The Relationship Between Attitude And Higher Order Thinking Skills (HOTS) Among Secondary School Students

Mohd Saifulkhair Omar & Mohd Isha Awang
Centre of Education and Modern Languages, Universiti Utara Malaysia, Malaysia
E-mail address: epui7779@gmail.com

Abstract: The aim of this study would be to determine the attitude of students in secondary schools towards science and the degree of Higher Order Thinking Skills (HOTS). The objective of the research is also to examine the connection between the dimensions of the student's attitude and HOTS. This study is a quantitative method which is a correlation study. The questionnaire was used for the collection of respondent’s information. The questionnaire was divided into two sections, which are: (A) Students' attitude towards science and (B) Higher Order Thinking Skills (HOTS). The attitude toward science using an instrument was adapted and modified by Harery (2007) from the Science Attitudes Inventory which was developed by Lilia et al. (2003). The HOTS survey was consequently designed by the researchers centered on the 2001 Bloom's Taxonomy and based on the questions adapted and updated from Pentaksiran Tingkatan 3 (PT3) 2016 and 2017. A total of 89 secondary school students were randomly selected from the two secondary schools in Kuala Nerus, Terengganu. The study found that student’s attitude towards science is moderate (mean = 3.08), while HOTS level was low (mean = 1.28). However, there was a substantial connection between the dimensions of the science importance in society of the student attitude variables and the dimensions of evaluating and creating HOTS variables. Therefore, The Ministry of Education Malaysia (MOE) must plan the programs and activities to increase the awareness and understanding of the students about the importance of science in society.

INTRODUCTION

The education system in Malaysia has changed according to recent trends, creating an internationally competitive and balanced community (Saiapolbarin, Muhammad Taufiq, Nazri & Taj Rijal, 2019). To enable our students to be able to compete at the international level, then Higher Order Thinking Skills (HOTS) should be given priority (Nur Hawa Hanis & Ghazali, 2018; Sole & Anggraeni, 2020). This argument is supported by Dian et al. (2019), who found that life in the 21st century requires a person to possess more than one skill than ever before in order to determine one’s success or failure. This prompted the government to reform national education policy and develop a long-term strategy, the Pelan Pembangunan Pendidikan Malaysia (PPPM) (2013-2025), with a focus on world-class quality education, with one change in the PPPM being to have fair access to education of international standard quality (Mazlini et al., 2016).

The international benchmarks TIMSS (Trends in International Mathematics and Science Study) and PISA (Programme International Student Assessment) have been adopted to evaluate the performance of Malaysian students (PPPM, 2013). Hence, Malaysia's low position in the test has proven that Malaysian students find it difficult to apply high-order thinking skills (PPPM, 2013). Malaysia's TIMSS and PISA achievement reports from 2007 to 2015 indicate a deterioration in the mastery of science and mathematics subjects among Malaysian students globally (Shahril, Azlin Norhaini, Subahan & Azliza, 2018). Therefore, the vision of PPM 2013-2025 is to place Malaysia in the top one-third group in international benchmarks, TIMSS and PISA in science and mathematics subjects by 2025 (PPPM 2013-2025, 2012). However, the study by Vadsala and Kamisah (2015) is worrisome when they have found that the decline in Malaysia's achievement in such international assessments is due to the problem of students who are passive and like to keep quiet in implementing HOTS in the classroom. This finding is supported when the study of Arnita, Sajidan, Yudi, Afandi and Prasetyanti (2019) on high school students in Surakarta, Indonesia when they found that some students are passive while doing group work. This negative attitude of students is contrary to the practice of 21st Century Learning (PAK21) because, in PAK21, students will do together the tasks given by the teacher in a group that is Cooperative Learning (Mashira, Rusyati, Nor Saizila & Khairul Anuar, 2020). This is because attitude is important. After all, it will affect what is learned and the efforts made while carrying out learning activities (Nur Bahiyah, Sharifah Nurulhuda Azman, Jailani & Zulkifli, 2017). Furthermore, according to Azimar, Sipahutar and Syarifuddin (2017), students who are positive towards science will cause him or her to do more tasks to improve their ability to think creatively. Edward Glatser's Theory of Critical Thinking Ability (1941) has found that critical thinking is influenced by (1) Intelligent attitude in considering problems, (2) Knowledge of logic-based investigations, (3) Skills in applying critical thinking methods (Zulmaulida, Wahyudin and Dahlan, 2018; Zaid et al., 2021). Next, a study by Miele and Wigfield (2014) has found that student motivation will influence students' critical
thinking skills. They also discovered that two factors determine the motivation of students to participate in critical thinking abilities: (1) the presence of belief, accomplishment and learning objectives affect the relationship between motivation and critical thinking, and it also encourages students to do critical thinking with continuous efforts, (2) different desires, students are more likely to be critical thinking, compared to their fellow students, in their own way and differently (Azlisham et al., 2021). The objectives of this study are:

1. identify attitudes towards science among secondary school students in Kuala Nerus, Terengganu.
2. identify the level of higher-order thinking skills among secondary school students in Kuala Nerus, Terengganu.
3. study the relationship between the dimension of attitude towards science and the dimension of high order thinking skills among secondary school students in Kuala Nerus, Terengganu.

LITERATURE REVIEW

Studies have found that there is a relationship between attitudes and high-level thinking skills (Cornejo, Campos & Quinones, 2019; Dwi Isnaini Amin & Darsono Sigit, 2018; Julianto, Wasis & Rudiana, 2018; Fauziyana et al., 2020). Furthermore a study by Kaili, Harrison, Yinghui and Xuan (2021) and Zaid et al. (2020) on students in a smart classroom environment found that peer interaction and learning motivation have a strong influence on student HOTS. The willingness to apply knowledge, abilities, and values to reasoning and reflection to solve challenges, to take decisions, to invent, and to build something are defined as Higher Order Thinking Skills (HOTS) (BPK, 2014). This is because the ability to think critically is important to build students competencies in problem solving and discovery (Ani Sutiani, Manihar Situmorang, Albinus Silalahi, 2021). HOTS can be identified in Content Standards (CS) and Learning Standards (LS) through the statement of thought level verbs in Anderson’s revised Bloom’s Taxonomy, where HOTS is a reference to the skills of applying, analysing, evaluating and creating (BPK, 2016). Past studies have found that the level of higher-order thinking skills of secondary school students is low and also there is no significant difference between the sexes (Gulistan, Saedah, Abu Bakar & Omed Saadallah, 2018; Siti Nur Hasanah, Sunarno & Prayitno, 2020, Rosnee et al., 2021). According to Sole and Anggraeni (2020), the preparation of higher-order thinking skills questions does not mean having a high level of difficulty because a high level of difficulty does not necessarily mean having higher-order thinking skills. For example, a question asking a meaning that has never been learned does not mean that the question is a question of higher-order thinking skills. Meanwhile, Aznur, Khazriyati, Idris, Ruhizan and Mimiko (2019) have found that the structure of SPM examination questions in Malaysia only requires students to solve problems by giving answers in the form of values without requiring students to change answers to new formulas or in other forms such as graphs. Meanwhile, Mohd Saifulkhair and Mohd Isha (2020) found that the importance of sufficient materials and apparatus for experiments will help students develop original ideas and further improve students' higher-order thinking skills. The importance of HOTS learning is important as it will cause students’ academic achievement to increase (Tanujaya, Mumu & Margono, 2017, Norazmi et al., 2019). Next, Gulistan, Saedah, Abu Bakar & Omed Saadallah (2018) also stated that the level of synthetic thinking and evaluating should be given more attention in improving students' HOTS.

According to Cezar and Pinto’s (2017) analysis of primary school teachers and students in Spain, students in rural schools had more optimistic attitudes compared to students in urban schools, and teachers reported that they did not perform experiments in science classes. Furthermore, the findings of a study by Sofiani, Maulida, Fadhillah and Sihite (2017) have also shown that students’ attitudes towards science are moderate with the highest mean being self-concept in science (mean = 3.53), followed by the excitement in science (mean = 3.19), value in science (mean = 3.05). The lowest mean was motivation in science (mean = 2.84). Nevertheless, previous studies have found that students’ attitudes towards science are positive and there are no significant differences between genders (Nasyimah & Zamri, 2016; Oon, Cheng & Wong, 2019; Sakariyau, Taiwo & Ajagbe, 2016; Norazmi et al., 2020; Sofiani, Maulida, Fadhillah & Sihite, 2017).

RESEARCH METHODOLOGY

Research Question
1. What is the attitude towards science among high school students?
2. What is the level of higher-order thinking skills among high school students?
3. Is there a relationship between attitudes and higher-order thinking skills among high school students?

Research Instruments
Attitudes towards science
The instrument used was an instrument adapted and modified by Harery (2007) from the Attitudes Towards Science Inventory that was developed by Lilia et al. (2003).

Table 1

<table>
<thead>
<tr>
<th>Attitude Dimension</th>
<th>No. of Item</th>
<th>Item Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>The importance of science in society</td>
<td>8</td>
<td>1, 2, 8, 11, 20, 21, 28*, 33*.</td>
</tr>
<tr>
<td>Motivation in science</td>
<td>8</td>
<td>3, 6, 7, 9, 22, 25, 32*, 35*.</td>
</tr>
<tr>
<td>Excitement in science</td>
<td>8</td>
<td>5, 12, 14, 16*, 24, 27, 29*, 38.</td>
</tr>
<tr>
<td>Anxiety in science</td>
<td>8</td>
<td>10*, 13, 18*, 23*, 31*, 34*, 37, 39</td>
</tr>
<tr>
<td>Self-concept in science</td>
<td>8</td>
<td>4*, 15, 17*, 19*, 26, 30, 36, 40*.</td>
</tr>
</tbody>
</table>

Higher-order thinking skills

Furthermore, researchers built and created a series of standardised query instruments based on a research by Stanger-Hall (2012), discovered that using formal questions promotes higher-order thinking skills in pupils. The questions have been modified and upgraded from the questions in 2016 and 2017 Pentaksiran Tingkatan 3 and 2001 Bloom's Taxonomy. For construct evaluation, the researchers carried out a construct test with two experts and experienced teachers from AKRAM (Angkatan Kerja Rajin dan Mulia) Terengganu. Following that, an accuracy test was performed to assess the instrument's reliability value.

Table 2

<table>
<thead>
<tr>
<th>HOTS Dimension</th>
<th>No. of Items</th>
<th>Item Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applying</td>
<td>2</td>
<td>1, 5</td>
</tr>
<tr>
<td>Analysing</td>
<td>2</td>
<td>2, 6</td>
</tr>
<tr>
<td>Assessing</td>
<td>2</td>
<td>3, 7</td>
</tr>
<tr>
<td>Creating</td>
<td>2</td>
<td>4, 8</td>
</tr>
</tbody>
</table>

Data Collection Procedure

The researcher requested approval from the Education Planning and Research Division (EPRD) in advance to undertake the studies before the data collection process was started. The researcher then requested the State Education Department (JPN) for a permission and then the Principal of the school. The researcher circulated the questionnaire to the chosen respondents after receiving approval from both the State Education Department and the school. In the district of Kuala Nerus, Terengganu, the researchers went to two participated secondary schools.

The researcher then met with the school administrator and explained briefly the purpose of this study and requested the goodwill of the administrator to manage this questionnaire to be answered by Form 2 students in the school. A total of 100 sets of questionnaires were prepared and distributed to the two schools involved. Finally, recollection of questionnaires for each school was made within a week after reminders via telephone calls were made as suggested by Creswell (2012, 2014), Sekaran (2006), and Sekaran and Bougie (2010, 2013). The questionnaire was divided into two parts, namely (I) attitudes towards science and (III) higher-order thinking skills. Part I is the interval data using a 5-point Likert scale. Meanwhile, part II is the ratio data, where the researcher has placed a score of 1, 2, 3, 4 and 5. Next, moderation was done with two teachers examining PT3 science questions at Kuala Nerus, Terengganu. This is because, HOTS questions should be in the form of open-ended questions that have more than one answer (Suhaimi @ Othman et al., 2014). Finally, the total score will be summed for each dimension.

DATA ANALYSIS

Table 3

<table>
<thead>
<tr>
<th>No. Research Questions</th>
<th>Type of Analysis</th>
</tr>
</thead>
</table>

84
The Relationship Between Attitude And Higher Order Thinking Skills (Hots) Among Secondary School Students

1. What are the attitudes towards science among high school students?

2. What is the level of higher-order thinking (HOTS) skills among high school students?

5. Is there a relationship between attitudes and higher-order thinking skills among high school students?

To answer research questions 1 and 2, the researcher has constructed a level table to determine the attitude towards science and the level of higher order thinking skills among high school students. Researchers have divided into three levels namely high, medium and low.

<table>
<thead>
<tr>
<th>Mean Score</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.34 – 5.00</td>
<td>High</td>
</tr>
<tr>
<td>1.67 – 3.33</td>
<td>Medium</td>
</tr>
<tr>
<td>0 – 1.66</td>
<td>Low</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION OF THE STUDY

1. What is the attitude towards science among high school students?

Table 5

<table>
<thead>
<tr>
<th>Attitude Dimension</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The importance of science in society</td>
<td>4.00</td>
<td>.65</td>
</tr>
<tr>
<td>Motivation in science</td>
<td>3.36</td>
<td>.63</td>
</tr>
<tr>
<td>Excitement in science</td>
<td>3.15</td>
<td>.47</td>
</tr>
<tr>
<td>Anxiety in science</td>
<td>2.17</td>
<td>.74</td>
</tr>
<tr>
<td>Self-concept in science</td>
<td>2.66</td>
<td>.85</td>
</tr>
</tbody>
</table>

Figure 1: Comparison Graph of Mean Values of Attitude Dimensions.
Table 5 above shows the dimensions of the importance of science in society (mean = 4.00) and motivation in science (mean = 3.36) are at a high level. Meanwhile, the other three dimensions of excitement in science (mean = 3.15), self-concept in science (mean = 2.66), and anxiety in science (mean = 2.17) were at a moderate level. This finding is in line with the findings of a study by Zanaton, Lilia, and Kamisah (2006) who have found that the dimension of the importance of science in society has a high mean compared to other dimensions. The importance of science in society can be defined, according to Zanaton, Lilia and
Kamisah (2006) by the importance and need of science in everyday life. It can also be used to solve challenges every day. Similarly, the findings by Aziz and Ling (2011) found that students’ perceptions of the importance of science in society are positive. The findings of this study are reinforced by Siegal et al. (2003) who have found that students positively asserted that science is closely linked to their lives.

2. *What is the level of higher-order thinking skills among secondary school students?*

<table>
<thead>
<tr>
<th>HOTS Dimension</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applying</td>
<td>1.05</td>
<td>.67</td>
</tr>
<tr>
<td>Analysing</td>
<td>1.67</td>
<td>1.06</td>
</tr>
<tr>
<td>Assessing</td>
<td>1.05</td>
<td>.81</td>
</tr>
<tr>
<td>Creating</td>
<td>1.35</td>
<td>.97</td>
</tr>
</tbody>
</table>

Table 6: Mean Value of HOTS Dimension

Figure 2: Comparison Graph of Mean Values of HOTS Dimensions

Table 6 above shows that the highest mean is the analysing dimension (mean = 1.67) and is at a moderate level. Meanwhile, the other three dimensions are at a low level, namely creating (mean = 1.35), applying (mean = 1.05), and evaluating (mean = 1.05). This finding is supported by Ichsan, Sigit, and Miarsyah (2019) who have found that the highest score is the analysing dimension (3.81), while the lowest score is the creating dimension (2.57).

3. *Is there a relationship between attitudes and higher-order thinking skills among high school students?*

Table 7: Spearman’s Correlation Test for the Relationship between Attitude and HOTS

<table>
<thead>
<tr>
<th></th>
<th>Applying</th>
<th>Analysing</th>
<th>Assessing</th>
<th>Creating</th>
</tr>
</thead>
<tbody>
<tr>
<td>The importance of science in society</td>
<td>.068</td>
<td>.176</td>
<td>.098</td>
<td>.280**</td>
</tr>
<tr>
<td>Motivation in science</td>
<td>.136</td>
<td>.022</td>
<td>.835</td>
<td>.090</td>
</tr>
<tr>
<td>Excitement in science</td>
<td>.080</td>
<td>.162</td>
<td>.129</td>
<td>.107</td>
</tr>
<tr>
<td>Anxiety in science</td>
<td>.021</td>
<td>.077</td>
<td>.475</td>
<td>.027</td>
</tr>
<tr>
<td>Self-concept in science</td>
<td>.170</td>
<td>.170</td>
<td>.111</td>
<td>.125</td>
</tr>
</tbody>
</table>

* Significant at the 0.05 level
In HOTS, there is a significant association between the aspects of the significance of science in society and the dimensions of evaluating (p = 0.008 < 0.01) and creating (p = 0.044 < 0.05), as seen in Table 7. The usefulness and need to use scientific knowledge for everyday life and also for work to resolve everyday problems will demonstrate the relevance of science in societies (Zanaton, Lilía & Kamisah, 2006).

CONCLUSION
The findings of the research found that the level of higher-order thinking skills (HOTS) among Form Two students in the Kuala Nerus district was low (mean = 1.28), where the analysing dimension showed the highest mean (mean = 1.67) compared to other dimensions. In addition, the findings showed that the students' attitudes towards science were moderate (mean = 3.08), meanwhile, the importance of science in society had the highest mean (mean = 4.00) compared to other dimensions.

Furthermore, the correlation test also found that there is a relationship between the dimensions of the importance of science in society to the dimensions of evaluating and creating. The level of evaluative and creative thinking is a higher-order thinking skill and is the 5th and 6th levels in Bloom’s Taxonomy (2001). The importance of science in society can be explained when science can be used to solve everyday problems in society.

In this regard, teachers and schools should plan activities that can provide awareness to students about the importance of science in life, as well as critical and creative thinking in solving everyday problems. For example, Project-Based Learning (PBL), where students will combine the science knowledge learned in the laboratory with high-level thinking skills that have been applied to create and solve problems in community life. The findings of a study by Rosa (2021) have supported that PBL will enhance the critical thinking of students in Taiwan.

REFERENCES

