different levels of 

symptom manifestation. One model diagnosed the healthy leaf and the other model detected the diseases that are 

present on the leaf when diagnosed as an unhealthy leaf and two most accurate models were exported. A 5-fold 

cross-validation was used to test the Separable Convolutions UNet model developed for health diagnosis and the 

Separable Convolutions UNet model developed for disease detection which yielded accuracies of 83.9% and 61.6% 

respectively. 

 

 

1. Introduction: 

Cassava is one of the most important staple food crops in Africa. Three continents, Africa, Asia and Latin 

America produce large amounts of cassava roots. Over 500 million people in the tropical world particularly Africa 

depend on cassava as one of their major staple foods. In Asia and Latin America, productions are largely used as 

raw materials for industries, as animal feed or for export markets. In Africa, the bulk of production is depended on 

as food by humans. Cassava is one of the most significant food security crops in some parts of sub-saharan Africa 

and has proved to be the most dependable crop in a number of countries as the last line of defence against famine. In 

the last decade, cassava is cultivated not just for human consumption in sub-saharan Africa but also to provide raw 

materials for emerging industries that depend on products from the roots, particularly starch. 

 The ability of cassava to thrive or do well on poor soils gives it an advantage over yam and the other root 

and tubers, grains or legumes in Africa. For many years to come cassava will continue to be an important source of 

carbohydrate to millions of people, particularly the rural and urban poor in Africa. Cassava, therefore, has to be 

managed more effectively than it is currently experiencing to increase its yield per unit area to ensure that more than 

enough roots in particular are produced to satisfy domestic, industrial and food security requirements at all times. 

 Among the factors that affect cassava production, diseases and pests still remain the major constraints that 

can bring Africa’s cassava production to a halt. The recent East African Cassava Mosaic pandemic and the food 

shortages that resulted from it adds value to the above statement.  African cassava mosaic disease is still widespread 

and causes severe yield losses in production systems that depend on susceptible cultivars. Cassava bacterial blight, 

anthracnose, bud necrosis, leaf spots and root rot diseases affect yields of cassava in almost all producing countries 

in Africa. Information on yield losses due to diseases are often based on estimates but observations indicate that 

losses are significant in most of the cassava growing areas of Ghana. 

What is the Importance of Cassava Diseases? 

• Diseases cause low yields of edible roots. 

• Low yields due to diseases affect incomes of farmers. 

• Food security is reduced by diseases. 

• Severe outbreaks of diseases such as cassava bacterial blight can result in famine (in whole communities or 

countries). 

• Cassava diseases that affect stems can lead to loss or shortages in the supply of planting materials. 

• Loss of leaves through diseases can affect the availability of leafy vegetables. 
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• Loss of leaves and poor yield of storage roots can affect livestock production in communities that use 

cassava as animal feed. 

 Unfortunately, however, cassava farmers in most producing countries in Africa do very little or nothing to 

control diseases and pests of the crop. An impression that exists among cassava farmers (particularly in Ghana) is 

that cassava cuttings will give some root yields no matter where they are planted even if no attention is paid to the 

plants. Also, it is common to meet farmers who regard symptoms of certain diseases of cassava as signs of plant 

maturity. These incorrect impressions need to be corrected to increase yields of cassava. Farmers must be made 

aware of diseases and their importance and why it is necessary that diseases must be controlled. 

 This text is, therefore, written to introduce cassava as a crop with diseases that need to be controlled to 

increase yields to meet demands for consumption, food security and raw material requirements of industry. 

Symptoms of diseases have been shown or described to make disease identification an easy exercise. Actions that 

can be undertaken to control specific diseases have been described. Agriculture extension agents, farmers and 

students of agriculture will find this small text a very useful guide to controlling diseases of cassava.   

 

 
 

2. Related Work: 

In this section, we describe in detail the major previous works that motivated our work. 

2.1. Separable Convolutions 

Separable Convolutions were initially introduced by [1] and then later implemented by [1]. Separable 

convolution is a form of factorization which factorizes a standard convolution into a depth wise convolution and a 

point wise convolution (1 × 1 convolution). A standard convolution layer works by applying a convolution kernel to 

all of the channels of the input image and takes a weighted sum of the input pixels covered by the kernel sliding 

across all input channels of the image. This means that for a standard convolution, no matter how many input 

channels are available, the output channel is one. However, in depth wise separable convolutions, features are only 

learned from the input channels so the output layer has the same number of channels as the input. 

This is known as depth wise convolution followed by a point wise (1 _ 1) convolution layer which 

computes the weighted sum of all output channels into a single output (Figures 1 and 2). 

 

 

 

 

Figure 1 

Standard 

Convolution 

 

    Figure 2 Separable Convolution 

2.2. Fully Convolution Networks(FCNS) 

The most fundamental idea behind FCNs [10] is that they are only made up of locally connected layers 

(convolution, pooling, and up sampling) without fully connected or dense layers. This tends to reduce the time 

required for computation and the number of parameters. It also means that an FCN will work regardless of the input 

image size. FCNs are typically made up of:  

• Down sampling/Contraction/Encoding Path: On this path, the model extracts and interprets the contextual 

information on the input image. 

• Up sampling/Expanding/Decoding Path: The specific localization or construction of segmentation maps from 

the extracted context in the encoding path. 

• Skip Connections/Bottlenecks: Combines information from encoding and decoding paths by summing feature 

maps 



Patike Kiran Rao 1,2, R Sandeep Kumar 1,2 , Dr K Sreenivasulu2 

 

 

142 

 

2.3. U-Net 

The U-Net architecture is designed as an improvement of the FCN architecture specifically for the 

segmentation of medical images. The major difference between U-Net and FCN is U-Net is symmetrical and the 

bottleneck layers that combine information from the encoding and decoding paths do so by concatenating the feature 

maps whereas they are summed in the FCN architecture. The encoding path of U-Net is made of four blocks each 

containing two 3x3 unpadded convolutions with a ReLu activation layer and a 2x2 max-pooling layer. The number 

of feature channels is also doubled after each down sampling step but the size of feature maps is reduced due to 

max-pooling. The decoding path contains 2x2 up sampling with 3x3 standard convolutions. Each convolution is 

followed by a concatenation of features from corresponding layers in the encoding path. This helps to transfer the 

localization information that is learned during down sampling from the encoding to the decoding path. 

 

3. Materials and Methods: 

In this section, we outline the proposed technique, describe the Separable-UNet architecture and 

experiments conducted. 

3.1. Setup  

The training was based on the Keras with a Tensorflow backend as the deep learning framework on a work 

station enabled with an NVidia Tesla K40c GPU (12GB memory) and Intel ® Xeon (R) CPU E5-2603 V4 @ 1.70 

GHz with 12CPUs. CuDNN 7.0 library was used with the benchmark function enabled to ensure that the fastest 

algorithms are used. 

3.2. Datasets  

The datasets used to evaluate the performance of Separable-UNet are the Kaggle challenge dataset for the 

segmentation of neuronal structures in electron microscopic (EM) stacks [40,41] and the MSD challenge brain 

tumor segmentation dataset [42]. 

3.3. Kaggle Challenge Dataset  

The cassava leaf images were taken with a commonly available Sony Cybershot 20.2-megapixel digital camera 

in experimental fields belonging to the International Institute of Tropical Agriculture (IITA), outside of Bagamoyo, 

Tanzania. The entire cassava leaf roughly centered in the frame was photographed to build the first dataset (Figure 

S6). Over a four-week period, 11,670 images were taken. Images of cassava diseases were taken using several 

cassava genotypes and stages of maturity (as described in Table S1) in order to provide the full range of symptoms 

for each given disease to the deep learning model. Each of the diseases or types of pest damage was distinctive and 

the variation of symptom expression between varieties was minor in comparison to the contrasts between diseases. 

3.4. Data Pre-Processing 

The resolution of the images of the Kaggle challenge EM stacks is originally 512 × 512 but was resized to 256 

× 256 due to computational limitations. Data augmentation techniques were used due to the small number of 

available training images. A smaller number of images might lead to a concept known as over fitting where a trained 

model performs very well on training data but performs poorly on new test data. These augmentation techniques 

included horizontal flip, zoom range, height and width shift range. The number of images of the EM stacks dataset 

after augmentation increased to 120. The resolution of images in the BRATs dataset (240 × 240) was also reduced to 

144 × 144. Center cropping and normalization of data to ensure 0 mean and unit variance was also employed and the 

original 3D slices converted to 2D slices for training and testing of Separable-UNet. In all, there are 25347 casava 

leaf image samples.  

3.5. Separable U-Net 

Separable U-Net follows a similar architecture as U-Net with a few a few modifications. Except for the first 

convolution layer which has a standard convolution, all other convolution layers are made of depth wise separable 

convolution layers. Separable U-Net architecture with convolution encoder and decoder using separable convolution 

based U-Net architecture. It can construct the model thinner and less computationally expensive. 

The original depthwise separable convolution is the depthwise convolution followed by a pointwise convolution. 

1. Depthwise convolution is the channel-wise n×n spatial convolution. Suppose in the figure above, we have 5 

channels, then we will have 5 n×n spatial convolution. 

2. Pointwise convolution actually is the 1×1 convolution to change the dimension. 
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Figure 3 Separable U-Net Architecture 

 

4. Results 

Experiments measuring the computational requirements of Separable U-Net, its interference speed, and 

segmentation performance on the mentioned datasets conducted in this session. 

4.1. Ablation Study 

An extensive ablation study is performed to evaluate the performance of the proposed model and to support the final 

design decisions made in this study. Two different modifications are made to the architecture design and they 

include: 

• U-Net (GN =32 ) – Original U-Net architecture with GN only with 32 groups. 

• U-Net with Separable layers – U-Net architecture with depth wise separable layers replacing standard 

convolution layers and batch normalization layers only. 

The performance of these modifications is reported alongside the original U-Net architecture, the proposed 

Separable Convolution with CReLu. 

 

4.2. Results of Cassava Keggle Dataset 

Separable UNet is seen to achieve comparable performance in terms of accuracy, mean IOU and Dice co-efficient, 

while being more computationally efficient than the original U-Net model. 

U-Net (GN = 32) 

U-Net and SD-UNet are trained from scratch for only four epochs and their mean dice scores 

on validation data compared alongside their inference speed. The choice of a smaller number of 

epochs is due to the ability of the Adam optimization algorithm reaching a minimum quickly and each epoch runs 

1000 iterations over the dataset. SD-UNet achieves a better loss and mean dice co-e_cient compared to the U-Net 

model. Its inference speed is also faster on a single Tesla K40C gpu device. The training curve in Figure 10 also 

shows that WS with GN also significantly improves the training loss and obtains a smoother curve. Pixel wise, 

accuracy has been accepted as a general metric but is not necessarily the best form of performance evaluation mostly 

due to class imbalance. This means that accuracy could be very high or very low depending on the scale of pixel 

imbalance that exists in the dataset and, therefore, is not necessarily always correlated with the Dice coe_cient which 

measures the di_erence in the overlap between each pixel in an image and its prediction. The Dice coe_cient is not 

dependent on the balance of data and is more accurate compared to pixel accuracy. Sample tumor segmentation 

visualizations are shown in Figure 11 and it is interesting to note that while SD-UNet achieves comparable 

performance with U-Net on large tumor segmentations, it significantly outperforms U-Net on smaller tumor 

segmentations. 

U-Net 
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 Total params: 3,690,049 

Trainable params: 3,689,665 

Non-trainable params: 384 

 

S U-Net 

 
 

Total params: 3,561,281 

Trainable params: 3,560,897 

Non-trainable params: 384 

 

5. Discussion and Conclusion 

Early detection is necessary to help in preventing complications that may arise due to late detection of cassava 

leaf detections. However, with the increasing availability of large cassava leaf data, the workload on formers and 

other experts in the field has also increased. To help provide easier, accurate and timely detections, several deep 

learning methods have been proposed and most have chalked great successes in these tasks. The U-Net architecture 

is one such model that is widely accepted researchers for image segmentation tasks.  

In recent times, mobile handheld devices have been enabled with processing functionalities that were only 

imaginable for large computers in the past. However, deep learning applications require even higher computations. 

This makes it very challenging to deploy deep learning applications on handheld or embedded devices. The U-Net 

architecture, for instance, requires over 2M FLOPs and over 370 megabytes (Mb) of storage space which are really 

high demands. Moreover, not much attention has been paid to applying deep learning methods on resourece-

constrianed devices in areas of plant imaging.  

In this study, separable convolution U-Net, has been presented for the segmentation of plant data on devices 

with limited computational budgets. The separable architecture makes use of depth wise separable convolutions. Our 

findings show that the proposed architecture is only 15.8 Mb in size which is 23 x smaller than the U-Net and 

requires 8x less computational complexity while maintaining decent accuracy results.  
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Furthermore, in the absence of experts of different unforeseen reason, being able to deploy separable 

convolution on a device such as a mobile phone could help anybody in obtaining segmentation results given the 

availability of images. Separable Unet robustness is also demonstrated during test results to perform significantly 

better than the original UNet architecture on smaller plant leaf datasets. Separable convolution will also be applied 

to different kinds of plant leaf disease data for further testing of its performance. 
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