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Abstract: Effective usage of frequency resource in a mobile omputing nvironment is a challenging problem.The key idea is to
control mutual interference among neighboring cells in a systematic way and at the same time minimizing the usage of
frequency utilization. In this paper we present a graph theoretic approach to address this problem. The mutually interfering cells
are represented as the vertices of a graph and a mathematical assignment of frequencies is done in order to avoid interference up
to four levels simultaneously focusing on the minimal usage of frequency resources. Then the minimum value of the maximum
assigned frequency among all such assignments, called the span of the graph is obtained, which serves as the highest frequency
to be used in order to avoid interference up to four levels. In this paper, we define a labeling for any connected graph with at
least two vertices having a Hamiltonian path and mathematically obtain the span, so as avoid interference at four levels.

Keywords: Frequency areuse, amobile acellular asystems, aMulti alevel adistance alabeling,
apath acoloring.

1. Introduction

A simple, undirected, finite and connected graphs are considered in this present paper. The
standard graph theory terminologies are from [1], [2]. Due to the rapid growth of wireless
networks, the frequency reuse problem has gained importance since recent years. In a mobile
cellular environment, the frequency resource should be reused to minimize its usage , besides
keeping the interference at tolerable limits [3], [4]. An efficient system capacity could be obtained
through reuse of frequency in the mobile cellular environment. In this context, we model the
frequency assignment problem as a graph labeling or graph coloring problem. We introduce a
novel concept of path coloring of graphs to avoid interference upto four levels. The mutually
interfering cells are treated as vertices of a graph and edges are drawn between them to show
possible interference between them. A mapping from the vertex set of the graph to the set of
positive integers is defined in such a way that there exists at least one path between every pair
of wvertices in the graph, where interference upto four levels can be avoided. Over all such
labelings the minimum of the highest label used, called the span of the graph is obtained, which
represents the highest frequency required for a interference free transmission. In section 1l of the
article we define some basic graph theory terminologies, discuss work done in the area earlier
and the motivation for our work. In section Il we provide our main results and how it can be
applied to the frequency reuse problem. Section IV has some concluding remarks about future
work.

2. RELATED WORK

A Graph, G(V,E), is a mathematical entity consisting of two sets, called as the vertex set,
denoted by V and edge set denoted by E. The set V consists of vertices or points and the set
E, consists of lines joining the vertices called edges, indicating some relation between the
vertices. Graphs are versatile to use in a discussion which involves a set of discrete objects and
relations between them. Two vertices u and v are said to be adjacent if they are joined by an
edge. A uv— Path in a graph G is an alternating sequence of vertices and edges, beginning at
a vertex u and ending at another vertex v in which no vertex is repeated. There may be
several paths between a pair of vertices. The length of the shortest path between two vertices u
and v in G is called as the Distance between them. The largest distance between any two
vertices of a graph is called as the Diameter of the graph. The number of edges incident to a
vertex v of a graph G is called the Degree of the vertex v. The Maximum degree of G s
the degree of the vertex with highest degree. A graph is said to be Connected if there is at
least one path between every pair of wvertices. A graph H is called a Subgraph of a graph G
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if its vertices and edges are subsets of the vertex and edge sets of the graph G respectively. A
sub graph of G that contains all the vertices of G is called a Spanning sub graph of G. A
Cycle is a closed path which begins and ends at the same vertex,denoted by C, where n is
the number of vertices. A graph in which every pair of vertices are adjacent is called a
Complete graph or Clique, denoted by K, where n is the number of vertices in the graph. A
graph whose vertices can be partitioned into two subsets such that, every vertex of one set is
adjacent to every vertex of the other set only is called a Complete Bipartite graph, denoted by
Kmn, Where m and n are the number of wvertices in the two sets. If m = 1, the graph is
called a star graph denoted by Kin. An Interval graph is a graph in which vertices represent
some interval on the real line and an edge between vertices exist if the corresponding intervals
intersect. A Hamiltonian path is a path that traverses all the vertices of the graph G exactly
once. Two graphs G and H having an equal number of vertices, equal number of edges, that
preserve adjacency are called Isomorphic graphs, denoted by G ' H. A connected graph in which
there is only one path between every pair of vertices is called a tree, denoted by T.. A set of
vertices in a graph is said to be an Independent set if no two vertices in the set are adjacent.
A split graph is a graph whose vertex set can be partitioned into two subsets. One of which is
an independent set and the other is a clique. A 2-edge connected split graph is obtained by
removing minimum two edges of a split graph which then forms a cligue and an independent
set. The Cartesian Product of two graphs G and H, denoted by G x H is the graph with V

(G) x V (H) as the vertex set and . EQGXH), , as the edge set such
that

{((u,v).(u} 0 )|(w=u and vv € E(H))’or(uu € E(G)

and v = v )} where uv € V (G) and u v € V (H) . The

Join of two graphs is the graph obtained by connecting all the vertices of one graph to all the
vertices of the other graph.

In 1980, Hale et al. [5], [6], turned the frequency assignment problem, where channels had to be
assigned to radio stations, in order to avoid interference as a graph labeling problem which is
defined as follows: An L(pi, p2 ps, .., pm)labeling of a graph G, is labelling of vertices with
non negative integers such that the wvertices at distance i are assigned with the labels whose
difference is at least p; .

Later, Roberts proposed a concept “close” or very close” in FM radio stations during 1991 in
which very close” represents the adjacent vertices and “close” represents the vertices at distance
two [7].

In case of very close stations, frequencies assigned to them must differ by at least 2 and when
they are close to each other by at least 1. This is called as the distance two labeling which is
extensively studied as L(2, 1)-labelling in [8]-[19].

Practically, interference can occur at levels more than two also. Jean Clipperton et al., studied
L(3, 2, 1)-labeling problems and defined L(3, 2, 1)-labelling as an assignment of non negative
integers to each vertex of G such that the vertices at distance 1, 2, 3 are labelled with integers
that differ by at least 3, 2, 1 respectively [20]. Later, Soumen Atta and Priya Ranjan Sinha
Mahapatra defined the L(4, 3, 2, 1)-labeling as an assignment of non negative integers to each
vertex of G such that the vertices at distance 1, 2, 3, 4 are labelled with a difference of at
least 4, 3, 2, 1 respectively. The smallest positive integer k, where k is the maximum label in
a L(4, 3, 2, 1)-labeling of G is called L(4, 3, 2, 1)-labeling number of graph G, denoted by
k(G). They obtained k(G) for paths, cycles, complete graphs and complete bipartite graphs [21].
In [22], R. Sweetly and J. Paulraj Joseph also defined L(4, 3, 2, 1)-labeling of G and obtained
an upper bound for k(G) in terms of maximum degree of G. A L(4, 3, 2, 1)labeling of Ks is
shown in Figure 1(a). In L(4,3,2,1)-labeling , the condition must be satisfied between every pair
of vertices. Here in Figure 1(a), L(4,3,2,1)-labeling condition is satisfied between all pairs of
vertices. Hence, L(4,3,2,1)- labeling number, k(G) = 17.

Sk Amanathulla, Madhumangal Pal discussed the L(3, 2, 1) and L(4, 3, 2, 1)-labeling problem on
interval graphs [23]. Variations of the problem for higher levels of interference has been studied
in [24]-[27], [29].

According to Ruxandra Marinescu-Ghemeci [28], arbitrary paths provide a safe communication in
networks. In order to solve interference or security problems, it is necessary to have at least one
path between every pair of wvertices such that the labeling restricted to that path satisfies
interference condition. Hence rather than seeking interference-free condition between every pair of
vertices, they look for at least one such path between every pair of vertices and call this as a
path coloring. Restricting the levels of interference to two, in [28], they studied L(2, 1)-path
coloring.
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If there exists a L(2, 1)-path between every pair of vertices, then they called G as 2-radio
connected. If ¢ : V (G) — N+is a L(2, 1)-path coloring of G, the highest label used was
called as values of c, denoted by val(c). The minimum of val(c) over all such labelings of c
was called 2-radio connection number, denoted by Ac(G). They obtained the upper bound and
lower bound for A(G) where G is connected graph with at least 5 vertices, exact values for
graphs having Hamiltonian path, complete graphs, cycles, complete bipartite graphs, 2edge
connected split graphs, graph obtained by cartesian product, join of two graphs.

Motivated by this we seek at least one path between every pair of vertices along which
interference is avoided at 3 levels and hence defined L(3, 2, 1)-path coloring of graph G in
[30]. Analogous to 2-connection number of G, we defined 3-connection number, ki (G) in [30]
and obtained results for k/(G) where G ' C, or K, Kmn, 2-edge connected Split graph, Cartesian
product of two graphs, Join of two graphs.

In this paper, we extend this concept to 4 levels by defining L(4, 3, 2, 1)-path coloring of
graphs and we find k¢(G) for any graph with at least 2 vertices and containing a hamiltonian
path.

Definition I1.1. A labeling g : V (G) — Z* defined such that there exists at least one path P
between every pair of vertices in which the labeling imputed in this path must be a L(4, 3,
2, 1)-labeling is called L(4, 3, 2, 1)-path coloring of G. The maximum label assigned to any
vertex of G under g, is called the span of g. The minimum value of span of g taken over
all such labelings g is the 4-connection number or L(4, 3, 2, 1)-connection number of G,
denoted by k(G).

Example 11.2. A L(4, 3, 2, 1)-path coloring of Ks is shown in Figure 1(b). In the Figure 1(a),
span of L(4, 3, 2, Dlabelling of Ksis 17. In the Figure 1(b), vi-Vo-vs-va-vs is a L(4, 3, 2,
1)-path coloring of Ks with span 11. Hence, in general, a path coloring reduces the span of
a given graph. A heuristic approach in finding the span of a graph goes out of hand as the

number of vertices increases. In the next section we develop
a labeling algorithm and also give mathematical
proof for the minimality of span obtained.
vi 1l vi 1
vs 17v2 5 Vs 8v, 6
V3 9V3 11
vy 13 Vs 3
(@ L4, 3, 2, l)-labelling (b) L(4, 3, 2, 1)-path colof Ks oring of Ks
Fig. 1

Remark 11.3. We first make the following simple observation: As tree is a graph in which there
exists only one path between every pair of vertices, the definitions of L(4,3,2,1) and L(4,3,2,1)—

path coloring . coincide for trees. Since paths and star graphs, are special
cases of trees, for 5 if any path P, with n vertices, k¢(Pn) =k(Pn) and for the star
graph also kc(K1,n) L8 N = Kn).
In [22] determined =

2, 9
if n =4 if 5<n ifk(P) =9, <7 if8<n<12 ifn> 13
and k(Kin) = 3n + n o 2
Hence the  above = " results are also the span for L(4,3,2,1)path
coloring of paths 3, 13 and star graph respectively.

3. MAIN RESULTS
Theorem I11.1. For any connected graph G with n vertices,

1) k(G) = 5 if n = 2

2) k(G) = 8 if n = 3

3) k(G) = 9 if n = 4 and G 6 K3

Proof:

1) The only connected graph with two vertices is P,. Define g : V (G) — Z%, such that
g(vi) = 1, g(v2) = 5. Hence span for Py is 5 .

2) The only connected graphs with three vertices are P; or Cs. Define g : V (G) — Z,

such that g(vi)) = 8, g(v2) = 1, g(vs) = 5. Hence span for Pz or Csis 8. =~ ki(G) = ke(Ps) =
ke(Cs) = 8.
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3) If G is any connected graph on 4 vertices and G 6' Ki3 then G contains Ps as a
spanning connected sub graph which contains all the vertices of G, therefore, ko(G) < k¢(Ps) =
9. To prove that ko(G) < 9. Suppose ki(G) = 8. Then there exists two vertices v; and vj such
that g(vi) = 1 and g(vj) = 8. Let P be the L(4, 3, 2, 1)-path between v; and vj. Then P
contains at most two vertices between v; and vj. Let x and y be the other two vertices of G.
Case 1: P is of the form vi — x — y — v

Then g(x) = 5 and g(y) = 12, a contradiction.

Case 2: P is of the form vi — x — ;.

Then g(x) > 5 and g(x) < 4, a contradiction.

Case 3: There are no vertices between vi and vj on P. Then the edge viv; itself is a L(4, 3, 2,
1)-path between vi and v;. The edge vivj can be extended to at most two other vertices say x
and y of G as follows: Subcase 3.1: Suppose the edge viv; can be extended to both x and y
in the form vi — v; — x — y.

Then g(x) = 4 and g(y) > 11, a contradiction. Subcase 3.2: Suppose the edge viv; can be
extended in the form y — x — vi — vi. Then g(x) = 5 If g(x) = 5 then g(y) > 10, a
contradiction.

Subcase 3.3: Suppose the edge viv; can be extended on both sides to exactly one vertex say X—vi
—v; —y. Then g(x) = 5 and g(y) > 12, a contradiction. Subcase 3.4: If edge vivj can be extended
to exactly one vertex say x in the form vi — v; — x then the other vertex y should be adjacent
to v;. Hence G ' K3, a contradiction.

A similar proof holds if x is adjacent to v;. In all the cases, there is no L(4, 3, 2, 1)-path
coloring of G with eight or fewer colors. Hence the result.

Remark [I11.2. If G 6 Kis, then, k¢(Kiz) = k(Kiz) = 11 (By R. Sweetly et al., k(Kin) = 3n +
2 [22]). By the above theorem I1I1.1 point 3, we observe that if G is a connected graph on
n vertices containing a Hamiltonian path, then k(G) = k¢(Pn) = Kk(Pn). Also, Span of the graph
not containing a Hamiltonian path will be more than that of the graph containing Hamiltonian
path with same number of vertices.

Theorem 111.3. Let G be a connected graph with 5 < n < 7 vertices and containing
Hamiltonian path. Then k(G) = 11.

Proof: Assume that G contains a Hamiltonian path. Since a Hamiltonian path is a spanning
connected sub graph of G, k¢(G) < ke(Pn) < 11 for 5 < n < 7.

To show that k{(G) <« 11.

Suppose k(G) = 10, there exists a L(4, 3, 2, 1)-path P between v; and vj such that g(vi) = 1
and g(vj) = 10. Now, P contains at most 5 vertices between v; and v;.

Case 1: P contains 5 vertices between vi and V.

Let the 5 vertices be in the order vi -x-y -z —u-v -vj. Then g(x) > 5.

Let g(x) € {5 6, 7}. Since g(vjy = 10, g(y) = 9 and g(z) > 13, a contradiction.

If g(x) > 8 then g(y) > 4 and g(z) > 12, a contradiction.

Case 2: P contains 4 vertices between v; and v

Let the 4 vertices be in the order vi — x —y — z — u — v Since g(vi) = 1, g(x) > 5 and
since g(v;)) = 10, g(x) < 9 which implies g(x) € {5,6,7,8,9}.

Subcase 2.1: If g(x) € {5,6,7}, then g(y) > 12, a contradiction.

Subcase 2.2: If g(x) = 8 or g(x) = 9 then g(z) > 13, a contradiction.

Case 3: P contains three vertices between v; and v;. Let x, y and z be the three vertices in the
order vi — X — Yy — z — vj. Since g(vi) = 1 and g(v) = 10, g(x) € {5,6,7,8}.

Subcase 3.1: If g(x) € {5,6,7}, then g(y) > 13, a contradiction.

Subcase 3.2: If g(x) = 8, then g(y) = 4 and g(z) > 14, a contradiction.

In any case, it is a contradiction.

Case 4. P contains two vertices between v;i and v;.

Let x and y be the two vertices in the order vi — x —y — v;. As g(vi) = 1, gx) € {5,6,7}.
In any case, g(y) = 14, a contradiction.

Case 5: P contains one vertex between v; and v;. Let x be the vertex between v; and vj. Let the
path vi—x—vj be PO°.

Then, as g(vi) = 1, g(x) = 5. As g(v)) = 10, g(x) < 6 which implies that g(x) = 5 or 6.

Now, P° can be extended to the other vertices say y and z as follows:

Subcase 5.1: P can be extended to the form z-y-vix-v;. If g(x) = 5 or g(x) = 6 then g(z) >
12, a contradiction.

Subcase 5.2: P can be extended to the form vix-vi-y-z. If g(x) = 5 or g(x) = 6 then g(y) >

14 or g(z) > 13 respectively, a contradiction.
Subcase 5.3: P° can be extended to the form y-vi—x-vj—z. As in previous two cases, g(z) > 14
or g(y) > 12, a contradiction.
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Case 6: P contains no vertices between vi and v;. Then an edge vi — v itself is a L(4, 3, 2,
1)-path between v; and vj, say P%.
This path P% can be extended to atleast 3 vertices say X, y and z of G as follows:
Subcase 6.1: P% can be extended to all x, y and z in the form vi— vj— x —y - z
Since g(vi) = 1, g(x) > 4. Since g(vj) = 10, g(x) < 6 which implies that g(x) € {4,5,6}.
If gix) € {45} then g(y) > 13, a contradiction.
If g(x) = 6 then g(y) = 3 and g(z) = 12 , a contradiction. Subcase 6.2: P% can be extended to
the form z-y—x-vi-v; Here, for any values g(x), g(y) > 12, a contradiction. Subcase 6.3: P can
be extended to the form x—vi-vj—z—y Here g(x) € {5,6,7}.
If g(x) = 5 then g(y) > 14, a contradiction If g(x) € {6,7} then g(y) = 4 and g(z) = 13, a
contradiction. Subcase 6.4: P can be extended to the form y-x—vi-vj-z As in the previous two
cases, g(y) > 13, a contradiction.

In all the cases, there is no L(4, 3, 2, 1)-path coloring of G with ten or fewer colors.
Hence, if G contains a Hamiltonian path, k.(G) = 11.
Theorem I11.4. Let G be a connected graph with n vertices. Then

1) k(G) = 12 if 8 < n < 12 and G contains a
Hamiltonian path.

2) ko(G) > 13, otherwise

Proof:

1) Assume that G contains a Hamiltonian path. Since a Hamiltonian path is a spanning connected
sub graph of G, k¢(G) < ke¢(Pn) < 12 for 8 < n < 12,

To show that k(G) <« 12.

Suppose ke(G) = 11, there exists a L(4, 3, 2, 1l)path P between v; and v; such that g(vi) = 1
and g(vj) = 11. Now, P contains at most 10 vertices between v; and v;.

Case 1. P contains m6 < m < 10 vertices between v; and v;.

Let x, y, z be the at least three vertices between v; and v; in the order vi —x—y—z—--—V;. Then
gx) > 5, 9gly) > 9 and g(z2) > 13, a contradiction. Case 2: P contains 5 vertices between v;
and vj. Let x, y, z be the at least three vertices between v; and vj in the order vi—x—y-z—--—V;
Since g(vi) = 1, g(x) > 5.

Subcase 2.1: Let g(x) € {5, 6, 7} Since g(vj = 11, g(y) € {9, 10} and g(z) > 13, g(z) >
14 respectively which is a contradiction.

Subcase 2.2: If g(x) > 8 then g(y) > 4 and g(z) > 13, a contradiction.

Case 3: P contains 4 vertices between vi and vj. Let x, y, z and u be the four vertices between
vi and vj in the order vi — X —y — z — U — V.

Since g(vi) = 1, g(x) > 5. Since g(v) = 11, g(x) < 10 implies that g(x) € {5,6,7,8,9,10}.
Subcase 3.1: If g(x) = 5 then g(y) = 9 and g(z) > 13 which is a contradiction.

Subcase 3.2: Let g(x) € {6, 7}. Since g(v;) = 11, g(y) > 13 and g(y) > 14 respectively which
is a contradiction.

Subcase 3.3: If g(x) € {8910} then g(y) > 4 and g(z) > 14, a contradiction. Case 4. P
contains 3 vertices between vi and vj. Let X, y and z be the vertices between v; and vj in the
order vi — X — Yy — zZ — V.

Then, as g(vi) = 1, gx) > 5. As g(vj) = 11, g(x) < 8 which implies that g(x) €

{5.,6,7,8}.

Also, Since g(x) € {56,7}, g(y) = 9 and since g(vj) = 11, g(y) < 8, a contradiction.

If g(x) = 8 then g(y) = 4 and g(z) > 15, a contradiction.

Case 5: P contains 2 vertices between v; and V.

Let x and y be the vertices between vi and vj. Then g(x) > 5 as g(vij = 1 and gx) < 8 as
g(vj) = 11 implies that g(x) € {5,6,7,8}.

Also, g(y) > 9 as g(x) € {56,7} and g(y) < 7 as g(vj) = 11, a contradiction.

If g(x) = 8 then the path vi — x — y — vj be P which can be extended to the remaining four
or more vertices of G as follows:

Subcase 5.1: P is extended on the right in the form vi — x —y — vj— 2z — ..

Since g(x) = 8, g(y) = 4. Since g(y) = 4, 9(z) = 15,

a contraction.

Subcase 5.2: P is extended on the left in the form -+ — z — vi— X —y —

Then g(x) = 8 and g(y) = 4. Since g(x) = 8, g(z) > 12, a contradiction.

Case 6: P contains one vertex between vi and v

Let x be the vertices between v; and v;.

Then, as g(vi) = 1, g(x) > 5. As g(vj) = 11, g(x) < 7 which implies that g(x) €
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{5,6,7}.
0
Let this path vi — x — vj be P which can be extended to the remaining five or more vertices
of G as follows:
0
Subcase 6.1: P can be extended to the form vi — x — vy—y —z — ..
Here if g(x) = 5 then g(y) > 15, a contradiction.

119(2) =60rg(x) =7 yhen gz) > 14, a contradiction.

Subcase 6.2: P can be extended to the form --—z — y — vi — X — v

Here if g(x) € {5,6} then g(y) = 8 or 9 and g(z) > 12 or 13 respectively, a contradiction.
If g(x) = 7 then g(y) = 13, a contradiction.

0

Subcase 6.3: P can be extended to the form y — vi— x — vj— 2z — u.
Here if g(x) = 5 then g(y) = 8 and g(z) > 15, a contradiction.
If g(x) € {67} then g(y) > 9 and g(z) = 3 which implies that g(u) > 14, a contradiction. Case
7: There are no vertices between vi and vi. Then an edge " itself a L(4, 3, 2, 1)-path
between vi and vj, say P . Since there are at least six vertices
00 left other than v; and vj, the path P may be extended to the remaining vertices as
follows:
00
Subcase 7.1: Pcan be extended to four vertices in the
foom vi — vi— x —y —z —u
Then, Since g(vi) = 1, g(x) > 4.
Since g(v)) = 11, g(x) < 7 which implies that g(x) € {4,5,6,7}.

If g(x) = 4, then g(y) = 8 and g(z) = 13, a contradiction

If g(x) = 5 then g(y) > 14, a contradiction.

If gx) = 6 or 7 then g(y) = 3 and g(z) > 13, a contradiction.
00

Subcase 7.2: Pcan be extended to four vertices in the
foormu -z -y — x — Vi —
Then, as g(vi) = 1, g(xX) = 5. As g(vj) = 11, g(x) < 8 which implies that g(x) €
{5,6,7,8}.

If gx) = 5 then g(y) = 9 and g(z) > 13, a contradiction.
If g(x) = 6 or 7 then g(y) > 13, a contradiction.
If g(xX) = 8 then g(y) = 4 and g(z) = 12, a contradiction.

In all the cases, there is no L(4, 3, 2, 1)-path coloring of G with eleven or fewer colors.
Hence, if G contains a Hamiltonian path, k(G) = 12.
Below we give an algorithm for a L(4,3,2,1)-path coloring of a graph G which has a
Hamiltonian path.

Algorithm 1: L(4, 3, 2, 1)-connection number, ki(G) where G has a Hamiltonian path.

Input: The adjacency matrix of a graph G with n vertices and diam(G) .
Output: A L(4,3,2,1)- path coloring of G and k¢(G) .

Begin

1) Choose a Hamiltonian path P and label the vertices as vi,v2,vs,...Vn

2) Set g(vi) = 1 if i = 1(mod 7) else g(v.) = 5 if i = 2(mod 7) else g(vs) = 9 if i =
3(mod 7) else g(vs) = 13 if i = 4(mod 7) else g(vs) = 3 if i = 5(mod 7) else g(vs) = 7 if
i = 6(mod 7) else g(v7) = 11 if i = O(mod 7)

End

To achieve the goals of wider coverage range and higher data packet throughput wider bandwidth
has to be used. By treating the mobile stations as vertices of a graph and showing edges
between possibly interfering stations the problem can be modeled as a labeling problem in graph
theory as described in the paper. Stations which are at a geographical distance of 100kms say,
can be treated as distance one vertices and 200 kms as distance two vertices and so on. Scaling
up the integers used in the labeling to available frequencies one can apply the above labeling
procedure to avoid a 4-level interference, thus reducing the width of the bandwidth required.
CONCLUSION

In this work, we deal with the problem of assigning frequencies to the very close transmitters
which keeps down the maximum frequency used in wireless communication networks. The idea of
path coloring is used, rather than the normal coloring problem. The path coloring when applied
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to various graphs leads to a span much lesser than the normal coloring as shown in the Table
1.

Table 1: Comparison between L(4,3,2,1)-coloring and L(4,3,2,1)- path coloring of paths, cycles and
complete graphs :

G L(4,3,2,1)coloring| L(4,3,2,1)- path
coloring

P, 5<n<7 |11 11

P, 8 < n <12 | 12 12

Pn, n > 13 13 13

Cs 11 9

Ch 5<n<7 |13 11

o 14 12 (vn8 < n <
n=8,11,16,17,23,29 12)

Cn, n > 13 13 13

Ka 13 9

Ks 17 11

Ks 21 1

Kz 25 11

Ks 29 12

Ke 33 12

K1o 37 12

Kll 41 12

K12 45 12

Kn, n > 13 an - 3 13

Also, to reduce interference to the minimum in current and future communication networks, we
proposed an algorithm which reduces the span of a given graph G where G is a graph
containing Hamiltonian path. In our future work, we will be dealing with the graphs which do
not contain a Hamiltonian path. Here, we observe that our value of k¢(G) is better compared to
the existing k¢(G) value found by others in several bench marking labeling problems.
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